Logarithmic geometry and rational curves Summer School 2015 of the IRTG "Moduli and Automorphic Forms" Siena, Italy

Dan Abramovich

Brown University

August 24-28, 2015

Rational connectedness (Kollár-Miyaoka-Mori, Campana)

"A variety X is rationally connected if through any two points $x, y \in X$ there is a map $f : \mathbb{P}^1 \to X$ having x, y in its image." Better: a variety X is rationally connected if there is a variety Y, and a morphism $F : Y \times \mathbb{P}^1 \to X$ such that the morphism

$$\begin{array}{rcl} Y &
ightarrow & X imes X \ y & \mapsto & (F(y imes 0), F(y imes \infty)) \end{array}$$

is dominant.

For smooth projective varieties this is a birational property.

Very free curves

Assume X is smooth.

In characteristic 0, Sard's Theorem shows that for general $y \in Y$, the bundle $E_{F_y} := F_y^* T_X$ on \mathbb{P}^1 is globally generated. We say that X has free rational curve. One can then show

Theorem (Kollár)

a smooth projective X in characteristic 0 is rationally connected if and only if there is a map $f : PP^1 \to X$ such that E_f is ample.

We say that X has a very free curve.

Separable rational connectedness

Assume X is smooth projective in positive characteristic. We say that X is separably rationally connected if there is F such that $Y \rightarrow X \times X$ is dominant and generically separable. (generically smooth suffices)

Theorem (Kollár)

a smooth projective X in characteristic p is separably rationally connected if and only if X has a very free curve.

This property is very powerful. It implies a whole lot on the geometry of X. It also implies general structure results, such as the boundedness of Fano varieties.

Examples

Clearly \mathbb{P}^n is rationally connected. There is a chain of inclusions Rational \subset stably rational \subset unirational \subset (separably) rationally connected.

All are known to be strict except the last!

A complex projective X is Fano if $-K_X$ is ample.

Theorem (KMM/C 92)

A Fano variety in characteristic 0 is rationally connected.

Question (Kollar)

Is a Fano variety in characteristic p separably rationally connected?

Examples

Theorem (Zhu 11)

A general Fano hypersurface is separably rationally connected.

Theorem (Chen-Zhu 13, Tian 13)

A general Fano complete intersection is separably rationally connected.

My goal is to present the approach of Chen-Zhu, relying on logarithmic geometry and degeneration. Tian's approach is very different (and elegant), using stability of tangent bundles..

Arithmetic relevance

Theorem (Graber-Harris-Starr, de Jong-Starr)

If X separably rationally connected over the function field K of a curve over an algebraically closed field, then $X(K) \neq \emptyset$.

Moduli of curves

 $\mathcal{M}_g, \mathcal{M}_{0,n}$ - a quasiprojective variety.

Working with a non-complete moduli space is like keeping change in a pocket with holes

Angelo Vistoli

Deligne–Mumford

- $\mathcal{M}_{g,n} \subset \overline{\mathcal{M}}_{g,n}$ moduli of *stable* curves, a modular compactification.
- allow only nodes as singularities
- What's so great about nodes?
- One answer: from the point of view of logarithmic geometry, these are the *logarithmically smooth* curves.

Logarithmic structures

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{
ightarrow} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and

• α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha : \alpha^{-1}\mathcal{O}_X^* \to \mathcal{O}_X^*$ is an isomorphism.

"Trivial" examples

Examples

- (X, O^{*}_X → O_X), the trivial logarithmic structure. We sometimes write just X for this structure.
- $(\underline{X}, \mathcal{O}_{\underline{X}} \xrightarrow{\sim} \mathcal{O}_{\underline{X}})$, looks as easy but surprisingly not interesting, and
- $(\underline{X}, \mathbb{N} \xrightarrow{\alpha} \mathcal{O}_{\underline{X}})$, where α is determined by an arbitrary choice of $\alpha(1)$. This one is important but only pre-logarithmic.

