Logarithmic geometry and moduli Lectures at the Sophus Lie Center

Dan Abramovich

Brown University

June 16-17, 2014

Abramovich (Brown)

Heros:

- Olsson
- Chen, Gillam, Huang, Satriano, Sun
- Gross Siebert
- $\overline{\mathcal{M}}_g$

Moduli of curves

 \mathcal{M}_g - a quasiprojective variety.

Working with a non-complete moduli space is like keeping change in a pocket with holes

Angelo Vistoli

Deligne–Mumford

- $\mathcal{M}_g \subset \overline{\mathcal{M}}_g$ moduli of *stable* curves, a modular compactification.
- allow only nodes as singularities
- What's so great about nodes?
- One answer: from the point of view of logarithmic geometry, these are the *logarithmically smooth* curves.

- \bullet Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert \bullet $\overline{\mathcal{M}}_g$
- K. Kato

Logarithmic structures

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{
ightarrow} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and
- α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha : \alpha^{-1}\mathcal{O}_X^* \to \mathcal{O}_X^*$ is an isomorphism.

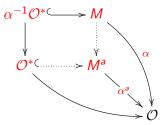
"Trivial" examples

Examples

- (X, O^{*}_X → O_X), the trivial logarithmic structure. We sometimes write just X for this structure.
- $(\underline{X}, \mathcal{O}_{\underline{X}} \xrightarrow{\sim} \mathcal{O}_{\underline{X}})$, looks as easy but surprisingly not interesting, and
- $(\underline{X}, \mathbb{N} \xrightarrow{\alpha} \mathcal{O}_{\underline{X}})$, where α is determined by an arbitrary choice of $\alpha(1)$. This one is important but only pre-logarithmic.

The associated logarithmic structure

You can always fix a pre-logarithmic structure:



Key examples

Example (Divisorial logarithmic structure)

Let $\underline{X}, D \subset \underline{X}$ be a variety with a divisor. We define $M_D \hookrightarrow \mathcal{O}_{\underline{X}}$:

$$M_D(U) = \left\{ f \in \mathcal{O}_{\underline{X}}(U) \mid f_{U \setminus D} \in \mathcal{O}_{\underline{X}}^{\times}(U \setminus D) \right\}.$$

This is particularly important for normal crossings divisors and toric divisors - these will be logarithmically smooth structures.

Example (Standard logarithmic point)

Let k be a field,

 $\begin{array}{cccc} \mathbb{N} \oplus k^{\times} & \to & k \\ (n,z) & \mapsto & z \cdot 0^n \end{array}$

defined by sending $0 \mapsto 1$ and $n \mapsto 0$ otherwise.

Works with *P* a monoid with $P^{\times} = 0$, giving the *P*-logarithmic point. This is what you get when you restrict the structure on an affine toric variety associated to *P* to the maximal ideal generated by $\{p \neq 0\}$.

Morphisms

A morphism of (pre)-logarithmic schemes $f: X \to Y$ consists of

• $\underline{f}: \underline{X} \to \underline{Y}$

• A homomorphism f^{\flat} making the following diagram commutative:

$$\begin{array}{c|c} M_X \leftarrow \stackrel{f^{\flat}}{\longleftarrow} \underbrace{f^{-1}}M_Y \\ \alpha_X & & & & \\ & & & \\ M_X \leftarrow \stackrel{f^{\sharp}}{\longleftarrow} \underbrace{f^{-1}}\mathcal{O}_Y \end{array}$$

Definition (Inverse image)

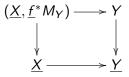
Given $\underline{f}: \underline{X} \to \underline{Y}$ and $\underline{Y} = (\underline{Y}, M_Y)$ define the *pre-logarithmic inverse image* by composing

$$\underline{f}^{-1}M_{\mathbf{Y}} \to \underline{f}^{-1}\mathcal{O}_{\underline{\mathbf{Y}}} \xrightarrow{\underline{f}^{\sharp}} \mathcal{O}_{\underline{\mathbf{X}}}$$

and then the logarithmic inverse image is defined as

$$\underline{f}^*M_Y = (\underline{f}^{-1}M_Y)^a.$$

This is the universal logarithmic structure on X with commutative

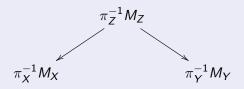


 $X \to Y$ is strict if $M_X = \underline{f}^* M_Y$.

