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Introduction





1 Review of Euclidean Geometry

1.1 Motions

Three-dimensional Euclidean space E consists of points which have as coor-
dinates ordered triples of real numbers x1, x2, x3. In vector notation, we write
x = (x1, x2, x3). The distance between two points is given by the formula

d(x,y) =

√√√√ 3∑
i=1

(xi − yi)2 . (1.1)

Note that d(x,y) ≥ 0 and d(x,y) = 0 if and only if x = y.
An affine transformation T from R3 to R3 is defined by T (x) = Ax + b,

where A is a 3× 3 matrix and b is a vector in R3. An affine transformation
that preserves distance between points, such that d(T (x), T (y)) = d(x,y) for
all x and y is called a motion of R3.

Proposition 1. An affine transformation is a motion if and only if A is an
orthogonal matrix, i.e. a matrix with columns that are mutually perpendicular
unit vectors.

Proof. Let the points (x1, x2, x3) and (y1, y2, y3) be mapped by an affine
transformation T onto the points (x′1, x

′
2, x

′
3) and (y′1, y

′
2, y

′
3) respectively, so

that

x′i =
3∑

j=1

aijxj + bi

y′i =
3∑

j=1

aijyj + bi ,

where aij denotes the entries of the matrix A and the bi denotes the compo-
nents of b. If we subtract these two equations, we get

x′i − y′i =
3∑

j=1

aij (xj − yj) .
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Taking the sum of the squares gives us∑
i

(x′i − y′i)
2 =

∑
i,j,k

aijaik (xj − yj) (xk − yk) ,

where all the indices run from 1 to 3. This equality will only hold true if

3∑
i=1

aijaik = δjk , (1.2)

where δjk = 1 if j = k and 0 otherwise.

Given an affine transformation x′i =
∑3

j=1 aijxj + bi, we can solve ex-
plicitly for the xi in terms of the x′i. We first set x′i − bi =

∑3
j=1 aijxj then

multiply by aji and sum over i and j to get

3∑
i=1

aji(x′i − bi) = xj .

Remark 1. The quantities δjk defined in (1.2) are called Kronecker deltas.
We have illustrated their usefulness in the above proof, and they will be used
consistently.

It will be convenient to introduce the matrices

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,AT =

a11 a21 a31

a12 a22 a32

a13 a23 a33

 .

The second matrix AT is obtained from the first by interchanging the rows
and columns and is called the transpose of A. Using this notation, (1.2) can
be re-written as

AAT = I (1.3)

where I denotes the unit matrix (δij). A matrix A with this property is called
orthogonal.

We may rewrite the definition of a motion in terms of matrices as
x′ = Ax + b where x is the column matrix with entries xi. We may then
solve explicitly for x in terms of x′ by writing x′ − b = Ax , so

AT (x′ − b) = AT (Ax)

= (AT A)x
= Ix = x.
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A basic result in linear algebra states that, for square matrices,

(AC)T = CT AT ,

where the order of the multiplication is important. From this it follows that
if A and C are orthogonal matrices, then

(AC)T AC = CT AT AC = CT C = I

so the product AC is also an orthogonal matrix.
For an orthogonal matrix A, we have A−1 = AT . Moreover, AT (A−1)T =

(A−1A)T = IT = I so (A−1)T = (AT )−1 . It follows that if A is orthogonal,
then so is A−1. A collection of matrices that is closed under multiplication
such that the inverse of every element of the collection is also in the collection
is called a group.

The succesive application of two motions, as in (1.3) above, is called their
product. This multiplication is in general not commutative. It is easily seen
that all of the motions in E form a group under this multiplication, called
the group of motions. Euclidean geometry studies the properties of E that
are invariant under the group of motions.

From (1.3) we find (detA)2 = 1 so that detA = ±1. The motion is called
proper if the determinant is +1, and improper if it is −1. It is easily verified
that the product of two proper motions is a proper motion, and it is a simple
result that all proper motions form a subgroup of the group of motions.

Example 1. The mirror reflection, (x1, x2, x3) → (−x1, x2, x3), is an improper
motion.

A motion of the form x′i = xi + bi, for i = 1, 2, 3 is called a translation. A
motion of the form

x′i =
3∑

i=1

aijxj

where j = 1, 2, 3 is called an orthogonal transformation. In matrix form, a
translation can be written x′ = x + b and an orthogonal transformation can
be written x′ = Ax. An orthogonal tranformation is called proper or improper
according to the sign of det A. A proper orthogonal transformation can also
be called a reflection. All of the translations form a group, as do all of the
othogonal transformations and all the rotations. The group of all rotations
can be characterized as the subgroup of all proper motions with the origin
fixed.

Exercise 1. Prove that the quadratic polynomial∑
i,j

αijξiξj

where αij = αji is zero for all ξi if and only if αij = 0. Show that this is not
true without the symmetry condition on the coefficients αij . This result is
used in the proof of (1).
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Exercise 2. Show that the inverse motion of x′ = Ax + b is x′ = A−1x −
A−1b . Let Ti be the motions x′ = Aix + bi where i = 1, 2 and show that
T1T2 is the motion x′ = A2A1x + A2b1 + b2 .

Exercise 3. Let G be a group with the elements {e, a, b, . . .}, where e is the
unit element. The left and right inverses of an element a are defined by

a−1
l a = e, and aa−1

r = e,

respectively. Prove that a−1
l = a−1

r . Observe that the equivalence of the
conditions AAT = I and AT A = I means group-theoretically that the matrix
A has the same right and left inverse, which is AT .

Exercise 4. Prove that the translations form a normal subgroup of the group
of motions, while the rotations do not.

Exercise 5. Show that the helicoidal motions

x′1 = cos(t)x1 + sin(t)x2

x′2 = − sin(t)x1 + cos(t)x2

x′3 = x3 + bt,

where b is a constant and t is a parameter, form a group. Draw the orbit of
the point (a, 0, 0), and distinguish the cases when b < 0 and b > 0.

Exercise 6. Prove that the rotation

x′i =
∑

j

aijxj

where i, j = 1, 2, 3 and det(aij) = 1 has a line of fixed points through the ori-
gin, the axis of rotation. Hence prove that the group of rotations is connected.
Prove also that the group of orthogonal transformations is not connected.
(Note: A subgroup of motions is connected if any two points can be joined
by a continuous arc.)

1.2 Vectors

Two ordered pairs of points, p(x1, x2, x3), q(y1, y2, y3) and p′(x′1, x
′
2, x

′
3),

q′(y′1, y
′
2, y

′
3) are called equivalent if there is a translation T which maps p

to p′ and q to q′. The last property can be expressed by the conditions
x′i = xi + bi and y′i = yi + bi, where i = 1, 2, 3. It follows that a necessary and
sufficient condition for the equivalence of the two ordered pairs of points is
y′i− x′i = yi− xi . Such an equivalence class is called a vector. We denote the
vector by V = −→pq and call

vi = yi − xi, (1.4)
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where i = 1, 2, 3 denote its components. A vector is therefore completely
determined by its components. Geometrically

−→
pq =

−→
p′q′ if and only if the

segments pq and p′q′ are of the same length and parallel in the same sense.
Using the origin O of our coordinate system, we can set up a one-to-one

correspondence between the points p of R3 and the vectors
−→
Op. The latter

will be called the position vector of p. Notice that it is defined with reference
to the origin O.

Given two vectors v = (v1, v2, v3) and w = (w1, w2, w3) their sum is
v+w = (v1+w1, v2+w2, v3+w3), and multiplication of a vector by a number
is defined by λv = (λv1, λv2, λv3). Throughout this book real numbers are
sometimes called scalars, in order to emphasize their difference from vectors.

By (1.4) we see that under a motion the vectors are transformed according
to the equations

v′i =
∑

j

Aijvj (1.5)

where i, j = 1, 2, 3, and v′ = (v′1, v
′
2, v

′
3) is the image vector. Using (1.5) and (1)

we get
v

′2
1 + v

′2
2 v

′2
3 = v2

1 + v2
2 + v2

3 .

