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A program for rotating hypercubes

induces four-dimensional dementia

by A. K. Dewdney

144 vy husband has disappeared
M into thin air, and 1 think
you had something to do
with it?” The woman on the telephone
was Cheryl, and she was clearly upset.
Her husband Magi, my microcomput-
er amanuensis at the University of
Western Ontario, had apparently van-
ished while viewing a computer pro-
gram I had suggested he write. The
program rotates a four-dimensional
analogue of a cube called a hypercube
and projects it on a’display screen.
Cheryl went on in agitation: “There’s a
weird pattern of lines on the monitor
and his clothes are lying in a heap near
the chair. He must have been wearing
these strange colored glasses made out
of cardboard. And look at this—his
socks are still in his shoes!”

Here, it seemed to me, was an obvi-
ous case of four-dimensional demen-
tia. Victims become convinced they
have stepped out of ordinary space
and entered a higher-dimensional real-
ity invisible -to others. The delusion
that one has disappeared can be so
powerful that others take part in it: the
victim can enter a room full of people
and seem invisible to all. Fortunately
Magi’s case has a happy ending; I shall
save it for last. In the meantime I sub-
mit the hypercube program to the
wider public with what I hope is a re-
sponsible warning: Readers likely to
fall prey to Magi’s dementia are urged
‘not to write the program or to view its
output on a display screen. Potential
victims include anyone with a history
of obsession about the higher dimen-
sions or anyone who is even occasion-
ally tempted by the prospect of un-
known realities.

The fourth dimension has been a
vehicle for physical and metaphysical
speculation at least since the 19th cen-
‘tury. The idea of a fourth, physical di-
mension culminated in Einstein’s theo-
ries of special and general relativity;
space and time together make up a
four-dimensional continuum in which
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all real events are timelessly frozen.
This view of the universe may be un-
dergoing dimensional modifications;
the so-called Kaluza-Klein theories in-
troduce seven or more new dimensions
in the form of miniature hyperbub-
bles attached to every point of space-
time [see “The Hidden Dimensions of
Spacetime,” by Daniel Z. Freedman
and Peter van Nieuwenhuizen; SCIEN-
TIFIC AMERICAN, March, 1985].

The fourth dimension that I have
come to know and love is the child
of mathematics. Readers in ordinary
rooms have a three-dimensional co-
ordinate system suspended overhead.
Three walls meet in each corner of the
room, and from that corner radiate
three lines, each of which is the meet-
ing place of a pair of walls. Each line is
perpendicular to the other two lines.
Can the reader imagine a fourth line
that is perpendicular to all three lines?
Probably not, but that is what math-
ematicians require in setting up the
purely mental construct called four-di-
mensional space. You now have the
chance to explore this space in a per-
sonal way and without danger to your
person. You have only to write the pro-
gram I call HYPERCUBE.

HYPERCUBE can trace its origins to
a film produced in the mid-1960’s by
A. Michael Noll, then at Bell Labo-
ratories, that depicts the two-dimen-
sional shadows of four-dimensional
objects moving- in four-dimensional
hyperspace. The program as it now
stands, however, was developed by
Thomas Banchoff and his colleagues
in the Computer Graphics Laborato-
ry at Brown University, and my inspi-
ration for this column comes from
the fascinating images it generates [see
illustrations on pages 19, 21 and 22].
Banchoff, who is a professor of math-
ematics, directs the visual exploration
of higher-dimensional surfaces and
spaces as a complement to his writing
and research as a geometer. In 1978
he and Charles Strauss produced a

9Y,-minute computer-generated col-
or film that has since become a classic
in the mathematical underground:
The Hypercube: Projections and Slic-
ing. (The film can be obtained from
the International Film Bureau, Inc.,
332 South Michigan Avenue, Chica-
go, Ill. 60604.) Banchoff is also proba-
bly the leading expert on the life and
work of Edwin A. Abbott, the English
clergyman and teacher who in 1884
wrote Flatland, a tale of imagined life
in two dimensions.

Banchoff and his colleagues have
devised striking images that illustrate
properties of four-dimensional objects.
The images on page 19, for example,
depict the rotation of a four-dimen-
sional hypercube in four-dimensional
space. To appreciate the images con-
sider the shadow cast by an ordinary
cube on a plane: the shadow can re-
semble a square inside a square. If
the appropriate faces of the cube are
shaded, the shadow is a square with a
square hole in it [see borrom illustra-
tion on page 20).