Definition (Fibered products)

The fibered product $X \times_Z Y$ is defined as follows:

- $\underline{X \times_Z Y} = \underline{X} \times_{\underline{Z}} \underline{Y}$
- If *N* is the pushout of



then the log structure on $X \times_Z Y$ is defined by N^a .

Definition (The spectrum of a Monoid algebras)

Let *P* be a monoid, *R* a ring. We obtain a monoid algebra R[P] and a scheme $\underline{X} = \operatorname{Spec} R[P]$. There is an evident monoid homomorphism $P \to R[P]$ inducing sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$, a pre-logarithmic structure, giving rise to a logarithmic structure

$$(P_X)^a \to \mathcal{O}_{\underline{X}}.$$

This is a basic example. It deserves a notation:

 $X = \operatorname{Spec}(P \to R[P]).$

The most basic example is $X_0 = \operatorname{Spec}(P \to \mathbb{Z}[P])$.

The morphism \underline{f} : Spec(R[P]) \rightarrow Spec($\mathbb{Z}[P]$) gives

$$X = \underline{X} \times_{X_0} X_0.$$

Charts

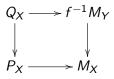
A *chart* for X is given by a monoid P and a sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$ to which X is associated. This is the same as a strict morphism $X \to \operatorname{Spec}(P \to \mathbb{Z}[P])$ Given a morphism of logarithmic schemes $f : X \to Y$, a chart for f is a triple

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

such that

• $P_X o M_X$ and $Q_Y o M_Y$ are charts for M_X and M_Y , and

• the diagram



is commutative.

Types of logarithmic structures

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P. I.e., not like {0,2,3,...}.
- We say that a logarithmic structure is *fine* if it is *coherent* with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral.
- We say that a logarithmic structure is *fine and saturated* (or fs) if it is coherent with local charts $P_X \to \mathcal{O}_X$ with *P* integral and saturated.

Definition (The characteristic sheaf)

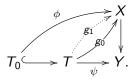
Given a logarithmic structure $X = (\underline{X}, M)$, the quotient sheaf $\overline{M} := M/\mathcal{O}_X^{\times}$ is called the *characteristic sheaf* of X.

The characteristic sheaf records the combinatorics of a logarithmic structure, especially for fs logarithmic structures.

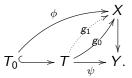
Differentials

Say $T_0 = \operatorname{Spec} k$ and $T = \operatorname{Spec} k[\epsilon]/(\epsilon^2)$, and consider a morphism $X \to Y$.

We contemplate the following diagram:

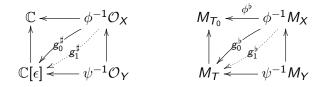


Differentials (continued)



This translates to a diagram of groups and a diagram of monoids

Differentials (continued)



The difference $g_1^{\sharp} - g_0^{\sharp}$ is a derivation $\phi^{-1}\mathcal{O}_X \xrightarrow{d} \epsilon \mathbb{C} \simeq \mathbb{C}$ It comes from the sequence

$$0 \to J \to \mathcal{O}_{\underline{T}} \to \mathcal{O}_{\underline{T}_0} \to 0.$$

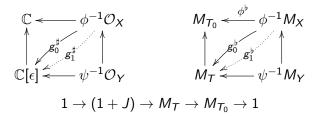
The multiplicative analogue

$$1 \rightarrow (1 + J) \rightarrow \mathcal{O}_{\underline{T}}^{\times} \rightarrow \mathcal{O}_{\underline{T}_{0}}^{\times} \rightarrow 1$$

means, if all the logarithmic structures are integral,

$$1 \rightarrow (1+J) \rightarrow M_T \rightarrow M_{T_0} \rightarrow 1.$$

Differentials (continued)



means that we can take the "difference"

$$g_1^{\flat}(m) = (1 + D(m)) + g_0^{\flat}(m).$$

Namely $D(m) = "g_1^{\flat}(m) - g_0^{\flat}(m)" \in J$.

Key properties:

- $D(m_1 + m_2) = D(m_1) + D(m_2)$
- $D|_{\psi^{-1}M_Y}=0$
- $\alpha(m) \cdot D(m) = d(\alpha(m)),$

in other words,

$$D(m) = d \log (\alpha(m)),$$

which justifies the name of the theory.