This leads us to define
v2 = v2

1 + v2
2 + v2

3 . (1.6)

We call +
√

v2 the length of v. Thus, the length of a vector is invariant under
motions.

More generally, we find

1
2{(v + w)2 − v2 −w2} =

∑
i

viwi ,

where i = 1, 2, 3. Since the left-hand side involves only lengths of vectors,
which are invariant under motions, the same property holds for the expres-
sions at the right-hand side. Generalizing (1.6), we introduce the notation

v ·w = w · v =
∑

i

viwi ,

which is called the scalar or dot product of v and w.
Relative to addition and scalar multiplication of vectors, the scalar prod-

uct has the following properties: (v1 + v2) · w = v1 · w + v2 · w and
(λv) ·w = v · (λw) = λ(v ·w) where λ = scalar. The relation

(v + λw)2 = v2 + 2λv ·w + λ2w2 ≥ 0

is true for all λ. So by elementary algebra we get

v2w2 − (v ·w)2 ≥ 0, (1.7)
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which is called the Cauchy-Schwartz inequality. The angle θ between v and w
is defined by

cos θ =
v ·w√
v2w2

.

This is meaningful because by the Cauchy-Schwartz inequality the right-
hand side has absolute value ≤ 1. The vectors v and w are perpendicular or
orthogonal if v ·w = 0.

The determinant of three vectors u, v, w with components ui, vi, wi for
i = 1, 2, 3 respectively, is defined by

det(u,v,w) =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ .

Under the transformation in (1.5) the determinant (u,v,w) is multiplied by
detA = det (aij). Hence it is invariant under proper motions and changes its
sign under improper motions. The following properties follow immediately
from the definition:

(u + u1,v,w) = (u,v,w) + (u1,v,w),
(λu,v,w) = λ(u,v,w) where λ = scalar,
(u,v,w) = −(v,u,w) etc.

The vector product of two vectors v,w is the vector z such that the
relation

(v,w,x) = z · x (1.8)

holds for all vectors x. It follows that z has the components

z1 = v2w3 − v3w2, z2 = v3w1 − v1w3, z3 = v1w2 − v2w1 . (1.9)

We write
z = v ×w .

The vector product has the following properties:

v ×w + w × v = 0,
(v1 + v2)×w = v1 ×w + v2 ×w,

(λv)×w = λ(v ×w) where λ = scalar.

The vector z can be described geometrically as follows: We see from (1.9)
that v × w = 0 if and only if one of the vectors v,w is a multiple of the
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other. In this case we say that v and w are linearly dependent. Suppose next
that v × w 6= 0, i.e., v and w are linearly independent. Putting x = v,w
in (1.8), we get z · v = z · w = 0, so that z is orthogonal to both v and
w. We write z = λu, where u is a unit vector orthogonal to v and w. Thus
from (1.8) we get

(v,w,u) = z · u = λu2 = λ .

Hence we have
z = v ×w = (v,w,u) u 6= 0 .

The unit vector u is defined up to its sign and we can choose u such that
(v,w,u) > 0. z is therefore a multiple of u and of length (v,w,u). This
completely determines z.

Three vectors u,v,w are called linearly dependent if (u,v,w) = 0; other-
wise they are linearly independent. An ordered set of three linearly indepen-
dent vectors is called a right-handed or left-handed frame according to the sign
of its determinant. The property of right-handedness or left-handedness of a
frame remains unchanged under proper motion, while they interchange un-
der an improper motion. Also a right-handed (or left-handed) frame becomes
left-handed (or right-handed) when any two of its vectors are interchanged.

Remark 2. The importance of vectors in analytic geometry is due to the alge-
braic structure. Two vectors can be added and a vector can be multiplied by
a scalar. It is important to observe that corresponding operations are mean-
ingless on the points of R3, because they are not invariant under motions.

Exercise 7. a) The vector equation of a line is x(t) = at + b, where a, b
=constantanda 6= 0. Find its angles with the coordinate axes.

b) The vector equation of a plane is a ·x = b where a 6= 0. Give the geomet-
rical meaning of b when a is a unit vector.

c) The vector equation of a sphere is (x− a)2 = r2. What are a and r?
In each case draw the relevant figure.

Exercise 8. Prove that x(t) = A cos t + b sin t for A,b 6= 0, represents an
ellipse.

Exercise 9. Let yi, for i = 1, 2, 3, be three linearly independent vectors.
Prove that any vector x can be written

x =
∑

i

λiyi .

Hence prove that x = 0 if and only if x · yi = 0.

Exercise 10. Let (u,v,w) = 0, u × v 6= 0. Prove that w is a linear com-
bination of u and v, i.e., w can be written w = λu + µv, where λ, µ are
scalars.



10 1 Review of Euclidean Geometry

Exercise 11. Prove Lagrange’s identity:

(v ×w) · (x× y) = (v · x)(w · y)− (v · y)(w · x) .

Hence prove that
(v ×w)× x = (vx)w − (wx)v .

Hint. To prove the first equation, write out both sides in components.



2 Curves

2.1 Arc Length

A parametrized curve in Euclidean three-space e3 is given by a vector function

x(t) = (x1(t), x2(t), x3(t))

that assigns a vector to every value of a parameter t in a domain interval
[a, b]. The coordinate functions of the curve are the functions xi(t). In order
to apply the methods of calculus, we suppose the functions xi(t) to have as
many continuous derivatives as needed in the following treatment.

For a curve x(t), we define the first derivative x′(t) to be the limit of the
secant vector from x(t) to x(t+h) divided by h as h approaches 0, assuming
that this limit exists. Thus,

x′(t) = lim
h→0

(
x(t + h)− x(t)

h

)
.

The first derivative vector x′(t) is tangent to the curve at x(t). If we think
of the parameter t as representing time and we think of x(t) as representing
the position of a moving particle at time t, then x′(t) represents the velocity
of the particle at time t. It is straightforward to show that the coordinates of
the first derivative vector are the derivatives of the coordinate functions, i.e.

x′(t) = (x1
′(t), x2

′(t), x3
′(t)) .

For most of the curves we will be concerning ourselves with, we will make
the “genericity assumption” that x′(t) is non-zero for all t. (MISSING SEC-
TIONS) lengths of polygons inscribed in x as the lengths of the sides of
these polygons tend to zero. By the fundamental theorem of calculus, this
limit can be expressed as the integral of the speed s′(t) = |x′(t)| between the
parameters of the end-points of the curve, a and b. That is,

s(b)− s(a) =
∫ b

a

|x′(t)| dt =
∫ b

a

√√√√ 3∑
i=1

x′i(t)2 dt .

For an arbitrary value t ∈ (a, b), we may define the distance function
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s(t)− s(a) =
∫ t

a

|x′(u)| du ,

which gives us the distance from a to t along the curve.
Notice that this definition of arc length is independent of the parametriz-

tion of the curve. If we define a function v(t) from the interval [a, b] to itself
such that v(a) = a, v(b) = b and v′(t) > 0, then we may use the change of
variables formula to express the arc length in terms of the new parameter v:∫ b

a

|x′(t)| dt =
∫

v

(a) = av(b) = b |x′(v(t))| v′(t) dt =
∫ b

a

|x′(v)| dv .

We can also write this expression in the form of differentials:

ds = |x′(t)| dt = |x′(v)| dv.

This differential formalism becomes very significant, especially when we use
it to study surfaces and higher dimensional objects, so we will reinterpret
results that use integration or differentiation in differential notation as we go

along. For example, the statement s′(t) =
√∑3

i=1 x′i(t)2 can be rewritten as(
ds

dt

)2

=
3∑

i=1

(
dxi

dt

)2

,

and this may be expressed in the form

ds2 =
3∑

i=1

dx2
i ,

which has the advantage that it is independent of the parameter used to
describe the curve. ds is called the element of arc. It can be visualized as the
distance between two neighboring points.