Similarly, when a hypercube is il-
luminated from a point “above” ordi-
nary space in the fourth dimension,
the three-dimensional “shadow” cast
by the hypercube can resemble a cube
inside a cube. The inner cube is sur-
rounded by six six-sided polyhedrons
that can be regarded as distorted cubes.
The four distorted cubes adjacent to
the sides of the inner cube fit together
to form the solid figure whose surface
is the boxlike torus shown in Ban-
off’s images. The other two distort-
ed cubes, the inner cube and the outer
cube also form a solid torus, which is
not shown. As the hypercube rotates,
the square hole in the visible torus
seems to move toward the viewer.
Those who write the program HYPER-
cUBE will see similar changes, albeit
not so realistic or continuous.

The images on pages 21 and 22 are
from a forthcoming film by Banchoff
and his colleagues Hiiseyin Kocak,
David Laidlaw and David Margolis:
The Hypersphere: Foliation and Pro-
Jjections. The hypersphere is a far more
complex object than the hypercube,
and I shall not describe it in detail.
Nevertheless, one can begin to appre-
ciate the images by considering an or-
dinary sphere. If the sphere is initially
at rest on a plane tangent to its south
pole and a light is fixed at the initial
position of its north pole, the shadow
cast on.the plane by the lines of lati-
tude is a series of concentric circles
[see bottom illustration on page 20]. If
the sphere is rotated while the light is
kept fixed, the images of the circles
may become nonconcentric, and the
image of any circle that passes through
the source of light is a straight line.



Similarly,” the three-dimensional
“shadow” cast by a hypersphere can
be viewed as a series of concentric
toruses [see illustration on page 21].
The ‘toruses are made more- readily
visible in Banchofl’s images by cut-
ting away parts of one torus along
strips that wind around it. When the
hypersphere is rotated, the toruses ap-
pear to swell up and sweep past one
another. Any torus that passes through
the source of light becomes infinitely
large [see illustration on page 22].

Dimensional analogies are valuable
tools in constructing and understand-
ing four-dimensional phenomena. The
hypercube, for example, is derived
from the cube just as the cube is de-
rived from the square. To get the cube
from the square lift the square in a
direction perpendicular to its plane,
up to a height equal to its side [see

top illustration on next page]. The new

cube has eight vertexes, twice as many .

as the initial square, and 12 edges, four
from the initial square, four from the
final square that is lifted away from
the initial square and four that arise
when vertexes in the initial square are
connected to their counterparts in the
final square. The cube also has six
square faces, one coincident with the
initial square, one coincident with the
final square and one erected between
each of the four pairs of edges that
make up the initial and final squares.

If one pretends for the moment that
an additional dimension is available,
the same operation can be repeated
with the cube: “lift” the cube away
from ordinary space in the direction of
the extra dimension, out to a distance
equal to the side of the cube [see top
illustration on next page]. The result

is a hypercube. But in what direction
does the extra dimension lie? I cannot
explain that. Even a photograph -of
me pointing into the fourth dimension
would be utterly useless. My arm
would simply appear to be missing.

Nevertheless, the number of ver-
texes, edges, faces and hyperfaces (or-
dinary cubes) that make up the hyper-
cube can readily be counted. The num-
ber of vertexes is just the number of
vertexes in the initial cube plus the
number in the final cube, or 16. Each
of the eight vertexes in the initial cube
is joined by an edge to one of the eight
vertexes in the final cube, and there are
also 12 edges in each of the two cubes.
Hence there are 8 + 12 + 12, or 32,
edges in the hypercube. One can also
show that the hypercube has 24 ordi-
nary faces and eight hyperfaces.

