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Moduli of curves

Mg - a quasiprojective variety.

Working with a non-complete moduli space is like keeping
change in a pocket with holes

Angelo Vistoli
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Moduli of curves

Mg - a quasiprojective variety.

Working with a non-complete moduli space is like keeping
change in a pocket with holes

Angelo Vistoli
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Deligne–Mumford

Mg

⊂Mg - moduli of stable curves, a modular compactification.

allow only nodes as singularities

What’s so great about nodes?

One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 4 / 54



Deligne–Mumford

Mg ⊂Mg - moduli of stable curves, a modular compactification.

allow only nodes as singularities

What’s so great about nodes?

One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 4 / 54



Deligne–Mumford

Mg ⊂Mg - moduli of stable curves, a modular compactification.

allow only nodes as singularities

What’s so great about nodes?

One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 4 / 54



Deligne–Mumford

Mg ⊂Mg - moduli of stable curves, a modular compactification.

allow only nodes as singularities

What’s so great about nodes?

One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 4 / 54



Deligne–Mumford

Mg ⊂Mg - moduli of stable curves, a modular compactification.

allow only nodes as singularities

What’s so great about nodes?

One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 4 / 54



Heros:

Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert

Mg

K. Kato

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 5 / 54



Heros:

Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert

Mg

K. Kato

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 5 / 54



Heros:

Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert

Mg

K. Kato

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 5 / 54



Heros:

Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert

Mg

K. Kato

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 5 / 54



Logarithmic structures

Definition

A pre logarithmic structure is

X = (X ,M
α→ OX )

or just (X ,M)

such that

X is a scheme - the underlying scheme

M is a sheaf of monoids on X , and

α is a monoid homomorphism, where the monoid structure on OX is
the multiplicative structure.

Definition

It is a logarithmic structure if α : α−1O∗X → O∗X is an isomorphism.
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“Trivial” examples

Examples

(X ,O∗X ↪→ OX ), the trivial logarithmic structure.
We sometimes write just X for this structure.

(X ,OX
∼→ OX ), looks as easy but surprisingly not interesting, and

(X ,N α→ OX ), where α is determined by an arbitrary choice of α(1).
This one is important but only pre-logarithmic.
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The associated logarithmic structure

You can always fix a pre-logarithmic structure:

α−1O∗ �
� //

��

M

α

��

��
O∗

//

� � // Ma

αa

!!
O
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Key examples

Example (Divisorial logarithmic structure)

Let X ,D ⊂ X be a variety with a divisor. We define MD ↪→ OX :

MD(U) =
{

f ∈ OX (U)
∣∣ fUrD ∈ O×X (U r D)

}
.

This is particularly important for normal crossings divisors and toric
divisors - these will be logarithmically smooth structures.
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Example (Standard logarithmic point)

Let k be a field,
N⊕ k× → k
(n, z) 7→ z · 0n

defined by sending 0 7→ 1 and n 7→ 0 otherwise.

Works with P a monoid with P× = 0, giving the P-logarithmic point.
This is what you get when you restrict the structure on an affine toric
variety associated to P to the maximal ideal generated by {p 6= 0}.
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Morphisms

A morphism of (pre)-logarithmic schemes f : X → Y consists of

f : X → Y

A homomorphism f [ making the following diagram commutative:

OX f −1OY
f ]oo
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Morphisms

A morphism of (pre)-logarithmic schemes f : X → Y consists of

f : X → Y

A homomorphism f [ making the following diagram commutative:

MX

αX

��

f −1MY
f [oo

αY

��
OX f −1OY

f ]oo
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Definition (Inverse image)

Given f : X → Y and Y = (Y ,MY ) define the pre-logarithmic inverse
image by composing

f −1MY → f −1OY
f ]→ OX

and then the logarithmic inverse image is defined as

f ∗MY = (f −1MY )a.

This is the universal logarithmic structure on X with commutative

(X , f ∗MY ) //

��

Y

��
X // Y

X → Y is strict if MX = f ∗MY .
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Definition (Fibered products)

The fibered product X ×Z Y is defined as follows:

X ×Z Y = X ×Z Y

If N is the pushout of

π−1
Z MZ

$$zz
π−1
X MX π−1

Y MY

then the log structure on X ×Z Y is defined by Na.
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring.