One of the most useful ways to parametrize a curve is by the arc length
s itself. If we let s = s(t), then we have

s′(t) = |x′(t)| = |x′(s)| s′(t) ,

from which it follows that |x′(s)| = 1 for all s. So the derivative of x with
respect to arc length is always a unit vector.

This parameter s is defined up to the transformation s → ±s + c, where
c is a constant. Geometrically, this means the freedom in the choice of initial
point and direction in which to traverse the curve in measuring the arc length.

Exercise 12. One of the most important space curves is the circular helix

x(t) = (a cos t, a sin t, bt) ,

where a 6= 0 and b are constants. Find the length of this curve over the
interval [0, 2π].
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Exercise 13. Find a constant c such that the helix

x(t) = (a cos(ct), a sin(ct), bt)

is parametrized by arclength, so that |x′(t)| = 1 for all t.

Exercise 14. The astroid is the curve defined by

x(t) =
(
a cos3 t, a sin3 t, 0

)
,

on the domain [0, 2π]. Find the points at which x(t) does not define an
immersion, i.e., the points for which x′(t) = 0.

Exercise 15. The trefoil curve is defined by

x(t) = ((a + b cos(3t)) cos(2t), (a + b cos(3t)) sin(2t), b sin(3t)) ,

where a and b are constants with a > b > 0 and 0 ≤ t ≤ 2π. Sketch this
curve, and give an argument to show why it is knotted, i.e. why it cannot be
deformed into a circle without intersecting itself in the process.

Exercise 16. (For the serious mathematician) Two parametrized curves x(t)
and y(u) are said to be equivalent if there is a function u(t) such that u′(t) > 0
for all a < t < b and such that y(u(t)) = x(t). Show that relation satisfies
the following three properties:

1. Every curve x is equivalent to itself
2. If x is equivalent to y, then y is equivalent to x
3. If x is equivalent to y and if y is equivalent to z, then x is equivalent to

z

A relation that satisfies these properties is called an equivalence rela-
tion. Precisely speaking, a curve is considered be an equivalence class of
parametrized curves.

2.2 Curvature and Fenchel’s Theorem

If x is an immersed curve, with x′(t) 6= 0 for all t in the domain, then we may
define the unit tangent vector T(t) to be x′(t)

|x′(t)| . If the parameter is arclength,
then the unit tangent vector T(s) is given simply by x′(s). The line through
x(t0) in the direction of T(t0) is called the tangent line at x(t0). We can write
this line as y(u) = x(t0) + uT(t0), where u is a parameter that can take on
all real values.

Since T(t) · T(t) = 1 for all t, we can differentiate both sides of this
expression, and we obtain 2T′(t) · T(t) = 0. Therefore T′(t) is orthogonal
to T(t). The curvature of the space curve x(t) is defined by the condition
κ(t) = |T′(t)|

|x′(t)| , so = κ(t)s′(t) = |T′(t)|. If the parameter is arclength, then
x′(s) = T(s) and κ(s) = |T′(s)| = |x”(s)|.
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Proposition 2. If κ(t) = 0 for all t, then the curve lies along a straight line.

Proof. Since κ(t) = 0, we have T′(t) = 0 and T(t) = a, a constant unit
vector. Then x′(t) = s′(t)T(t) = s′(t)a, so by integrating both sides of the
equation, we obtain x(t) = s(t)a + b for some constant b. Thus x(t) lies on
the line through b in the direction of a.

Curvature is one of the simplest and at the same time one of the most
important properties of a curve. We may obtain insight into curvature by
considering the second derivative vector x”(t), often called the acceleration
vector when we think of x(t) as representing the path of a particle at time t. If
the curve is parametrized by arclength, then x′(s)·x′(s) = 1 so x”(s)·x′(t) = 0
and κ(s) = |x”(s)|. For a general parameter t, we have x′(t) = s′(t)T(t) so
x”(t) = s”(t)T(t)+s′(t)T′(t). If we take the cross product of both sides with
x′(t) then the first term on the right is zero since x′(t) is parallel to T(t).
Moreover x′(t) is perpendicular to T′(t) so

|T′(t)× x′(t)| = |T′(t)||x′(t)| = s′(t)2κ(t) .

Thus
x”(t)× x′(t) = s′(t)T′(t)× x′(t)

and
|x”(t)× x′(t)| = s′(t)3κ(t) .

This gives a convenient way of finding the curvature when the curve is defined
with respect to an arbitrary parameter. We can write this simply as

κ(t) =
|x”(t)× x′(t)|
|x′(t)x′(t)|3/2

.

Note that the curvature κ(t) of a space curve is non-negative for all t. The
curvature can be zero, for example at every point of a curve lying along a
straight line, or at an isolated point like t = 0 for the curve x(t) = (t, t3, 0).
A curve for which κ(t) > 0 for all t is called non-inflectional.

The unit tangent vectors emanating from the origin form a curve T(t) on
the unit sphere called the tangential indicatrix of the curve x. To calculate
the length of the tangent indicatrix, we form the integral of |T′(t)| = κ(t)s′(t)
with respect to t, so the length is κ(t)s′(t)dt = κ(s)ds. This significant integral
is called the total curvature of the curve x.

Up to this time, we have concentrated primarily on local properties of
curves, determined at each point by the nature of the curve in an arbitrarily
small neighborhood of the point. We are now in a position to prove our first
result in global differential geometry or differential geometry in the large.

By a closed curve x(t), a ≤ t ≤ b, we mean a curve such that x(b) = x(a).
We will assume moreover that the derivative vectors match at the endpoints
of the interval, so x′(b) = x′(a).
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Theorem 1 (Fenchel’s Theorem). The total curvature of a closed space
curve x is greater than or equal to 2π.

κ(s)ds ≥ 2π

The first proof of this result was found independently by B. Segre in 1934
and later independently by H. Rutishauser and H. Samelson in 1948. The
following proof depends on a lemma by R. Horn in 1971:

Lemma 1. Let g be a closed curve on the unit sphere with length L < 2.
Then there is a point m on the sphere that is the north pole of a hemisphere
containing g.

To see this, consider two points p and q on the curve that break g up
into two pieces g1 and g2 of equal length, therefore both less than π. Then
the distance from p to q along the sphere is less than π so there is a unique
minor arc from p to q. Let m be the midpoint of this arc. We wish to show
that no point of g hits the equatorial great circle with m as north pole. If
a point on one of the curves, say g1, hits the equator at a point r, then we
may construct another curve g′1 by rotating g1 one-half turn about the axis
through m, so that p goes to q and q to p while r goes to the antipodal
point r′. The curve formed by g1 and g′1 has the same length as the original
curve g, but it contains a pair of antipodal points so it must have length at
least 2π, contradicting the hypothesis that the length of g was less than 2π.

From this lemma, it follows that any curve on the sphere with length less
than 2π is contained in a hemisphere centered at a point m. However if x(t)
is a closed curve, we may consider the differentiable function f(t) = x(t) ·m.
At the maximum and minimum values of f on the closed curve x, we have

0 = f ′(t) = x′(t) ·m = s′(t)T(t) ·m
so there are at least two points on the curve such that the tangential image
is perpendicular to m. Therefore the tangential indicatrix of the closed curve
x is not contained in a hemisphere, so by the lemma, the length of any such
indicatrix is greater than 2π. Therefore the total curvature of the closed curve
x is also greater than 2π.

Corollary 1. If, for a closed curve x, we have κ(t) ≤ 1
R for all t, then the

curve has length L ≥ 2πR.

Proof.

L =
∫

ds ≥
∫

Rκ(s)ds = R

∫
κ(s)ds ≥ 2πR

Fenchel also proved the stronger result that the total curvature of a closed
curve equals 2π if and only if the curve is a convex plane curve.