I am indebted to David Laidlaw for

N
Rotation of a four-dimensional hypercube through dimensions 2 and 4, projected into ordinary three-dimensional space
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How a plane generates a cube and a cube generates a hypercube

an explanation of HYPERCUBE. The
version of the program I shall describe
represents a hypercube by showing
only its vertexes and edges. Moreover,
the view the program generates does
not necessarily depict a cube inside a
cube; instead the view depends on how

Projections of the cube and the sphere
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HYPERCUBE is implemented and on
how it is run. Every time the hyper-
cube in the program is rotated the ver-
texes swing into new positions and a
new, oddly confusing view of the ob-

ject reésults. With continued experi-

mentation, however, the views begin
to make a strange kind of sense, and
one feels on the threshold of something
awesomely spacious and inviting.
The 16 vertexes of the hypercube in
the program are numbered from 0 to
15 according to a simple scheme. If
each number is rewritten in binary
form and converted into an array of
four bits, a miniature coordinate sys-
tem emerges. The binary digits of 13,
for example, are 1 (that is, one 8), 1
(one 4), 0 (zero 2’s) and 1 (one 1). The
binary number can then be written as
the array (1,1,0,1), which almost gives
a practical coordinate system for the
initial position of the hypercube. (It is

not a position that resembles a cube -

inside another cube.) To convert the
binary array into useful coordinates,
change the 0’s to —1’s and multiply
each member of the array by-a number
large enough to generate an image of
practical size on the display screen of
the computer. If the multiplier is 10,
for example, the coordinates of ver-
tex 13 are (10,10,—10,10).
Dimensions seem to creep in every-
where as HYPERCUBE is written. A two-
dimensional matrix, or array, called
vert preserves the vertexes as they are
initially defined. Since there are 16
vertexes with four coordinates each,
vert is a 16-by-4 matrix of 64 numbers;
vert(i,j) is the jth coordinate of the ith
vertex. The program HYPERCUBE holds
the matrix vert inviolate; vert is defined
at the beginning of the program and its

contents are then transferred to a sec-
ond 16-by-4 matrix called cube. The
matrix cube can be thought of as a
working matrix; its contents are con-

“tinually altered by the rotations car-

ried out in the program.

HYPERCUBE is divided into three ma-
jor sections following the initialization
of vert: the selection of the desired rota-
tion of the hypercube, the calculation
of the coordinates of the rotated hy-
percube and the display of the result
on the monitor. If the rotating object
were three-dimensional, one could. se-
lect the rotation by specifying the ori-
entation of the axis of rotation and the
angle of the rotation about the axis.
For a rotating four-dimensional ob-
ject, however, picking an axis of ro-
tation does not determine a rotating
plane: remember that there are two
nonequivalent directions perpendicu-
lar to a given plane. On the other hand,
even in four-dimensional hyperspace it
remains true, as it does in ordinary
space, that a rotation can affect just
two dimensions at a time. If a three-
dimensional object is Totated, two
of its dimensions swing into each oth-
er while the third dimension remains
fixed. Similarly, when a four-dimen-
sional object is rotated, two dimen-
sions change direction in the space
while the other two remain fixed.

There are many ways a four-dimen-
sional object can be rotated to a new
position. Tt turns out, however, that
any position can be reached by apply-
ing a sequence of rotations limited to
motions within the planes defined by
the coordinate axes of the surround-
ing four-dimensional space. There are
four coordinate axes in a four-dimen-
sional space, numbered, say, from 1 to
4, and there are six ways any two of
them can be combined. Hence there
are six planes within a four-dimension-
al space determined by the coordinate
axes: plane 1-2, the plane determined
by axes 1 and 2, plane 1-3, plane 1-4,
plane 2-3, plane 2-4 and plane 3-4.

For each of the six planes there is a
corresponding kind of rotation, which
can be specified by a 4-by-4 square ma-
trix of 16 numbers. The six rotation
matrixes are named rotl2, rotl3, rotl4,
rot23, rot24 and rot34. The user of the
program must type in the name of the
kind of matrix selected and the angle
of rotation the matrix will generate.
For example, typing “rot23” followed
by “60” would cause a rotation of 60
degrees within the plane defined by
the second and the third axes.

Suppose one wants to confine the ro-
tation of the hypercube to the third -
and fourth dimensions, the most mys-
terious rotation of all. The rotation
matrix - rot34 is applied. Its entries
are 0’s, 1’s and three other numbers



distributed according to the follow-
ing pattern:

OO =
SO O
S o0
QOO

The angle of the desired rotation in
degrees is selected and stored in the
variable ang, and the numbers a and b
depend on ang: a is equal to cos(ang)
and b is equal to sin(ang), where cos and
sin are the trigonometric functions sine
and cosine:

The rule for generating the other five
rotation matrixes is simple. The a’s ap-
pear on the main diagonal of each ma-
trix in positions that correspond tothe
dimensions affected by the rotation.
The b s appear at all the other intersec-
tions of rows and columns that corre-
spond to the rotating dimensions. All
other entries on the main diagonal are