We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism
P → R[P] inducing sheaf homomorphism PX → OX , a pre-logarithmic
structure, giving rise to a logarithmic structure

(PX )a → OX .

This is a basic example. It deserves a notation:

X = Spec(P → R[P]).

The most basic example is X0 = Spec(P → Z[P]).

The morphism f : Spec(R[P])→ Spec(Z[P]) gives

X = X ×X0 X0.
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
PX → OX to which X is associated.

This is the same as a strict morphism X → Spec(P → Z[P])
Given a morphism of logarithmic schemes f : X → Y , a chart for f is a
triple

(PX → MX ,QY → MY ,Q → P)

such that

PX → MX and QY → MY are charts for MX and MY , and

the diagram

QX

��

// f −1MY

��
PX

// MX

is commutative.
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Types of logarithmic structures

We say that (X ,MX ) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart PX → OX for X .

A monoid P is integral if P → Pgp is injective.

It is saturated if integral and whenever p ∈ Pgp and m · p ∈ P for
some integrer m > 0 then p ∈ P. I.e., not like {0, 2, 3, . . .}.

We say that a logarithmic structure is fine if it is coherent with local
charts PX → OX with P integral.

We say that a logarithmic structure is fine and saturated (or fs) if it is
coherent with local charts PX → OX with P integral and saturated.
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Definition (The characteristic sheaf)

Given a logarithmic structure X = (X ,M), the quotient sheaf
M := M/O×X is called the characteristic sheaf of X .

The characteristic sheaf records the combinatorics of a logarithmic
structure, especially for fs logarithmic structures.
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Differentials

Say T0 = Spec k and T = Spec k[ε]/(ε2), and consider a morphism
X → Y .

We contemplate the following diagram:

X

��
T0

φ //

� � // T
ψ
//

g0

FF
g1

77

Y .

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 18 / 54



Differentials

Say T0 = Spec k and T = Spec k[ε]/(ε2), and consider a morphism
X → Y .
We contemplate the following diagram:

X

��
T0

φ //

� � // T
ψ
//

g0

FF
g1

77

Y .

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 18 / 54



Differentials (continued)

X

��
T0

φ //

� � // T
ψ
//

g0

FF
g1

77

Y .

This translates to a diagram of groups

and a diagram of monoids

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO
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Differentials (continued)

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

The difference g ]1 − g ]0 is a derivation φ−1OX
d // εC ' C

It comes from the sequence

0→ J → OT → OT 0
→ 0.

The multiplicative analogue

1→ (1 + J)→ O×T → O
×
T 0
→ 1

means, if all the logarithmic structures are integral,

1→ (1 + J)→ MT → MT0 → 1.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 20 / 54



Differentials (continued)

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

The difference g ]1 − g ]0 is a derivation φ−1OX
d // εC ' C

It comes from the sequence

0→ J → OT → OT 0
→ 0.

The multiplicative analogue

1→ (1 + J)→ O×T → O
×
T 0
→ 1

means, if all the logarithmic structures are integral,

1→ (1 + J)→ MT → MT0 → 1.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 20 / 54



Differentials (continued)

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

The difference g ]1 − g ]0 is a derivation φ−1OX
d // εC ' C

It comes from the sequence

0→ J → OT → OT 0
→ 0.

The multiplicative analogue

1→ (1 + J)→ O×T → O
×
T 0
→ 1

means, if all the logarithmic structures are integral,

1→ (1 + J)→ MT → MT0 → 1.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 20 / 54



Differentials (continued)

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

The difference g ]1 − g ]0 is a derivation φ−1OX
d // εC ' C

It comes from the sequence

0→ J → OT → OT 0
→ 0.

The multiplicative analogue

1→ (1 + J)→ O×T → O
×
T 0
→ 1

means, if all the logarithmic structures are integral,

1→ (1 + J)→ MT → MT0 → 1.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 20 / 54



Differentials (continued)

C φ−1OX
oo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OY
oo

OO MT0 φ−1MX
φ[oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

The difference g ]1 − g ]0 is a derivation φ−1OX
d // εC ' C

It comes from the sequence

0→ J → OT → OT 0
→ 0.