Definition

A logarithmic derivation:

$$\begin{array}{rccc} d: \mathcal{O} & \to & J; \\ D: M & \to & J \end{array}$$

satisfying the above.

Logarithmic derivations

Definition

A logarithmic derivation:

$$\begin{array}{rccc} d: \mathcal{O} & \to & J; \\ D: M & \to & J \end{array}$$

satisfying the above.

The universal derivation:

$$d: \mathcal{O}
ightarrow \Omega^1_{\underline{X}/\underline{Y}} = \mathcal{O} \otimes_{\mathbb{Z}} \mathcal{O}/\mathsf{relations}$$

The universal logarithmic derivation takes values in

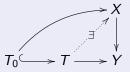
$$\Omega^1_{X/Y} = \left(\Omega^1_{\underline{X}/\underline{Y}} \oplus \left(\mathcal{O} \otimes_{\mathbb{Z}} M^{\mathrm{gp}}\right)\right) / \mathsf{relations}$$

Smoothness

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

- $1 \ \underline{X} \rightarrow \underline{Y}$ is locally of finite presentation, and
- $2\,$ For $\,{\it T}_0$ fine and affine and $\,{\it T}_0 \subset {\it T}$ strict square-0 embedding, given



there exists a lifting as indicated.

The morphism is *logarithmically étale* if the lifting in (2) is unique.

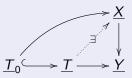
Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $\underline{X} \to \underline{Y}$ smooth then $X \to Y$ is logarithmically smooth.

Proof.

There is a lifting



since $\underline{X} \rightarrow \underline{Y}$ smooth, and the lifting of morphism of monoids comes by the universal property of pullback.

Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism.

Write
$$X = \text{Spec}(P \rightarrow R[P])$$
 and $Y = \text{Spec}(Q \rightarrow R[Q])$.

Assume

- Ker $(Q^{\mathrm{gp}}
 ightarrow P^{\mathrm{gp}})$ is finite and with order invertible in R,
- TorCoker $(Q^{\mathrm{gp}} \rightarrow P^{\mathrm{gp}})$ has order invertible in R.

Then $X \to Y$ is logarithmically smooth. If also the cokernel is finite then $X \to Y$ is logarithmically étale.

(proof on board!)

Key examples

- Dominant toric morphisms
- Nodal curves.
- Marked nodal curves.
- Spec $\mathbb{C}[t] o$ Spec $\mathbb{C}[s]$ given by $s = t^2$
- Spec $\mathbb{C}[x, y] \to \operatorname{Spec} \mathbb{C}[t]$ given by $t = x^m y^n$
- Spec $\mathbb{C}[x, y] \to \operatorname{Spec} \mathbb{C}[x, z]$ given by z = xy.
- $\mathsf{Spec}(\mathbb{N} \to \mathbb{C}[\mathbb{N}]) \to \mathsf{Spec}((\mathbb{N} \smallsetminus 1) \to \mathbb{C}[(\mathbb{N} \smallsetminus 1)]).$

Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat? We define a monoid homomorphism $Q \rightarrow P$ to be *integral* if

$$\mathbb{Z}[Q] o \mathbb{Z}[P]$$

is flat.

A morphism $f : X \to Y$ of logarithmic schemes is *integral* if for every geometric point x of X the homomorphism

$$(f^{-1}\overline{M}_Y)_X \to (\overline{M}_X)_X$$

of characteristic sheaves is integral.

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \rightarrow M_Y$ a chart. Then $X \rightarrow Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

•
$$Q \rightarrow P$$
 combinatorially smooth, and

•
$$\underline{X} o \underline{Y} imes_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P]$$
 is smooth

One direction:

Deformations

Proposition (K. Kato)

If $X_0 \to Y_0$ is logarithmically smooth, $Y_0 \subset Y$ a strict square-0 extension, then locally X_0 can be lifted to a smooth $X \to Y$.

Sketch of proof: locally $X_0 \to X_0' \to Y_0$, where

$$X'_0 = Y_0 \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P].$$

So $X_0' \to Y_0$ is combinatorially smooth, and automatically provided a deformation to

$$Y \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P],$$

and $X_0 \rightarrow X'_0$ is strict and smooth so deforms by the classical result.