I. Fáry and J. Milnor proved independently that the total curvature must
be greater than 4π for any non-self-intersecting space curve that is knotted
(not deformable to a circle without self-intersecting during the process.)
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Exercise 17. Let x be a curve with x′(t0) 6= 0. Show that the tangent line
at x(t0) can be written as y(u) = x(t0)+ux′(t0) where u is a parameter that
can take on all real values.

Exercise 18. The plane through a point x(t0) perpendicular to the tangent
line is called the normal plane at the point. Show that a point y is on the
normal plane at x(t0) if and only if

x′(t0) · y = x′(t0) · x(t0)

Exercise 19. Show that the curvature κ of a circular helix

x(t) = (r cos(t), r sin(t), pt)

is equal to the constant value κ = |r|
r2+p2 . Are there any other curves with

constant curvature? Give a plausible argument for your answer.

Exercise 20. Assuming that the level surfaces of two functions f(x1, x2, x3) =
0 and g(x1, x2, x3) = 0 meet in a curve, find an expression for the tangent
vector to the curve at a point in terms of the gradient vectors of f and g
(where we assume that these two gradient vectors are linearly independent
at any intersection point.) Show that the two level surfaces x2 − x2

1 = 0 and
x3x1 − x2

2 = 0 consists of a line and a “twisted cubic” x1(t) = t, x2(t) = t2,
x3(t) = t3. What is the line?

Exercise 21. What is the geometric meaning of the function f(t) = x(t) ·m
used in the proof of Fenchel’s theorem?

Exercise 22. Let m be a unit vector and let x be a space curve. Show that
the projection of this curve into the plane perpendicular to m is given by

y(t) = x(t)− (x(t) ·m)m .

Under what conditions will there be a t0 with y′(t0) = 0?

2.3 The Unit Normal Bundle and Total Twist

Consider a curve x(t) with x′(t) 6= 0 for all t. A vector z perpendicular to
the tangent vector x′(t0) at x(t0) is called a normal vector at x(t0). Such a
vector is characterized by the condition z ·x(t0) = 0, and if |z| = 1, then z is
said to be a unit normal vector at x(t0). The set of unit normal vectors at a
point x(t0) forms a great circle on the unit sphere. The unit normal bundle
is the collection of all unit normal vectors at x(t) for all the points on a curve
x.

At every point of a parametrized curve x(t) at which x′(t) 6= 0, we may
consider a frame E2(t), E3(t), where E2(t) and E3(t) are mutually orthogonal
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unit normal vectors at x(t). If E2(t), E3(t) is another such frame, then there
is an angular function φ(t) such that

E2(t) = cos(φ(t))E2(t)− sin(φ(t))E3(t)

E3(t) = sin(φ(t))E2(t) + cos(φ(t))E3(t)

or, equivalently,

E2(t) = cos(φ(t))E2(t) + sin(φ(t))E3(t)

E3(t) = sin(φ(t))E2(t) + cos(φ(t))E3(t) .

From these two representations, we may derive an important formula:

E′
2(t) · E3(t) = E′

2(t) · E3(t)− φ′(t)

Expressed in the form of differentials, without specifying parameters, this
formula becomes:

dE2E3 = dE2E3 − dφ .

Since E3(t) = T(t)× E2(t), we have:

E′
2(t) · E3(t) = −[E′

2(t), E2(t),T(t)]

or, in differentials:
dE2E3 = −[dE2, E2,T] .

More generally, if z(t) is a unit vector in the normal space at x(t), then we
may define a function w(t) = −[z′(t), z(t),T(t)]. This is called the connection
function of the unit normal bundle. The corresponding differential form w =
−[dz, z,T] is called the connection form of the unit normal bundle.

A vector function z(t) such that |z(t)| = 1 for all t and z(t) · x′(t) =
0 for all t is called a unit normal vector field along the curve x. Such a
vector field is said to be parallel along x if the connection function w(t) =
−[z′(t), z(t),T(t)] = 0 for all t. In the next section, we will encounter several
unit normal vector fields naturally associated with a given space curve. For
now, we prove some general theorems about such objects.

Proposition 3. If E2(t) and E2(t) are two unit normal vector fields that are
both parallel along the curve x, then the angle between E2(t) and E2(t) is
constant.

Proof. From the computation above, then:

E′
2(t) · (−E2(t)×T(t)) = E′

2(t) · (−E2(t)×T(t))− φ′(t) .

But, by hypothesis,

E′
2(t) · (−E2(t)xT(t)) = 0 = E′

2(t)(−E2(t)×T(t))
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so it follows that φ′(t) = 0 for all t, i.e., the angle φ(t) between E2(t) and
E2(t) is constant.

Given a closed curve x and a unit normal vector field z with z(b) = z(a),
we define

µ(x, z) = − 1
2π

∫
[z′(t), z(t),T(t)]dt = − 1

2π
[dz, z,T] .

If z is another such field, then

µ(x, z)− µ(x, z) = − 1
2π

∫
[z′(t), z(t),T(t)]− [z′(t), z(t),T(t)]dt

= − 1
2π

∫
φ′(t)dt = − 1

2π
[φ(b)− φ(a)] .

Since the angle φ(b) at the end of the closed curve must coincide with
the angle φ(a) at the beginning, up to an integer multiple of 2π, it follows
that the real numbers µ(x, z) and µ(x, z) differ by an integer. Therefore the
fractional part of µ(x, z) depends only on the curve x and not on the unit
normal vector field used to define it. This common value µ(x) is called the
total twist of the curve x. It is a global invariant of the curve.

Proposition 4. If a closed curve lies on a sphere, then its total twist is zero.

Proof. If x lies on the surface of a sphere of radius r centered at the origin,
then |x(t)|2 = x(t) · x(t) = r2 for all t. Thus x′(t) · x(t) = 0 for all t, so x(t)
is a normal vector at x(t). Therefore z(t) = x(t)

r is a unit normal vector field
defined along x, and we may compute the total twist by evaluating

µ(x, z) = − 1
2π

∫
[z′(t), z(t),T(t)]dt .

But

[z′(t), z(t),T(t)] = [
x′(t)

r
,
x(t)
r

,T(t)] = 0

for all t since x′(t) is a multiple of T(t). In differential form notation, we get
the same result: [dz, z,T] = 1

r2 [x′(t),x(t),T(t)]dt = 0. Therefore µ(x, z) = 0,
so the total twist of the curve x is zero.

Remark 3. W. Scherrer proved that this property characterized a sphere, i.e.
if the total twist of every curve on a closed surface is zero, then the surface
is a sphere.

Remark 4. T. Banchoff and J. White proved that the total twist of a closed
curve is invariant under inversion with respect to a sphere with center not
lying on the curve.

Remark 5. The total twist plays an important role in modern molecular bi-
ology, especially with respect to the structure of DNA.
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Exercise 23. Let x be the circle x(t) = (r cos(t), r sin(t), 0), where r is a
constant > 1. Describe the collection of points x(t)+z(t) where z(t) is a unit
normal vector at x(t).

Exercise 24. Let Σ be the sphere of radius r > 0 about the origin. The
inversion through the sphere S maps a point x to the point x = r2 x

|x|2 . Note
that this mapping is not defined if x = 0, the center of the sphere. Prove
that the coordinates of the inversion of x = (x1, x2, x3) through S are given
by xi = r2xi

x2
1+x2

2+x2
3
. Prove also that inversion preserves point that lie on the

sphere S itself, and that the image of a plane is a sphere through the origin,
except for the origin itself.

Exercise 25. Prove that the total twist of a closed curve not passing through
the origin is the same as the total twist of its image by inversion through the
sphere S of radius r centered at the origin.