1’s, and the rest of the entries in the
matrix are 0’s. For example, roti3 is
the following matrix:

a 0 b 0
0 1 0 0
—b 0 a 0
0 0 0 1

When the desired rotation matrix has
been selected, it is assigned by HYPER-
CUBE to a special matrix, rore. The
assignment can be made convenient-
ly by employing a double loop, the in-
ner loop for the sequence of numbers
across a row of the matrix and the out-
er loop for the sequence of rows.
The calculation of the coordinates
of the rotated hypercube is done by
“multiplying” the matrix cube by the
selected rotation matrix rote. The
product of the two matrixes is stored
temporarily in a third matrix called
temp, and it gives the coordinates of

the rotated hypercube. That product
is found according to the rules of ma-
trix multiplication, a standard opera-
tion on matrixes of numbers. It results
from an orderly orgy of multiplica-
tions embedded in three nested loops.

Temp, like vert and cube, is a 16-by-4
matrix of 64 numbers: it gives four co-
ordinates for each of the 16 vertexes of
the rotated hypercube. Each number

-temp(i,j) in the matrix is designated by

a pair of indexes i and j. For example,
temp(13,3) is the third coordinate of
the 13th vertex of the rotated hyper-
cube. Its value is the sum of four prod-
ucts of numbers drawn in a precisely
defined way from the matrix cube and
from the matrix rote [see illustration
on page 23]. The innermost loop in
the program can therefore be indexed
by the letter k, which runs from 1 to 4,
and that loop returns the value of one
entry of temp.

The & loop is then placed inside the

Sequence of nested toruses, analogous to the latitude lines on a sphere, projected from the hypersphere into three dimensions
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Projected motion of toruses as the hypersphere is rotated, analogous to the projected motion of latitude lines during the rotation of a sphere

intermediate loop that has index j. The
Jloop computes all four coordinates of
the ith vertex of the rotated hypercube
according to the procedure I have just
outlined; in other words, it fills in all
four entries in the ith row of temp. Fi-
., nally the j loop is placed inside the
outermost loop, which has the index 7.
The i loop calculates all 16 rows of
temp, and when it is completed, femp
gives the coordinates of all the ver-
texes of the rotated hypercube, re-
splendent in its new position. In order
to display it on the computer monitor
one more double loop is needed that
replaces the old position coordinates
of the hypercube in cube with the new-
ly calculated coordinates from temp.
A hypercube has four dimensions
but a display screen has only two. It is
therefore convenient to stipulate that
the first two dimensions, or coordi-
nates, of the hypercube correspond to
the screen coordinates. The simplest
method for dealing with the third and

fourth dimensions of the hypercube is

to ignore them. The display technique
I shall describe does just that, but it
can be enhanced—and the resulting
object can be projected in nearly de-
monic complexity—by making both
the third and fourth dimensions some-
what more apparent. ,
To display a skeletal version of the
hypercube, the program need only dis-
play its edges. Since the hypercube has
32 edges, the display section of HYPER-
cUBE need only draw the appropriate
lines between 32 pairs of vertexes. But
in what order? There are almost infi-
nitely many possibilities, and so the an-
swer is perhaps a matter of aesthetic
and personal choice. Nevertheless, it is
hard to resist drawing the edges as an
Euler trail, after the mathematician
Leonhard Euler. A pencil can trace
such a trail on paper without being lift-
ed from the paper and without tracing
any line more than once. Consecutive
edges of the hypercube drawn as an
Euler trail have a common vertex.
Round, through, up and down races
the Euler trail as it is drawn through
the vertexes. Here is one that strikes
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me as quite pretty, given by the num-
bered vertexes of the hypercube con-
nected in the following sequence: 0, 1,
3,2,6, 14,10, 8,9, 11, 3,7, 15, 14, 12,
13,9,1,5,7,6,4,12,8,0,4, 5, 13, 15,
11, 10, 2, 0. These vertexes are stored
in an array called #rail with index i; the
ith vertex in the sequence of 33 ver-
texes is designated trail(i). For each
value of 7 there are instructions for
looking up the first and second coordi-
nates of both #ail(i) and #rail(i + 1).
The line-drawing command in one’s
programming language mustthenbein-

voked to connect the two points. The

lookup and the line drawing are em-
bedded in a single loop with index i,
which draws a line from each vertex in
the sequence to the next.