The associated logarithmic structure

You can always fix a pre-logarithmic structure:

¹work out example \mathbb{N} (next pages)

Abramovich (Brown)

1

Logarithmic geometry and rational curves

Key examples

Example (Divisorial logarithmic structure)

Let $\underline{X}, D \subset \underline{X}$ be a variety with a divisor. We define $M_D \hookrightarrow \mathcal{O}_{\underline{X}}$:

$$M_D(U) = \left\{ f \in \mathcal{O}_{\underline{X}}(U) \mid f_{U \setminus D} \in \mathcal{O}_{\underline{X}}^{\times}(U \setminus D) \right\}.$$

This is particularly important for normal crossings divisors and toric divisors - these will be logarithmically smooth structures (a few pages down).

Example (Standard logarithmic point)

Let k be a field,

 $\begin{array}{cccc} \mathbb{N} \oplus k^{\times} & \to & k \\ (n,z) & \mapsto & z \cdot 0^n \end{array}$

defined by sending $0 \mapsto 1$ and $n \mapsto 0$ otherwise.

Works with *P* a monoid with $P^{\times} = 0$, giving the *P*-logarithmic point. This is what you get when you restrict the structure on an affine toric variety associated to *P* to the maximal ideal generated by $\{p \neq 0\}$.

Morphisms

A morphism of (pre)-logarithmic schemes $f: X \rightarrow Y$ consists of

- $\underline{f}: \underline{X} \to \underline{Y}$
- A homomorphism f^{\flat} making the following diagram commutative:

2

²automorphisms of a pointed point

Definition (Inverse image)

Given $\underline{f}: \underline{X} \to \underline{Y}$ and $\underline{Y} = (\underline{Y}, M_Y)$ define the *pre-logarithmic inverse image* by composing

$$\underline{f}^{-1}M_{\mathbf{Y}} \to \underline{f}^{-1}\mathcal{O}_{\underline{\mathbf{Y}}} \xrightarrow{\underline{f}^{\sharp}} \mathcal{O}_{\underline{\mathbf{X}}}$$

and then the logarithmic inverse image is defined as

$$\underline{f}^*M_Y = (\underline{f}^{-1}M_Y)^a.$$

This is the universal logarithmic structure on X with commutative

 $X \to Y$ is **strict** if $M_X = \underline{f}^* M_Y$.

Definition (Fibered products)

The fibered product $X \times_Z Y$ is defined as follows:

- $\underline{X \times_Z Y} = \underline{X} \times_{\underline{Z}} \underline{Y}$
- If N is the pushout of

then the log structure on $X \times_Z Y$ is defined by N^a .

3

³remark on fp in fine, fine saturated categories

Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a scheme $\underline{X} = \operatorname{Spec} R[P]$. There is an evident monoid homomorphism $P \to R[P]$ inducing sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$, a pre-logarithmic structure, giving rise to a logarithmic structure

$$(P_X)^a \to \mathcal{O}_{\underline{X}}.$$

This is a basic example. It deserves a notation:

 $X = \operatorname{Spec}(P \to R[P]).$

The most basic example is $X_0 = \operatorname{Spec}(P \to \mathbb{Z}[P])$.

The morphism \underline{f} : Spec(R[P]) \rightarrow Spec($\mathbb{Z}[P]$) gives

$$X = \underline{X} \times_{\underline{X_0}} X_0.$$

4

⁴compare to toric divisors

Abramovich (Brown)

Charts

A *chart* for X is given by a monoid P and a sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$ to which X is associated. This is the same as a strict morphism $X \to \operatorname{Spec}(P \to \mathbb{Z}[P])$ Given a morphism of logarithmic schemes $f : X \to Y$, a chart for f is a triple

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

such that

• $P_X o M_X$ and $Q_Y o M_Y$ are charts for M_X and M_Y , and

• the diagram

is commutative.