Kodaira-Spencer theory

Theorem (K. Kato)

Let Y_0 be artinian, $Y_0 \subset Y$ a strict square-0 extension with ideal J, and $f_0 : X_0 \to Y_0$ logarithmically smooth. Then

- There is a canonical element ω ∈ H²(X₀, T<sub>X₀/Y₀ ⊗ f₀^{*}J) such that a logarithmically smooth deformation X → Y exists if and only if ω = 0.
 </sub>
- If ω = 0, then isomorphism classes of such X → Y correspond to elements of a torsor under H¹(X₀, T_{X₀/Y₀} ⊗ f₀^{*}J).
- Given such deformation $X \to Y$, its automorphism group is $H^0(X_0, T_{X_0/Y_0} \otimes f_0^* J)$.

Corollary

Logarithmically smooth curves are unobstructed.

Saturated morphisms

Recall that the monoid homomorphism $\mathbb{N} \xrightarrow{\cdot^2} \mathbb{N}$ gives an integral logarithmically étale map with non-reduced fibers.

Definition

- An integral $Q \to P$ of saturated monoids is said to be *saturated* if $\operatorname{Spec}(P \to \mathbb{Z}[P]) \to \operatorname{Spec}(Q \to \mathbb{Z}[Q])$ has reduced fibers.
- An integral morphism $X \to Y$ of fs logarithmic schemes is *saturated* if it has a saturated chart.

This guarantees that if $X \to Y$ is logarithmically smooth, then the fibers are reduced.

- Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross Siebert
- $\overline{\mathcal{M}}_g$
- K. Kato
- F. Kato

Log curves

Definition

A log curve is a morphism $f : X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,
- f is saturated, i.e. has reduced fibers, and
- the fibers are curves i.e. pure dimension 1 schemes.

Theorem (F. Kato)

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 \times \underline{S} S$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on A¹.
étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 \to \mathbb{Z}[\mathbb{N}^2]) \to \mathit{Spec}(\mathbb{N} \to \mathbb{Z}[\mathbb{N}])$$

where $\mathbb{N} \to \mathbb{N}^2$ is the diagonal. Here the image of $1 \in \mathbb{N}$ in \mathcal{O}_S is f and the generators of \mathbb{N}^2 map to x and y.

Stable log curves

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,
 - sections $s_i : \underline{S} \to \underline{X}$ for $i = 1, \ldots, n$,

such that

- $(\underline{X} \rightarrow \underline{S}, s_i)$ is stable,
- the log structure is strict away from sections and singularities of fibers, and "divisorial along the sections".

Moduli of stable log curves

We define a category $\overline{\mathcal{M}}_{g,n}^{\log}$ of stable log curves: objects are log (g, n)-curves $X \to S$ and arrows are fiber diagrams compatible with sections

There is a forgetful functor

$$egin{array}{ccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \mathfrak{LogSch}^{\mathsf{fs}} \ (X o S) & \mapsto & S. \end{array}$$

So $\overline{\mathcal{M}}_{g,n}^{\log}$ is a category fibered in groupoids over $\mathfrak{LogSch}^{\mathrm{fs}}$.

Moduli of stable log curves (continued)

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne–Knudsen–Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor. As such it represents a category fibered in groupoids $(\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}})$ over \mathfrak{LogGch}^{fs} .

Theorem (F. Kato)

$$\overline{\mathcal{M}}_{g,n}^{\log} \simeq (\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}}).$$

(Proof sketch on board)

Minimality

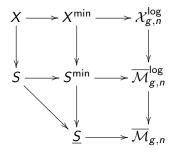
Given a stable curve $\underline{X} \rightarrow \underline{S}$ we define

$$X^{\mathsf{min}} = \underline{X} imes_{\overline{\mathcal{M}}_{g,n+1}} \overline{\mathcal{M}}_{g,n+1}^{\mathsf{log}} \qquad \mathsf{and} \qquad S^{\mathsf{min}} = \underline{S} imes_{\overline{\mathcal{M}}_{g,n}} \overline{\mathcal{M}}_{g,n}^{\mathsf{log}}.$$

The logarithmic structures $X^{\min} \rightarrow S^{\min}$ are called the *minimal* or *basic* logarithmic structures on a log curve. We write

$$S^{\min} = (\underline{S}, M_{X/S}^{S})$$
 and $X^{\min} = (\underline{X}, M_{X/S}^{X}).$

Fundamental diagram



- $\overline{\mathcal{M}}_{g,n}^{\log}$ parametrizes stable log curves over $\mathfrak{LogGch}^{\mathsf{fs}}$
- $\overline{\mathcal{M}}_{g,n}$ parametrizes minimal stable log curves over \mathfrak{Sch} .