2.4 Moving Frames

In the previous section, we introduced the notion of a frame in the unit normal
bundle of a space curve. We now consider a slightly more general notion. By
a frame, or more precisely a right-handed rectangular frame with origin, we
mean a point x and a triple of mutually orthogonal unit vectors E1, E2, E3

forming a right-handed system. The point x is called the origin of the frame.
Note that Ei · Ej = 1 if i = j and 0 if i 6= j.

Moreover,

E1 × E2 = E3, E2 = E3 × E1, andE3 = E1 × E2.

In the remainder of this section, we will always assume that small Latin
letters run from 1 to 3.

Note that given two different frames, x, E1, E2, E3 and x, E1, E2, E3, there
is exactly one affine motion of Euclidean space taking x to x and taking Ei

to Ei. When x(t), E1(t), E2(t), E3(t) is a family of frames depending on a
parameter t, we say we have a moving frame along the curve.

Proposition 5. A family of frames x(t), E1(t), E2(t), E3(t) satisfies a system
of differential equations:

x′(t) = Σpi(t)Ei(t)
E′

i(t) = Σqij(t)Ej(t)

where pi(t) = x′(t) · Ei(t) and qij(t) = E′
i(t) · Ej(t).

Since Ei(t) · Ej(t) = 0 for i 6= j, it follows that



20 2 Curves

qij(t) + qji(t) = E′
i(t) · Ej(t) + Ei(t) · E′

j(t) = 0

i.e. the coefficients qij(t) are anti-symmetric in i and j. This can be expressed
by saying that the matrix ((qij(t))) is an anti-symmetric matrix, with 0 on
the diagonal.

In a very real sense, the function pi(t) and qij(t) completely determine
the family of moving frames.

Specifically we have:

Proposition 6. If x(t), E1(t), E2(t), E3(t) and x(t), E1(t), E2(t), E3(t) are
two families of moving frames such that pi(t) = p

i
(t) and qij(t) = q

ij
(t) for

all t, then there is a single affine motion that takes x(t), E1(t), E2(t), E3(t)
to x(t), E1(t), E2(t), E3(t)) for all t.

Proof. Recall that for a specific value t0, there is an affine motion tak-
ing x(t0), E1(t0), E2(t0), E3(t0) to x(t0), E1(t0), E2(t0), E3(t0). We will show
that this same motion takes x(t), E1(t), E2(t), E3(t) to x(t), E1(t), E2(t), E3(t)
for all t. Assume that the motion has been carried out so that the frames
x(t0), E1(t0), E2(t0), E3(t0) and x(t0), E1(t0), E2(t0), E3(t0) coincide.

Now consider

(ΣEi(t) · Ei(t))
′ = ΣE′

i(t) · Ei(t) + ΣEi(t) · E′
i(t)

= ΣΣqij(t)Ej(t) · Ei(t) + ΣEi(t) ·Σqij(t)Ej(t)

= ΣΣqij(t)Ej(t) · Ei(t) + ΣΣqij(t)Ei(t) · Ej(t)

= ΣΣqij(t)Ej(t) · Ei(t) + ΣΣqji(t)Ej(t) · Ei(t)
= 0 .

It follows that

ΣEi(t) · Ei(t) = ΣEi(t0) · Ei(t0) = ΣEi(t0) · Ei(t0) = 3

for all t. But since |Ei(t) · Ei(t)| ≤ 1 for any pair of unit vectors, we must
have Ei(t) · Ei(t) = 1 for all t. Therefore Ei(t) = Ei(t) for all t.

Next consider

(x(t)− x(t))′ = Σpi(t)Ei(t)−Σpi(t)Ei(t) = Σpi(t)Ei(t)−Σpi(t)Ei(t) = 0 .

Since the origins of the two frames coincide at the value t0, we have

x(t)− x(t) = x(t0)− x(t0) = 0

for all t.
This completes the proof that two families of frames satisfying the same

set of differential equations differ at most by a single affine motion.
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Exercise 26. Prove that the equations E′
i(t) = Σqij(t)Ej(t) can be written

E′
i(t) = d(t) × Ei(t), where d(t) = q23(t)E1(t) + q31(t)E2(t) + q12(t)E3(t).

This vector is called the instantaneous axis of rotation.

Exercise 27. Under a rotation about the x3-axis, a point describes a circle
x(t) = (a cos(t), a sin(t), b). Show that its velocity vector satisfies x′(t) =
d× x(t) where d = (0, 0, 1). (Compare with the previous exercise.).

Exercise 28. Prove that (v ·v)(w ·w)−(v ·w)2 = 0 if and only if the vectors
v and w are linearly dependent.

2.5 Curves at a Non-inflexional Point and the Frenet
Formulas

A curve x is called non-inflectional if the curvature k(t) is never zero. By our
earlier calculations, this condition is equivalent to the requirement that x′(t)
and x′′(t) are linearly independent at every point x(t), i.e. x′(t)× x′′(t) 6= 0
for all t. For such a non-inflectional curve x, we may define a pair of natural
unit normal vector fields along x.

Let b(t) = x′(t)×x′′(t)
|x′(t)×x′′(t)| , called the binormal vector to the curve x(t).

Since b(t) is always perpendicular to T(t), this gives a unit normal vector
field along x.

We may then take the cross product of the vector fields b(t) and T(t) to
obtain another unit normal vector field N(t) = b(t)×T(t), called the principal
normal vector. The vector N(t) is a unit vector perpendicular to T(t) and
lying in the plane determined by x′(t) and x′′(t). Moreover, x′′(t) ·N(t) =
k(t)s′(t)2, a positive quantity.

Note that if the parameter is arclength, then x′(s) = T(s) and x′′(s)
is already perpendicular to T(s). It follows that x′′(s) = k(s)N(s) so we
may define N(s) = x′′(s)

k(s) and then define b(s) = T(s) × N(s). This is the
standard procedure when it happens that the parametrization is by arclength.
The method above works for an arbitrary parametrization.

We then have defined an orthonormal frame x(t)T(t)N(t)b(t) called the
Frenet frame of the non-inflectional curve x.

By the previous section, the derivatives of the vectors in the frame can
be expressed in terms of the frame itself, with coefficients that form an anti-
symmetric matrix. We already have x′(t) = s′(t)T(t), so

p1(t) = s′(t) , p2(t) = 0 = p3(t) .

Also T′(t) = k(t)s′(t)N(t), so

q12(t) = k(t)s′(t) and q13(t) = 0 .

We know that
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b′(t) = q31(t)T(t) + q32(t)N(t) , and q31(t) = −q13(t) = 0 .

Thus b′(t) is a multiple of N(t), and we define the torsion w(t) of the curve
by the condition

b′(t) = −w(t)s′(t)N(t) ,

so q32(t) = −w(t)s′(t) for the Frenet frame. From the general computations
about moving frames, it then follows that

N′(t) = q21(t)T(t) + q23(t)b(t) = −k(t)s′(t)T(t) + w(t)s′(t)b(t) .

The formulas for T′(t), N′(t), and b′(t) are called the Frenet formulas for
the curve x.

If the curve x is parametrized with respect to arclength, then the Frenet
formulas take on a particularly simple form:

x′(s) = T(s)
T′(s) = k(s)N(s)
N′(s) = −k(s)T(s) + w(s)b(s)
b′(s) = −w(s)b(s) .

The torsion function w(t) that appears in the derivative of the binormal
vector determines important properties of the curve. Just as the curvature
measures deviation of the curve from lying along a straight line, the torsion
measures deviation of the curve from lying in a plane. Analogous to the result
for curvature, we have:

Proposition 7. If w(t) = 0 for all points of a non-inflectional curve x, then
the curve is contained in a plane.

Proof. We have b′(t) = −w(t)s′(t)N(t) = 0 for all t so b(t) = a, a constant
unit vector. Then T(t)a = 0 for all t so (x(t) · a)′ = x′(t) · a = 0 and
x(t) · a = x(a) · a, a constant. Therefore (x(t) − x(a)) · a = 0 and x lies in
the plane through x(a) perpendicular to a.