Types of logarithmic structures

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_{\underline{X}}$ for X.⁵
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P. I.e., not like {0,2,3,...}.⁶
- We say that a logarithmic structure is *fine* if it is *coherent* with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral.
- We say that a logarithmic structure is *fine and saturated* (or fs) if it is coherent with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral and saturated.

⁵example of z = 0 in xy = zw

⁶example of \mathbb{A}^1 , cuspical curve

Definition (The characteristic sheaf)

Given a logarithmic structure $X = (\underline{X}, M)$, the quotient sheaf $\overline{M} := M/\mathcal{O}_X^{\times}$ is called the *characteristic sheaf* of X.

The characteristic sheaf records the combinatorics of a logarithmic structure, especially for fs logarithmic structures.

Differentials

Say $T_0 = \operatorname{Spec} k$ and $T = \operatorname{Spec} k[\epsilon]/(\epsilon^2)$, and consider a morphism $X \to Y$.

We contemplate the following diagram:

Differentials (continued)

This translates to a diagram of groups and a diagram of monoids

Differentials (continued)

The difference $g_1^{\sharp} - g_0^{\sharp}$ is a derivation $\phi^{-1}\mathcal{O}_X \xrightarrow{d} \epsilon \mathbb{C} \simeq \mathbb{C}$ It comes from the sequence

$$0 \to J \to \mathcal{O}_{\underline{T}} \to \mathcal{O}_{\underline{T}_0} \to 0.$$

The multiplicative analogue

$$1 \rightarrow (1 + J) \rightarrow \mathcal{O}_{\underline{T}}^{\times} \rightarrow \mathcal{O}_{\underline{T}_{0}}^{\times} \rightarrow 1$$

means, if all the logarithmic structures are integral,

$$1 \rightarrow (1+J) \rightarrow M_T \rightarrow M_{T_0} \rightarrow 1.$$

Differentials (continued)

means that we can take the "difference"

$$g_1^{\flat}(m) = (1 + D(m)) + g_0^{\flat}(m).$$

Namely $D(m) = "g_1^{\flat}(m) - g_0^{\flat}(m)" \in J$.

Key properties:

- $D(m_1 + m_2) = D(m_1) + D(m_2)$
- $D|_{\psi^{-1}M_Y}=0$
- $\alpha(m) \cdot D(m) = d(\alpha(m)),$

in other words,

$$D(m) = d \log (\alpha(m)),$$

which justifies the name of the theory.

Definition

A logarithmic derivation:

$$\begin{array}{rccc} d: \mathcal{O} & \to & J; \\ D: M & \to & J \end{array}$$

satisfying the above.

Logarithmic derivations

Definition

A logarithmic derivation:

$$\begin{array}{rccc} d: \mathcal{O} & \to & J; \\ D: M & \to & J \end{array}$$

satisfying the above.

The universal derivation:

$$d:\mathcal{O}
ightarrow\Omega^1_{\underline{X}/\underline{Y}}\ =\ \mathcal{O}\otimes_{\mathbb{Z}}\mathcal{O}/\mathsf{relations}$$

The universal logarithmic derivation takes values in

$$\Omega^1_{X/Y} = \left(\Omega^1_{\underline{X}/\underline{Y}} \oplus \left(\mathcal{O} \otimes_{\mathbb{Z}} M^{\mathrm{gp}}\right)\right) / \mathsf{relations}$$

Smoothness

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

- $1 \ \underline{X} \rightarrow \underline{Y}$ is locally of finite presentation, and
- $2\,$ For $\,{\it T}_0$ fine and affine and $\,{\it T}_0 \subset {\it T}$ strict square-0 embedding, given

there exists a lifting as indicated.

The morphism is *logarithmically étale* if the lifting in (2) is unique.

Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $\underline{X} \to \underline{Y}$ smooth then $X \to Y$ is logarithmically smooth.

Proof.

There is a lifting

since $\underline{X} \to \underline{Y}$ smooth, and the lifting of morphism of monoids comes by the universal property of pullback.

Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism.

