Artin fans

AMS special session on Combinatorics and Algebraic Geometry

Dan Abramovich

Brown University

October 24, 2014

Heros:

- Martin Olsson
- Jonathan Wise
- Qile Chen, Steffen Marcus,
- Mark Gross, Bernd Siebert
- Martin Ulirsch

Superabundance

Mikhalkin-Speyer: there is a tropical cubic curve C of genus 1 in TP^3 which does not lift to an algebraic curve (Speyer, *Tropical Geometry*, Berkeley thesis 2005, Figure 5.1).

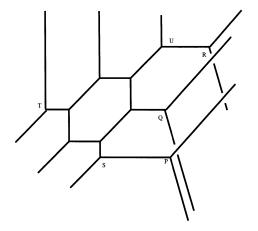


Figure 5.1: A Genus 1 Zero Tension Curve which is not Tropical

Superabundance (continued)

I want to understand this phenomenon. Principles:

- Tropical curves in TP^3 encode degenerations of curves in \mathbb{P}^3
- They encode in detail the manner in which they degenerate
- They encode logarithmic stable maps in \mathbb{P}^3 .
- But logarithmic stable maps are **obstructed**.

Question

Is there a world in which they are not obstructed?

Logarithmic structures

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{ o} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and

• α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha : \alpha^{-1}\mathcal{O}_{\underline{X}}^* \to \mathcal{O}_{\underline{X}}^*$ is an isomorphism.

Examples

Examples

- $(\underline{X}, \mathcal{O}_{\underline{X}}^* \hookrightarrow \mathcal{O}_{\underline{X}})$, the trivial logarithmic structure.
- Let $\underline{X}, D \subset \underline{X}$ be a variety with a divisor. We define $M_D \hookrightarrow \mathcal{O}_{\underline{X}}$:

$$M_D(U) = \left\{ f \in \mathcal{O}_{\underline{X}}(U) \mid f_{U \smallsetminus D} \in \mathcal{O}_{\underline{X}}^{\times}(U \smallsetminus D) \right\}.$$

Let k be a field,

$$\begin{array}{lll} \mathbb{N} \oplus k^{\times} & \to & k \\ (n,z) & \mapsto & z \cdot 0^n \end{array}$$

defined by sending $0 \mapsto 1$ and $n \mapsto 0$ otherwise.

The magic of logarithmic geomery

• Any toric variety X is logarithmically smooth

$$T_X \simeq \mathcal{O}_{\underline{X}}^{\dim \underline{X}}.$$

• A nodal curve is logarithmically smooth over a logarithmic point.

Here be monsters!

Logarithmic obstructions to deforming a logarithmic map $C o \mathbb{P}^3$ lie in

 $H^1(\underline{C}, \mathcal{O}^3_{\underline{C}}).$

These can be nonzero on a broken cubic curve!

Artin fans

Olsson:

 $\{\text{Logarithmic structures } X \text{ on } \underline{X} \} \qquad \longleftrightarrow \qquad \{\underline{X} \to \text{Log} \}.$

The stack Log is huge and does not specify combinatorial data.

Proposition (Wise; ℵ, Chen, Marcus)

There is an initial factorization $X \to A_X \to \text{Log such that } A_X \to \text{Log is}$ étale, representable, strict.

The stack \mathcal{A}_X is small, totally combinatorial.

\mathbb{P}^3 and $\mathcal{A}_{\mathbb{P}^3}$

$$\mathbb{P}^3 = (\mathbb{A}^4 \smallsetminus \{0\})/\mathbb{G}_m.$$

So $\{C o \mathbb{P}^3\} \leftrightarrow \{(\mathcal{L}, s_0, \dots, s_3) | s_i \text{ do not vanish together}\}.$
Now $\mathcal{A}_{\mathbb{P}^3} = (\mathbb{A}^4 \smallsetminus \{0\})/\mathbb{G}_m^4.$

So

 $\{C \to \mathcal{A}_{\mathbb{P}^3}\} \leftrightarrow \{((\mathcal{L}_0, s_0), \dots, (\mathcal{L}_3, s_3)) | s_i \text{ do not vanish together}\}.$

The monsters evaporate!

$$T_{\mathbb{P}^3} = \mathcal{O}^3$$
, but $T_{\mathcal{A}_{\mathbb{P}^3}} = 0$.

Logarithmic obstructions to deforming a logarithmic map $\, C o {\mathcal A}_{{\mathbb P}^3}$ lie in

 $H^{1}(\underline{C}, 0).$

The obstructions are gone!

Sample theorem

Theorem (ℵ-Wise)

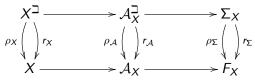
If $Y \rightarrow X$ is a toric modification, then

Logarithmic Gromov–Witten invariants of X coincide with those of Y.

Reason: $\mathfrak{M}(\mathcal{A}_Y) \to \mathfrak{M}(\mathcal{A}_X)$ is birational. So $\overline{\mathcal{M}}(Y) \to \overline{\mathcal{M}}(X)$ is virtually birational.

Tropicalization

Things are connected in Martin Ulirsch's fundamental commutative diagram:



•
$$F_{\mathbb{P}^3} = \mathbb{P}^3_{\mathbb{F}_1}$$
 $\Sigma_{\mathbb{P}^3} = \overline{TP}^3$.

- X^{\beth} Berkovich analytic formal fiber
- \mathbb{P}^3 and $\mathcal{A}_{\mathbb{P}^3}$ share their tropicalization \overline{TP}^3 .
- $\mathcal{A}_X^{\beth} \to \Sigma_X$ is a homeomorphism.