If x is a non-inflectional curve parametrized by arclength, then

w(s) = b(s) ·N′(s) = [T(s),N(s),N′(s)] .

Since N(s) = x′′(s)
k(s) , we have

N′(s) =
x′′′(s)
k(s)

+ x′′(s)
−k′(s)
k(s)2

,

so

w(s) =
[
x′(s),

x′′(s)
k(s)

,
x′′′(s)
k(s)

+ x′′(s)
−k′(s)
k(s)2

]
=

[x′(s),x′′(s),x′′′(s)]
k(s)2

.
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We can obtain a very similar formula for the torsion in terms of an arbi-
trary parametrization of the curve x. Recall that

x′′(t) = s”(t)T(t) + k(t)s′(t)T′(t) = s′′(t)T(t) + k(t)s′(t)2N(t) ,

so

x′′′(t) = s′′′(t)T(t)+ s′′(t)s′(t)k(t)N(t)+
[
k(t)s′(t)2

]′
N(t)+k(t)s′(t)2N′(t) .

Therefore

x′′′(t)b(t) = k(t)s′(t)2N′(t)b(t) = k(t)s′(t)2w(t)s′(t) ,

and
x′′′(t) · x′(t)× x′′(t) = k2(t)s′(t)6w(t) .

Thus we obtain the formula

w(t) =
x′′′(t) · x′(t)xx′′(t)
|x′(t)× x′′(t)|2

,

valid for any parametrization of x.
Notice that although the curvature k(t) is never negative, the torsion w(t)

can have either algebraic sign. For the circular helix x(t) = (r cos(t), r sin(t), pt)
for example, we find w(t) = p

r2+p2 , so the torsion has the same algebraic sign
as p. In this way, the torsion can distinguish between a right-handed and a
left-handed screw.

Changing the orientation of the curve from s to −s changes T to −T, and
choosing the opposite sign for k(s) changes N to −N. With different choices,
then, we can obtain four different right-handed orthonormal frames, xTNb,
x(−T)N(−b), xT(−N)(−b), and x(−T)(−N)b. Under all these changes of
the Frenet frame, the value of the torsion w(t) remains unchanged.

A circular helix has the property that its curvature and its torsion are
both constant. Furthermore the unit tangent vector T(t) makes a constant
angle with the vertical axis. Although the circular helices are the only curves
with constant curvature and torsion, there are other curves that have the
second property. We characterize such curves, as an application of the Frenet
frame.

Proposition 8. The unit tangent vector T(t) of a non-inflectional space
curve x makes a constant angle with a fixed unit vector a if and only if
the ratio w(t)

k(t) is constant.

Proof. If T(t) · a = constant for all t, then differentiating both sides, we
obtain

T′(t) · a = 0 = k(t)s′(t)N(t) · a ,

so a lies in the plane of T(t) and b(t). Thus we may write a = cos(φ)T(t) +
sin(φ)b(t) for some angle φ. Differentiating this equation, we obtain
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0 = cos(φ)T′(t) + sin(φ)b′(t) = cos(φ)k(t)s′(t)N(t)− sin(φ)w(t)s′(t)N(t) ,

so w(t)
k(t) = sin(φ)

cos(φ) = tan(φ). This proves the first part of the proposition and
identifies the constant ratio of the torsion and the curvature.

Conversely, if w(t)
k(t) = constant = tan(φ) for some φ, then, by the same

calculations, the expression cos(φ)T(t) + sin(φ)b(t) has derivative 0 so it
equals a constant unit vector. The angle between T(t) and this unit vector
is the constant angle φ.

Curves with the property that the unit tangent vector makes a fixed
angle with a particular unit vector are called generalized helices. Just as a
circular helix lies on a circular cylinder, a generalized helix will lie on a
general cylinder, consisting of a collection of lines through the curve parallel
to a fixed unit vector. On this generalized cylinder, the unit tangent vectors
make a fixed angle with these lines, and if we roll the cylinder out onto a
plane, then the generalized helix is rolled out into a straight line on the plane.

We have shown in the previous section that a moving frame is completely
determined up to an affine motion by the functions pi(t) and qij(t). In the
case of the Frenet frame, this means that if two curves x and x have the same
arclength s(t), the same curvature k(t), and the same torsion w(t), then the
curves are congruent, i.e. there is an affine motion of Euclidean three-space
taking x(t) to x(t) for all t. Another way of stating this result is:

Theorem 2. The Fundamental Theorem of Space Curves. Two curves parametrized
by arclength having the same curvature and torsion at corresponding points
are congruent by an affine motion.

Exercise 29. Compute the torsion of the circular helix. Show directly that
the principal normals of the helix are perpendicular to the vertical axis, and
show that the binormal vectors make a constant angle with this axis.

Exercise 30. Prove that if the curvature and torsion of a curve are both
constant functions, then the curve is a circular helix (i.e. a helix on a circular
cylinder).

Exercise 31. Prove that a necessary and sufficient condition for a curve x
to be a generalized helix is that

x′′(t)× x′′′(t) · xiv(t) = 0 .

Exercise 32. Let y(t) be a curve on the unit sphere, so that |y(t)| = 1 and
y(t) ·y′(t)×y′′(t) 6= 0 for all t. Show that the curve x(t) = c

∫
y(u)×y′′(u)du

with c 6= 0 has constant torsion 1
c .

Exercise 33. (For students familiar with complex variables) If the coordi-
nate functions of the vectors in the Frenet frame are given by
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T = (e11, e12, e13) ,

N = (e21, e22, e23) ,

b = (e31, e32, e33) ,

then we may form the three complex numbers

zj =
e1j + ie2j

1− e3j
=

1 + e3j

e1j − ie2j
.

Then the functions zj satisfy the Riccati equation

z′j = −ik(s)zj +
i

2
w(s)(−1 + z2

j ) .

This result is due to S. Lie and G. Darboux.

2.6 Local Equations of a Curve

We can “see” the shape of a curve more clearly in the neighborhood of a
point x(t0) when we consider its parametric equations with respect to the
Frenet frame at the point. For simplicity, we will assume that t0 = 0, and we
may then write the curve as

x(t) = x(0) + x1(t)T(0) + x2(t)N(0) + x3(t)b(0) .

On the other hand, using the Taylor series expansion of x(t) about the point
t = 0, we obtain

x(t) = x(0) + tx′(0) +
t2

2
x′′(0) +

t3

6
x′′′(0) + higher order terms .

From our earlier formulas, we have

x′(0) = s′(0)T(0) ,

x′′(0) = s′′(0)T(0) + k(0)s′(0)2N(0) ,

x′′′(0) = s′′′(0)T(0) + s′′(0)s′(0)k(0)N(0) + (k(0)s′(0)2)′N(0)

+ k(0)s′(0)2(−k(0)s′(0)T(0) + w(0)s′(0)b(0)) .

Substituting these equations in the Taylor series expression, we find:

x(t) = x(0) +
(

ts′(0) +
t2

2
s′′(0) +

t3

6
[
s′′′(0)− k(0)2s′(0)3

]
+ ...

)
T(0)

+
(

t2

2
k(0)s′(0)2 +

t3

6
[
s′′(0)s′(0)k(0) + (k(0)s′(0)2)′

]
+ ...

)
N(0)

+
(

t3

6
k(0)w(0)s′(0)3 + ...

)
b(0) .
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If the curve is parametrized by arclength, this representation is much
simpler:

x(s) = x(0) +
(

s− k(0)2

6
s3 + ...

)
T(0)

+
(

k(0)
2

s2 +
k′(0)

6
s3 + ...

)
N(0)

+
(

k(0)w(0)
6

s3 + ...

)
b(0) .

Relative to the Frenet frame, the plane with equation x1 = 0 is the normal
plane; the plane with x2 = 0 is the rectifying plane, and the plane with x3 = 0
is the osculating plane. These planes are orthogonal respectively to the unit
tangent vector, the principal normal vector, and the binormal vector of the
curve.