Write
$$X = \text{Spec}(P \rightarrow R[P])$$
 and $Y = \text{Spec}(Q \rightarrow R[Q])$.

Assume

- $\mathsf{Ker}(Q^{\mathrm{gp}} o P^{\mathrm{gp}})$ is finite and with order invertible in R,
- TorCoker $(Q^{\mathrm{gp}} \rightarrow P^{\mathrm{gp}})$ has order invertible in R.

Then $X \to Y$ is logarithmically smooth. If also the cokernel is finite then $X \to Y$ is logarithmically étale.

(proof on board!)

Key examples

- Dominant toric morphisms
- Nodal curves.
- Marked nodal curves.
- Spec $\mathbb{C}[t] o$ Spec $\mathbb{C}[s]$ given by $s = t^2$
- Spec $\mathbb{C}[x, y] \to \operatorname{Spec} \mathbb{C}[t]$ given by $t = x^m y^n$
- Spec $\mathbb{C}[x, y] \to \operatorname{Spec} \mathbb{C}[x, z]$ given by z = xy.
- $\mathsf{Spec}(\mathbb{N} \to \mathbb{C}[\mathbb{N}]) \to \mathsf{Spec}((\mathbb{N} \smallsetminus 1) \to \mathbb{C}[(\mathbb{N} \smallsetminus 1)]).$

Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat? We define a monoid homomorphism $Q \rightarrow P$ to be *integral* if

$$\mathbb{Z}[Q] o \mathbb{Z}[P]$$

is flat.

A morphism $f : X \to Y$ of logarithmic schemes is *integral* if for every geometric point x of X the homomorphism

$$(f^{-1}\overline{M}_Y)_X \to (\overline{M}_X)_X$$

of characteristic sheaves is integral.

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \rightarrow M_Y$ a chart. Then $X \rightarrow Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

•
$$Q \rightarrow P$$
 combinatorially smooth, and

•
$$\underline{X} o \underline{Y} imes_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P]$$
 is smooth

One direction:

Deformations

Proposition (K. Kato)

If $X_0 \to Y_0$ is logarithmically smooth, $Y_0 \subset Y$ a strict square-0 extension, then locally X_0 can be lifted to a smooth $X \to Y$.

Sketch of proof: locally $X_0 \rightarrow X'_0 \rightarrow Y_0$, where

$$X'_0 = Y_0 \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P].$$

So $X_0' \to Y_0$ is combinatorially smooth, and automatically provided a deformation to

$$Y \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P],$$

and $X_0 \rightarrow X'_0$ is strict and smooth so deforms by the classical result.

Kodaira-Spencer theory

Theorem (K. Kato)

Let Y_0 be artinian, $Y_0 \subset Y$ a strict square-0 extension with ideal J, and $f_0 : X_0 \to Y_0$ logarithmically smooth. Then

- There is a canonical element ω ∈ H²(X₀, T<sub>X₀/Y₀ ⊗ f₀^{*}J) such that a logarithmically smooth deformation X → Y exists if and only if ω = 0.
 </sub>
- If ω = 0, then isomorphism classes of such X → Y correspond to elements of a torsor under H¹(X₀, T_{X₀/Y₀} ⊗ f₀^{*}J).
- Given such deformation $X \to Y$, its automorphism group is $H^0(X_0, T_{X_0/Y_0} \otimes f_0^* J)$.

Corollary

Logarithmically smooth curves are unobstructed.

Saturated morphisms

Recall that the monoid homomorphism $\mathbb{N} \xrightarrow{\cdot 2} \mathbb{N}$ gives an integral logarithmically étale map with non-reduced fibers.

Definition

- An integral $Q \to P$ of saturated monoids is said to be *saturated* if $\operatorname{Spec}(P \to \mathbb{Z}[P]) \to \operatorname{Spec}(Q \to \mathbb{Z}[Q])$ has reduced fibers.
- An integral morphism $X \to Y$ of fs logarithmic schemes is *saturated* if it has a saturated chart.