Stable logarithmic maps

Definition

A stable logarithmic map is a diagram

$$\begin{array}{c} C \xrightarrow{f} X \\ \downarrow^{\pi} \\ S \end{array}$$

S

where

- $(C/S, s_i)$ is a prestable log curve, and
- in fibers $\operatorname{Aut}(\underline{C}_s \to \underline{X}, s_i)$ is finite.

Apart from the underlying discrete data $\underline{\Gamma} = (g, \beta, n)$, a stable logarithmic map has *contact orders* c_i at the marked points.

At each such point the logarithmic structure at C has a factor \mathbb{N} , and the contact order is the homomorphism $f^*M_X \xrightarrow{c_i} \mathbb{N}$ at that marked point.

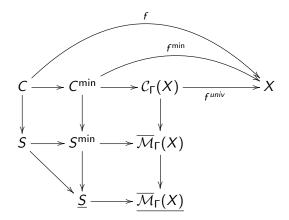
We collect the numerical data under the umbrella $\Gamma = (g, \beta, c_i)$.

Stable logarithmic maps (continued)

Theorem (Gross-Siebert, Chen, ℵ-Chen-Marcus-Wise)

Let X be projective logarithmically scheme. Stable logarithmic maps to X form a logarithmic Deligne–Mumford stack $\overline{\mathcal{M}}_{\Gamma}(X)$. It is finite and representable over $\overline{\mathcal{M}}_{\Gamma}(\underline{X})$.

Fundamental diagram



We are in search of a moduli stack $\overline{\mathcal{M}}_{\Gamma}(X)$ parametrizing *minimal* stable logarithmic maps over \mathfrak{Sch} .

As such it comes with a logarithmic structure $\overline{\mathcal{M}}_{\Gamma}(X)$ which parametrizes all stable logarithmic maps over \mathfrak{LogGch}^{fs} .

Abramovich (Brown)

Logarithmic geometry and moduli

Stable logarithmic maps (continued)

This requires two steps:

- first find a morphism from $(C \to S, f : C \to X)$ to a *minimal* object $(C^{\min} \to S^{\min}, f^{\min} : C^{\min} \to X)$.
- then show that the object $(C^{\min} \rightarrow S^{\min}, f^{\min} : C^{\min} \rightarrow X)$ has a versal deformation space, whose fibers are also minimal.

Minimal stable logarithmic maps

- We consider X toric and a stable logarithmic map $(C/S, f : C \rightarrow X)$ over a P-logarithmic point S.
- We wish to find a minimal Q-logarithmic point and a logarithmic map over it through which our object factors.
- We might as well first pull back and replace S by a standard,
- $P = \mathbb{N}$ -logarithmic point!
- The curve *C* has components C_i with generic points η_i corresponding to vertices in the dual graph, and nodes q_j with local equations $xy = g_j$ corresponding to edges in the dual graph.

At the generic points

The map f sends η_i to some stratum X_i of X with cone σ_i having lattice $N_i \subset \sigma_i$.

Departing from toric conventions we denote $M_i = N_i^{\vee} = \underline{\operatorname{Hom}}(N_i, \mathbb{N})$. Since the logarithmic structure of C at η_i is the pullback of the structure on S, we have a map $f_i^{\flat} : M_i \to P$.

It can dually be viewed as a map $P^{\vee} \to N_i$, or an element $v_i \in N_i$. If that were all we had, our final object would be $Q^{\vee} = \prod N_i$, and dually the initial monoid $Q = \bigoplus M_i$.

But the nodes impose crucial conditions.