Now for the visual (and psychologi-
cal) complications. There are two stan-
dard methods for presenting the third
dimension of the hypercube. The or-
thographic method simply ignores the
third dimension, and all the vertexes
are projected directly onto the flat sur-
face of the display screen no matter
how far they are behind it. In one-point
perspective the vertexes are projected
onto the screen as though they were
shadows cast by a point source of light
centered on the screen and some dis-
tance behind the hypercube. Viewing
the shadows on the screen is equivalent
to viewing the hypercube from behind,
but visually it is indistinguishable from
a front view.

To achieve the effect of one-point
perspective in HYPERCUBE one assumes
that the third coordinate of a vertex is
equal to the distance between the ver-
tex and the display screen, in the direc-
tion of the imaginary point source of
light. By solving for the sides of pro-
portional triangles the program deter-
mines a multiplier needed to convert
the first two coordinates of a vertex
into screen coordinates. For example,
if the imaginary light source is 20 units
behind the screen, a vertex at (5,—7,
11,8) can be projected onto the screen
by multiplying each of the first two
coordinates by 20 and dividing each
result by 20 — 11, or 9.

I had dreaded including in the small
space that remains a complete descrip-
tion of the process for creating stereo-
scopic images portraying the fourth di-
mension of the hypercube. There is a
general technique for making stereo-
scopic images, and I hope to devote a
future column to the subject. For the
hypercube program, however, Ban-
choff and his colleagues have adopted
a much simpler method. For each posi-
tion of the hypercube make a new pair
of images by applying rotl4 through an
angle of three degrees in one direction
and three degrees in the other. Dimen-
sion 1 is the direction parallel to the
horizontal alignment of the viewer’s
eyes, and dimension 4 is the target of
the exercise. The two small rotations
nicely approximate the views of the
hypercube from the eyes of the viewer:
merely imagine the two lines of sight
converging near the center of the hy-
percube at an angle of six degrees.

Readers who want to capture the
thrills of 3D movies can make stereo-
scopic viewing glasses out of red and
blue cellophane. In this case HYPER-
CUBRE is run twice, once for each small
rotation. The result of the first rotation
is colored blue by the program and the
result of the second is colored red.
Readers need not be concerned about
which is which if the eyeglasses are
made to be invertible.

Personally I prefer not to struggle
with cellophane, and I have learned to
fuse stereoscopic pairs by shear force
of will. The technique requires that the
two rotated images be reduced in size
and then translated to horizontally ad-
jacent and nonoverlapping positions
on the screen. They should be the same
color, and so a monochrome screen is
sufficient, and they should be no far-
ther apart than the distance between
the viewer’s eyes. Do not stare at the
images; look instead at some point be-
tween them and infinitely far beyond.
The two hypercubes will appear to
drift and jiggle toward each other like
a pair of shy lovers until they fuse.

Even if the third and fourth dimen-
sions get no special treatment, HYPER-



CUBE can generate images much like
the ones shown in Banchoff’s graphic
sequence. With successive rotations
through small angles in the third and
fourth dimensions, readers may see
the two crude toruses balloon, pinch
off and regenerate much like their
smoother cousins in the illustration of
the rotating hypersphere.

The program HYPERCUBE had obvi-
ously caused the disappearance of my
friend Magi. The happy ending to his
four-dimensional dementia came with
a telephone call. Not surprisingly, he
spoke of wondrous things. “You prob-
ably think I'm crazy,” he said. (The
phrase is always a sure. tip-off.) “I've
just. been floating around in the fourth
dimension. I saw a cross section of my
house sweep by. Then I moved in close
and tickled my cat’s kidneys...”

I will spare the reader any further
details of the conversation. Suffice it
that I persuaded Magi to run HY-
PERCUBE no more and to keep fur-
ther explorations entirely on the in-
tellectual plane. He has followed my
advice, he says, and now he professes
to have made many marvelous discov-
eries through his artificially amplified
insight. For example, he has come up
with two posers that seem worth pass-
ing along.

Think for a moment about the fol-
lowing sequence of objects: a unit line,
a unit square, a unit cube and so on.
The nth member of the sequence is the
n-dimensional analogue of the cube.
Now try two mental experiments on
the objects: draw the diagonal to the n-
dimensional cube and inscribe an n-di-
mensional sphere within the n-dimen-
sional cube. The diagonal stretches
from one corner to the opposite one;
what happens to its length as the num-
ber n becomes progressively larger?
What happens to the volume of the
n-dimensional sphere, again as n be-
comes progressively larger? Magi’s an-
swers seem hardly sane; I shall give
them in next month’s column.