This guarantees that if $X \to Y$ is logarithmically smooth, then the fibers are reduced.

Log curves

Definition

A log curve is a morphism $f : X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,
- f is saturated, i.e. has reduced fibers, and
- the fibers are curves i.e. pure dimension 1 schemes.

Theorem (F. Kato)

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 \times \underline{S} S$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on A¹.
étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 \to \mathbb{Z}[\mathbb{N}^2]) \to \mathsf{Spec}(\mathbb{N} \to \mathbb{Z}[\mathbb{N}])$$

where $\mathbb{N} \to \mathbb{N}^2$ is the diagonal. Here the image of $1 \in \mathbb{N}$ in \mathcal{O}_S is f and the generators of \mathbb{N}^2 map to x and y.

Log Fano complete intersections

We work in \mathbb{P}^n . Recall that $K_{\mathbb{P}^n} = \mathcal{O}_{\mathbb{P}^n}(-(n+1))$. Fix integers $(d_1, \ldots, d_l; d_b)$. Consider general hypersurfaces H_i of degrees $d_i, i = 1, \ldots l$ and their intersection $X = \cap H_i$. Let H_b be a general hypersurface of degree d_b and consider $D = X \cap H_b$. By the adjunction formula

$$\mathcal{K}_X = \mathcal{O}_X(-(n+1) + \sum d_i)$$
 and $\mathcal{K}_X(D) = \mathcal{O}_X(-(n+1) + \sum d_i + d + b).$

So X is Fano if $\sum d_i \leq n$ and (X, D) log Fano if $\sum d_i + d_b \leq n$. It is consistent to allow $d_b = 0$.

Degeneration

- Consider a degeneration of X, by allowing H_l to degenerate in a pencil into H'_l of degree $d_l 1$ and H''_l a hyperplane.
- Get a family $\mathcal{X} \to \mathbb{A}^1$. The special fiber is $X_1 \cup_D X_2$. The family is log smooth away from $D \cap H_I$.
- We can endow X_i with log structure coming from D:
- (X_1, D) log Fano of type $(d_1, \ldots, d_{l-1}, d_l 1; 1)$. (X_2, D) log Fano of type $(d_1, \ldots, d_{l-1}, 1; d_l - 1)$. D Fano of type $(d_1, \ldots, d_{l-1}, d_l - 1, 1)$.

Strategy

- 0 general D is SRC by induction on dimension
- 1 general (X_1, D) has a free line $(\mathbb{P}^1, 0)$ by an explicit construction (uses $1 = d_b$ prime to p).
- 2 One can lift a curve on D to (X_1, D) and glue with a curve in (X_1, D) , and deform to a very free curve.
- 3 One can lift a free curve on D to a free $(\mathbb{P}^1, 0)$ on (X_2, D) .
- 4 One can glue the two and deform to a very free curve on X.

1. Lines

Proposition

If $p \nmid d_b > 1$ there are free $(\mathbb{P}^1, 0)$ lines on X.

Idea of proof:

- Take one line L, say $x_2 = \cdots = x_n = 0$.
- Take "the general" equations of the form $F_i = y_0 x_1^{d_i-1} + y_1 x_1^{d_i-2} x_0 + \cdots + y_{d_i-2} x_1 x_0^{d_i-2} + y_{d_i} x_0^{d_i-1} \text{ and spread } y_i$ among the x_i .
- These define X. for D take something like $G = X_1^{d_b} + y_1 x_1^{d_b-2} x_0 + \cdots y_{d_b-2} x_1 x_0^{d_b-2} + y_{d_b} x_0^{d_b-1}$
- Show regularity along L
- Show the normal bundle is non-negative.

2-3 Lifting curves

Proposition

Assume D SRC and $\mathcal{O}_X(D)$ ample. Then a free curve on D lifts to a free $(\mathbb{P}^1, 0)$ on (X, D).

idea of proof:

• works in special case of $\mathbb{P}(1 \oplus N_D)$.