2.7 Plane Curves and a Theorem on Turning Tangents

The general theory of curves developed above applies to plane curves. In the
latter case there are, however, special features which will be important to
bring out. We suppose our plane to be oriented. In the plane a vector has
two components and a frame consists of an origin and an ordered set of two
mutually perpendicular unit vectors forming a right-handed system. To an
oriented curve C defined by x(s) the Frenet frame at s consists of the origin
x(s), the unit tangent vector T(s) and the unit normal vector N(s). Unlike
the case of space curves this Frenet frame is uniquely determined, under the
assumption that both the plane and the curve are oriented.

The Frenet formulas are

x′ = T ,

T′ = kN ,

N′ = −kT .

(2.1)

The curvature k(s) is defined with sign. It changes its sign when the
orientation of the plane or the curve is reversed.

The Frenet formulas in (2.1) can be written more explicitly. Let

x(s) = (x1(s) , x2(s)) (2.2)

Then
T(s) = ( x′1(s) , x′2(s)) ,

N(s) = (−x′2(s) , x′1(s)) .
(2.3)

Expressing the last two equations of (2.1) in components, we have
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x′′1 = −kx′2 (2.4)
x′′2 = kx′1 . (2.5)

These equations are equivalent to (2.1).
Since T is a unit vector, we can put

T(s) = (cos τ(s) , sin τ(s)) , (2.6)

so that τ(s) is the angle of inclination of T with the x1-axis. Then

N(s) = (− sin τ(s) , cos τ(s)) , (2.7)

and (2.1) gives
dτ
ds

= k(s) (2.8)

This gives a geometrical interpretation of k(s).
A curve C is called simple if it does not intersect itself. One of the most

important theorems in global differential geometry is the theorem on turning
tangents:

Theorem 3. For a simple closed plane curve we have

1
2π

∮
k ds = ±1 .

To prove this theorem we give a geometrical interpretation of the integral
at the left-hand side of (3). By (2.8)

1
2π

∮
k ds =

1
2π

∮
dτ .

But τ , as the angle of inclination of τ(s), is only defined up to an integral
multiple of 2π, and this integral has to be studied with care.

Let O be a fixed point in the plane. Denote by Γ the unit circle about
O; it is oriented by the orientation of the plane. The tangential mapping or
Gauss mapping

g : C 7→ Γ (2.9)

is defined by sending the point x(s) of C to the point T(s) of Γ. In other
words, g(P ), P ∈ C, is the end-point of the unit vector through O parallel
to the unit tangent vector to C at P . Clearly g is a continuous mapping. If
C is closed, it is intuitively clear that when a point goes along C once its
image point under g goes along Γ a number of times. This integer is called
the rotation index of C. It is to be defined rigorously as follows:

We consider O to be the origin of our coordinate system. As above we
denote by τ(s) the angle of inclination of T(s) with the x1-axis. In order to
make the angle uniquely determined we suppose O ≤ τ(s) < 2π. But τ(s) is
not necessarily continuous. For in every neighborhood of s0 at which τ(sc) = 0
there may be values of τ(s) differing from 2π by arbitrarily small quantities.
We have, however, the following lemma:
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Lemma 2. There exists a continuous function τ̃(s) such that τ̃(s) ≡ τ(s)
mod 2π .

Proof. We suppose C to be a closed curve of total length L. The continuous
mapping g is uniformly continuous. There exists therefore a number δ > 0
such that for |s1 − s2| < δ, T(s1) and T(s2) lie in the same open half-plane.
Let s0(= O) < s1 < · · · < si(= L) satisfy |si− si−1| < δ for i = 1, . . . ,m. We
put τ̃(s0) = τ(s0). For s0 ≤ s ≤ s1, we define τ̃(s) to be τ̃(s0) plus the angle
of rotation from g(s0) to g(s) remaining in the same half-plane. Carrying
out this process in successive intervals, we define a continuous function τ̃(s)
satisfying the condition in the lemma. The difference τ̃(L)−τ̃(O) is an integral
multiple of 2π. Thus, τ̃(L) − τ̃(O) = γ2π. We assert that the integer γ is
independent of the choice of the function τ̃. In fact let τ̃′(s) be a function
satisfying the same conditions. Then we have τ̃′(s) − τ̃(s) = n(s)2π where
n(s) is an integer. Since n(s) is continuous in s, it must be constant. It
follows that τ̃′(L) − τ̃′(O) = τ̃(L) − τ̃(O), which proves the independence of
γ from the choice of τ̃. We call γ the rotation index of C. In performing
integration over C we should replace τ(s) by τ̃ in (2.8). Then we have

1
2π

∮
k ds =

1
2π

∮
d τ̃ = γ . (2.10)

We consider the mapping h which sends an ordered pair of points x(s1), x(s2),
O ≤ s1 ≤ s2 ≤ L, of C into the end-point of the unit vector through O parallel
to the secant joining x(s1) to x(s2). These ordered pairs of points can be
represented as a triangle 4 in the (s1, s2)-plane defined by O ≤ s1 ≤ s2 ≤ L.
The mapping h of 4 into Γ is continuous. Moreover, its restriction to the
side s1 = s2 is the tangential mapping g in (2.9).

To a point p ∈ 4 let τ(p) be the angle of inclination of Oh(p) to the x1-
axis, satisfying O ≤ τ(p) < 2π. Again this function need not be continuous.
We shall, however, prove that there exists a continuous function ˜τ(p), p ∈ 4,
such that τ̃(p) ≡ τ(p) mod 2π. In fact, let m be an interior point of 4.
We cover 4 by the radii through m. By the argument used in the proof of
the above lemma we can define a function τ̃(p), p ∈ 4, such that τ̃(p) ≡ τ(p)
mod 2π, and such that it is continuous on every radius through m. It remains
to prove that it is continuous in 4.

For this purpose let p0 ∈ 4. Since h is continuous, it follows from the com-
pactness of the segment mp0 that there exists a number η = η(p0) > 0, such
that for q0 ∈ mp0 and for any point q ∈ 4 for which the distance d(q, q0) < η
the points h(q) and h(q0) are never antipodal. The latter condition can be
analytically expressed by

τ̃(q) 6≡ τ̃(q0) mod π . (2.11)

Now let ε > 0, ε < π
2 be given. We choose a neighborhood U of p0 such

that U is contained in the η-neighborhood of p0 and such that, for p ∈ U ,
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the angle between Oh(p0) and Oh(p) is < ε. This is possible, because the
mapping h is continuous. The last condition can be expressed in the form

τ̃(p)− τ̃(p0) = ε′ + 2k(p)π , (2.12)

where k(p) is an integer. Let q0 be any point on the segment mp0. Draw
the segment qq0 parallel to pp0, with q on mp. The function τ̃(q) − τ̃(q0)
is continuous in q along mp and equals O when q coincides with m. Since
d(q, q0) < η, it follows from (2.11) that |τ̃(q) − τ̃(q0)| < π. In particular, for
qo = p0 this gives |τ̃(p) − τ̃(p0)| < π. Combining this with (2.12), we get
k(p) = 0. Thus we have proved that τ̃(p) is continuous in 4, as asserted
above. Since τ̃(p) ≡ τ(p) mod 2π, it is clear that τ̃(p) is differentiable.

Now let A(O, O), B(O,L), D(L,L) be the vertices of 4. The rotation
index γ of C is, by (2.10), defined by the line integral

2πγ =
∮

AD

dτ̃ .

Since τ̃(p) is defined in 4, we have∮
AD

dτ̃ =
∮

AB

dτ̃ +
∮

BD

dτ̃ .