The multiplicative analogue

1→ (1 + J)→ O×T → O
×
T 0
→ 1

means, if all the logarithmic structures are integral,

1→ (1 + J)→ MT → MT0 → 1.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 20 / 54



Differentials (continued)

C φ−1OX
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OO MT0 φ−1MX
φ[oo

g[0
��

g[1
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MT
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1→ (1 + J)→ MT → MT0 → 1

means that we can take the “difference”

g [1(m) = (1 + D(m)) + g [0(m).

Namely D(m) = “g [1(m)− g [0(m)” ∈ J.
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Key properties:

D(m1 + m2) = D(m1) + D(m2)

D|ψ−1MY
= 0

α(m) · D(m) = d(α(m)),

in other words,
D(m) = d log (α(m)),

which justifies the name of the theory.

Definition

A logarithmic derivation:

d : O → J;
D : M → J

satisfying the above.
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Logarithmic derivations

Definition

A logarithmic derivation:

d : O → J;
D : M → J

satisfying the above.

The universal derivation:

d : O → Ω1
X/Y = O ⊗Z O/relations

The universal logarithmic derivation takes values in

Ω1
X/Y =

(
Ω1
X/Y ⊕ (O ⊗Z Mgp)

)
/relations
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Smoothness

Definition

We define a morphism X → Y of fine logarithmic schemes to be
logarithmically smooth if

1 X → Y is locally of finite presentation, and

2 For T0 fine and affine and T0 ⊂ T strict square-0 embedding, given

X

��
T0

//

� � // T //

∃

??

Y

there exists a lifting as indicated.

The morphism is logarithmically étale if the lifting in (2) is unique.
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Strict smooth morphisms

Lemma

If X → Y is strict and X → Y smooth then X → Y is logarithmically
smooth.

Proof.

There is a lifting
X

��
T 0

00

� � // T //

∃

??

Y

since X → Y smooth, and the lifting of morphism of monoids comes by
the universal property of pullback. ♠
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Combinatirially smooth morphisms

Proposition

Say P ,Q are finitely generated integral monoids, R a ring, Q → P a
monoid homomorphism.

Write X = Spec(P → R[P]) and Y = Spec(Q → R[Q]).
Assume

Ker(Qgp → Pgp) is finite and with order invertible in R,

TorCoker(Qgp → Pgp) has order invertible in R.

Then X → Y is logarithmically smooth.
If also the cokernel is finite then X → Y is logarithmically étale.

(proof on board!)
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Key examples

Dominant toric morphisms

Nodal curves.

Marked nodal curves.

SpecC[t]→ SpecC[s] given by s = t2

SpecC[x , y ]→ SpecC[t] given by t = xmyn

SpecC[x , y ]→ SpecC[x , z ] given by z = xy .

Spec(N→ C[N])→ Spec((Nr1)→ C[(Nr1)]).
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Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat?

We define a monoid homomorphism Q → P to be integral if

Z[Q]→ Z[P]

is flat.
A morphism f : X → Y of logarithmic schemes is integral if for every
geometric point x of X the homomorphism

(f −1MY )x → (MX )x

of characteristic sheaves is integral.
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Characterization of logarithmic smoothness

Theorem (K. Kato)

X ,Y fine, QY → MY a chart.

Then X → Y is logarithmically smooth iff there are extensions to local
charts

(PX → MX ,QY → MY ,Q → P)

for X → Y such that

Q → P combinatorially smooth, and

X → Y ×SpecZ[Q] SpecZ[P] is smooth

One direction:

X // Y ×SpecZ[Q] SpecZ[P] //

��

SpecZ[P]

��
Y // SpecZ[Q]
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X → Y ×SpecZ[Q] SpecZ[P] is smooth
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Deformations

Proposition (K. Kato)

If X0 → Y0 is logarithmically smooth, Y0 ⊂ Y a strict square-0 extension,
then locally X0 can be lifted to a smooth X → Y .

Sketch of proof: locally X0 → X ′0 → Y0, where

X ′0 = Y0 ×SpecZ[Q] SpecZ[P].