In my January column I described
two programs, CLUSTER and SUPER-
CLUSTER, that simulate the evolution
of a star cluster. It heartens me to think
that in at least a few thousand homes
they have led to a new form of enter-
tainment, temporarily edging out tele-
vision. No doubt some of these arm-
chair universes are unfolding as they
should, but others may be developing
problems. The fault is not in our stars
but in ourselves.

Brian Davis of Ann Arbor, Mich.,
and Peter Fortescue of La Jolla, Cal-
if., had trouble with the acceleration
equations in SUPERCLUSTER. The diffi-
culties are fixed, I believe, by replac-
ing the force f in the equation on

CUBE
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VERTEX i = 1 2 3

TEMP

VERTEX i =

=(1,2,3a — 4b, 3b + 4a)

How a vertex of the hypercube is rotated from the third dimension into the fourth

page 13 with the acceleration a due to
the force. To get a divide f by the
mass of the attracted star. Andrew M.
Odlyzko of AT&T Bell Laboratories
pointed out that the position coordi-
nates in the table on page 15 are in
multiples of 1,000 astronomical units

(A.U)), not single A.U’s. Our own

universe will now unfold correctly.

When one views the live action of
CLUSTER Or SUPERCLUSTER on a display
monitor,- it is sometimes hard to tell
which stars are in the foreground and
which are farther back. Albert C. En-
glish of Delray Beach, Fla., and Peter
Stearns of Lodi, Calif., have written
special display programs that generate
two images of clusters side by side, one
as seen by the right eye and one as seen
by the left. Readers able to manage the
tricks of stereoscopic display will be
able to view the clusters as they view
the hypercube: in breathtaking depth.

Several readers had already written
programs similar to SUPERCLUSTER,
but they had applied the programs to
our own solar system. The same appli-
cation would also be feasible with su-
PERCLUSTER. Those with the gumption
can look up the mass, position and ve-
locity of the 10 major bodies in the
solar system for some reference time.
One can then arrange to view the evo-
lution of the entire system from above:
wait a few minutes for the year 2000.
Geoffrey L. Phillips of St. Louis, Mo.,
wrote a simulation for the earth-moon
system that includes a small, massless
space vehicle. Launching it from the
earth in such a way that it begins to
orbit the moon is no easy feat. Ad-
vanced practitioners might try launch-
ing a Voyager spacecraft on a grand
tour of the gas giants that ends as it
leaves the solar system.

William A. Hoff of Champaign, Il1.,
computed the time increment for the

simulation dynamically by setting a
variable called dvmmax at the beginning
of the program. In the course of the
calculations of stellar motion the pro-
gram always finds the maximum accel-
eration amax of a star. The next time
increment is dvmax divided by amax.
The technique prevents any velocity
from exceeding dvmax.

In last month’s column I gave an
1.Q. minitest and posed several ques-
tions about numerical sequences. The
first problem on the minitest is a good
example of the ambiguity typically
found in such problems. The problem
was to complete the sequence 3, 7, 16,
33,.... Each term minus twice the pre-
ceding term gives the sequence 1, 2, 3,
the second row of a pyramid. By this
reasoning the missing term must be
twice 35 plus 4, or 74. On the other
hand, if a simple difference pyramid is_
constructed with three rows, the third
row gives the sequence 5, 10, and it
seems reasonable to complete the se-
quence with 15. The missing term must
then be 69, but the programs described
in the column would have missed this
answer. The other answers to the test:
H is the missing letter; the missing
word is “up”’; the odd man out is “iden-
tity”’; the unscrambled name of the
town not in Italy is Madrid, and the
correct visual analogy is number 2.

The two numerical sequences on
page 12 are completed by 350 and 22
respectively. The first sequence on
page 10 can be solved by applying
a generalized difference rule, with %
equal to 3, and then a generalized quo-
tient rule; the missing term is 324. The
second sequence ought to defeat all
but the most patient puzzle solvers
who did not try to write SE Q. It can be
solved by two quotient rules; the value
of k in the first rule is 5. The missing
term is —65,551.
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