To evaluate the line integrals at the right-hand side, we suppose the origin
O to be the point x(O) and C to lie in the upper half-plane and to be tangent
to the x1-axis at O. This is always possible for we only have to take x(O)
to be the point on C at which the x2-coordinate is a minimum. Then the
x1-axis is either in the direction of the tangent vector to C at O or opposite
to it. We can assume the former case, by reversing the orientation of C if
necessary. The line integral along AB is then equal to the angle rotated by
OP as P goes once along C. Since C lies in the upper half-plane, the vector
OP never points downward. It follows that the integral along AB is equal
to π. On the other hand, the line integral along BD is the angle rotated by
PO as P goes once along C. Since the vector PO never points upward, this
integral is also equal to π. Hence their sum is 2π and the rotation index γ is
+1. Since we may have reversed the orientation of C, the rotation index is
±1 in general.

Exercise 34. Consider the plane curve x(t) = (t, f(t)). Use the Frenet for-
mulas in (2.1) to prove that its curvature is given by

k(t) =
f̈

(1 + ḟ2)3/2
. (2.13)

Exercise 35. Draw closed plane curves with rotation indices 0,−2, +3 re-
spectively.
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Exercise 36. The theorem on turning tangents is also valid when the simple
closed curve C has ”corners.” Give the theorem when C is a triangle con-
sisting of three arcs. Observe that the theorem contains as a special case the
theorem on the sum of angles of a rectilinear triangle.

Exercise 37. Give in detail the proof of the existence of η = η(p0) used in
the proof of the theorem on turning tangents. η = η(p0) .

2.8 Plane Convex Curves and the Four Vertex Theorem

A closed curve in the plane is called convex, if it lies at one side of every
tangent line.

Proposition 9. A simple closed curve is convex, if and only if it can be so
oriented that its curvature k is ≥ 0.

The definition of a convex curve makes use of the whole curve, while the
curvature is a local property. The proposition therefore gives a relationship
between a local property and a global property. The theorem is not true if
the closed curve is not simple. Counter examples can be easily constructed.

Let ˜τ(s) be the function constructed above, so that we have k = dτ
ds .

The condition k ≥ O is therefore equivalent to the assertion that τ̃(s)) is a
monotone non-decreasing function. We can assume that ˜τ(O) = O. By the
theorem on turning tangents, we can suppose C so oriented that ˜τ(L) = 2π.

Suppose τ̃(s) , O ≤ s ≤ L, be monotone non-decreasing and that C is
not convex. There is a point A = x(s0) on C such that there are points of
C at both sides of the tangent λ to C at A. Choose a positive side of k and
consider the oriented perpendicular distance from a point x(s) of C to λ. This
is a continuous function in s and attains a maximum and a minimum at the
points M and N respectively. Clearly M and N are not on λ and the tangents
to C at M and N are parallel to x. Among these two tangents and k itself
there are two tangents parallel in the same sense. Call s1 < s2 the values of
the parameters at the corresponding points of contact. Since τ̃(s) is monotone
non-decreasing and O ≤ τ̃(s) ≤ 2π, this happems only when τ̃(s) = ˜τ(s1) for
all s satisfying s1 ≤ s ≤ s2. It follows that the arc s1 ≤ s ≤ s2 is a line
segment parallel to λ. But this is obviously impossible.

Next let C be convex. To prove that τ̃(s) is monotone non-decreasing,
suppose ˜τ(s1) = ˜τ(s2), s1 < s2. Then the tangents at x(s1) and x(s2) are
parallel in the same sense. But there exists a tangent parallel to them in the
opposite sense. From the convexity of C it follows that two of them coincide.

We are thus in the situation of a line λ tangent to C at two distinct
points A and B. We claim that the segment AB must be a part of C. In fact,
suppose this is not the case and let D be a point on AB not on C. Draw
through D a perpendicular µ to λ in the half-plane which contains C. Then
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µ intersects C in at least two points. Among these points of intersection let
F be the farthest from λ and G the nearest one, so that F 6= G. Then G
is an interior point of the triangle ABF . The tangent to C at G must have
points of C in both sides which contradicts the convexity of C.

It follows that under our assumption, the segment AB is a part of C , so
that the tangents at A and B are parallel in the same sense. This proves that
the segment joining x(s1) to x(s2) belongs to C. Hence τ̃(s) remains constant
in the interval s1 ≤ s ≤ s2. We have therefore proved that τ̃(s) is monotone
and K ≥ O.

A point on C at which k′ = 0 is called a vertex. A closed curve has at
least two vertices, e.g., the maximum and the minimum of k. Clearly a circle
consists entirely of vertices. An ellipse with unequal axes has four vertices,
which are its intersection with the axes.

Theorem 4 (Four-vertex Theorem.). A simple closed convex cuxve has
at least four vertices.

Remark 6. This theorem was first given by Mukhopadhyaya (1909). The fol-
lowing proof was due to G.Herglotz. It is also true for non-convex curves, but
the proof will be more difficult.

2.9 Isoperimetric Inequality in the Plane

Among all simple closed curves having a given length the circle bounds the
largest area, and is the only curve with this property. We shall state the
theorem as follows:

Theorem 5. Let L be the length of a simple closed curve C and A be the
area it bounds. Then

L2 − 4πA ≥ 0 . (2.14)

Moreover, the equality sign holds only when C is a circle.

The proof given below is due to E. Schmidt (1939).
We enclose C between two parallel lines g, g′, such that C lies between

g, g′ and is tangent to them at the points P , Q respectively. Let s = 0, s0

be the parameters of P , Q. Construct a circle C tangent to g, g′ at P , Q
respectively. Denote its radius by r and take its center to be the origin of a
coordinate system. Let x(s) = (x1(s), x2(s)) be the position vector of C, so
that

(x1(0), x2(0)) = (x1(L), x2(L)) .

As the position vector of C we take (x1(s), x2), such that
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x1(s) = x1(s) ,

x2(s) = −
√

r2 − x2
1(s) , 0 ≤ s ≤ s0

= +
√

r2 − x2
1(s) , s0 ≤ s ≤ L .

Denote by A the area bounded by C. Now the area bounded by a closed
curve can be expressed by the line integral

A =
∫ L

0

x1x
′
2ds = −

∫ L

0

x2x
′
1ds =

1
2

∫ L

0

(x1x
′
2 − x2x

′
1)ds .

Applying this to our two curves C and C, we get

A =
∫ L

0

x1x
′
2ds ,

A = πr2 = −
∫ L

0

x2x
′
1ds = −

∫ L

0

x2x
′
1ds .

Adding these two equations, we have

A + πr2 =
∫ L

0

(x1x
′
2 − x2x

′
1)ds ≤

∫ L

0

√
(x1x′2 − x2x′1)2ds

≤
∫ L

0

√
(x2

1 + x2
2)(x

′2
1 + x

′2
2 )ds

=
∫ L

0

√
x2

1 + x2
2ds = Lr .

(2.15)

Since the geometric mean of two numbers is ≤ their arithmetic mean, it
follows that √

A
√

πr2 ≤ 1
2
(A + πr2) ≤ 1

2
Lr .

This gives, after squaring and cancellation of r, the inequality (2.14).
Suppose now that the equality sign in (2.14) holds. A and πr2 have then

the same geometric and arithmetic mean, so that A = πr2 and L = 2πr.
The direction of the lines g, g′ being arbitrary, this means that C has the
same ”width” in all directions. Moreover, we must have the equality sign
everywhere in (2.15). It follows in particular that

(x1x
′
2 − x2x

′
1)

2 = (x2
1 + x2

2)(x
′2
1 + x

′2
2 ) ,

which gives
x1

x′2
=
−x2

x′1
=

√
x2

1 + x2
2√

x
′2
1 + x

′2
2

= ±r .

From the first equality in (2.15) the factor of proportionality is seen to be r,
i.e.,
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x1 = rx′2 , x2 = −rx′1 .

This remains true when we interchange x1 and x2, so that

x2 = rx′1 .

Therefore we have
x2

1 + x2
2 = r2 ,

which means that C is a circle.