At the nodes

At a node q with branches η^1_q, η^2_q we similarly have a map

$$f_q^{\flat}: M_q \to P \oplus^{\mathbb{N}} \mathbb{N}^2.$$

Unfortunately it is unnatural to consider maps into a coproduct, and we give an alterante description of

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = P \langle \log x, \log y \rangle / (\log x + \log y = \rho_q)$$

where $\rho_q = \log g_q \in P$. Recall that the stalk of a sheaf at a point q maps, via a "generization map", to the stalk at any point specializing to q, such as η_q^1, η_q^2 .

At the nodes (continued)

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = P\langle \log x, \log y \rangle / (\log x + \log y = \rho_q)$$

The map to the stalk at η_q^1 where x = 0 sends $\log y \mapsto 0$, and so $\log x \mapsto \rho_q$. The map to the stalk at η_q^2 where y = 0 sends $\log x \mapsto 0$, and so $\log y \mapsto \rho_q$.

This means that we have a monoid homomorphism, which is clearly injective,

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 \to P \times P.$$

Its image is precisely the set of pairs

 $\{(p_1, p_2)|p_2 - p_1 \in \mathbb{Z}\rho_q\}$

At the nodes (continued)

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = \{(p_1, p_2) | p_2 - p_1 \in \mathbb{Z} \rho_q\}$$

•
$$f_q^{\flat}: M_q \to P \times P$$
,
• $(p_2 - p_1) \circ f_q^{\flat}: M_q \to \mathbb{Z}\rho_q \subset P^{\mathrm{gp}}$.

Or better: we have $u_q: M_q
ightarrow \mathbb{Z}$ such that

$$(p_2 - p_1) \circ f_q^{\flat}(m) = u_q(m) \cdot \rho_q.$$
 (0.0.1)

Putting nodes and generic points together

The maps $p_1 \circ f_q^{\flat} : M_q \to P$ and $p_2 \circ f_q^{\flat} : M_q \to P$, since they come from maps of sheaves, are compatible with generization maps. $p_1 \circ f_q^{\flat} : M_q \to P$ is the composition $M_q \to M_{\eta_q^1} \to P$ $p_2 \circ f_q^{\flat} : M_q \to P$ is the composition of $M_q \to M_{\eta_q^2} \to P$ the data of $p_1 \circ f_q^{\flat}$ and $p_2 \circ f_q^{\flat}$ is already determined by the data at the generic points η_i of the curve.

Putting nodes and generic points together (continued)

The only data the node provides is the element $\rho_q \in P$ and homomorphism $u_q : M_q \to \mathbb{Z}$, in such a way that equation

$$(p_2 - p_1) \circ f_q^b(m) = u_q(m) \cdot \rho_q.$$
 (0.0.2)

holds.

$$Q_f = \left(\left(\prod_{\eta} M_{\sigma_{\eta}} \times \prod_{q} \mathbb{N} \right) \ \middle/ \ R \right)^{sat}$$

where R is generated by all the relations implied by equation (??)

Putting nodes and generic points together (continued)

$$Q_f = \left(\left(\prod_{\eta} M_{\sigma_{\eta}} \times \prod_{q} \mathbb{N} \right) \ \middle/ \ R \right)^{sat}$$

It is quite a bit more natural to describe the dual lattice

$$Q_{f}^{\vee} = \left\{ \left((v_{\eta}), (e_{\eta}) \right) \in \prod_{\eta} N_{\sigma_{\eta}} \times \prod_{q} \mathbb{N} \mid \forall \eta_{q}^{1} \underbrace{-q \longrightarrow}_{q} \eta_{q}^{2} \\ v_{q}^{1} - v_{q}^{2} = e_{j} u_{q} \end{array} \right\}.$$

Tropical interpretation

Given a map f over an \mathbb{N} -point we have a graph in $\Sigma(X)$ with

• vertices $v_i \in N_{\sigma_\eta} \subset \sigma_\eta$

ullet edges proportional to $u_q\in \mathit{N}^{\mathrm{gp}}_q$ such that $\mathit{v}^1_q-\mathit{v}^2_q=\mathit{e}_j\mathit{u}_q$

this means

- The equations $v_q^1 v_q^2 = e_j u_q$ define the cone of all such graphs
- Q_f^{\vee} is the integer lattice in that cone.

Theorem (Gross-Siebert)

The minimal object exists, with characteristic sheaf Q_f , dual to the lattice in the corresponding space of tropical curves.