So X ′0 → Y0 is combinatorially smooth, and automatically provided a
deformation to

Y ×SpecZ[Q] SpecZ[P],

and X0 → X ′0 is strict and smooth so deforms by the classical result.
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Y0 be artinian, Y0 ⊂ Y a strict square-0 extension with ideal J, and
f0 : X0 → Y0 logarithmically smooth.

Then

There is a canonical element ω ∈ H2(X0,TX0/Y0
⊗ f ∗0 J) such that a

logarithmically smooth deformation X → Y exists if and only if
ω = 0.

If ω = 0, then isomorphism classes of such X → Y correspond to
elements of a torsor under H1(X0,TX0/Y0

⊗ f ∗0 J).

Given such deformation X → Y , its automorphism group is
H0(X0,TX0/Y0

⊗ f ∗0 J).

Corollary

Logarithmically smooth curves are unobstructed.
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Saturated morphisms

Recall that the monoid homomorphism N ·2→ N gives an integral
logarithmically étale map with non-reduced fibers.

Definition

An integral Q → P of saturated monoids is said to be saturated if
Spec(P → Z[P])→ Spec(Q → Z[Q]) has reduced fibers.

An integral morphism X → Y of fs logarithmic schemes is saturated
if it has a saturated chart.

This guarantees that if X → Y is logarithmically smooth, then the fibers
are reduced.
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Heros:

Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert

Mg

K. Kato

F. Kato
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Log curves

Definition

A log curve is a morphism f : X → S of fs logarithmic schemes satisfying:

f is logarithmically smooth,

f is integral, i.e. flat,

f is saturated, i.e. has reduced fibers, and

the fibers are curves i.e. pure dimension 1 schemes.
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Theorem (F. Kato)

Assume π : X → S is a log curve.

Then

Fibers have at most nodes as singularities

étale locally on S we can choose disjoint sections si : S → X in the
nonsingular locus X 0 of X/S such that

I Away from si we have that X 0 = X 0 ×S S, so π is strict away from si
I Near each si we have a strict étale

X 0 → S × A1

with the standard divisorial logarithmic structure on A1.
I étale locally at a node xy = f the log curve X is the pullback of

Spec(N2 → Z[N2])→ Spec(N→ Z[N])

where N→ N2 is the diagonal. Here the image of 1 ∈ N in OS is f and
the generators of N2 map to x and y.
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Stable log curves

Definition

A stable log curve X → S is:

a log curve X → S ,

sections si : S → X for i = 1, . . . , n,

such that

(X → S , si ) is stable,

the log structure is strict away from sections and singularities of
fibers, and “divisorial along the sections”.
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Moduli of stable log curves

We define a category Mlog
g ,n of stable log curves: objects are log

(g , n)-curves X → S and arrows are fiber diagrams compatible with
sections

X1
//

��

X2

��
S2

// S2

.

There is a forgetful functor

Mlog
g ,n −→ LogSchfs

(X → S) 7→ S .

So Mlog
g ,n is a category fibered in groupoids over LogSchfs.
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Moduli of stable log curves (continued)

We also have a forgetful functor

Mlog
g ,n −→ Mg ,n

(X → S) 7→ (X → S)

Note that the Deligne–Knudsen–Mumford moduli stack Mg ,n has a
natural logarithmic smooth structure M∆g,n given by the boundary divisor.

As such it represents a category fibered in groupoids (Mg ,n,M∆g,n) over

LogSchfs.

Theorem (F. Kato)

Mlog
g ,n ' (Mg ,n,M∆g,n).

(Proof sketch on board)
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Minimality

Given a stable curve X → S we define

X min = X ×Mg,n+1
Mlog

g ,n+1 and Smin = S ×Mg,n
Mlog

g ,n.

The logarithmic structures X min → Smin are called the minimal or basic
logarithmic structures on a log curve.
We write

Smin = (S ,MS
X/S) and X min = (X ,MX

X/S).
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Fundamental diagram

X //

��

X min //

��

X log
g ,n

��

S //

��

Smin //

��

Mlog
g ,n

��
S //Mg ,n

Mlog
g ,n parametrizes stable log curves over LogSchfs

Mg ,n parametrizes minimal stable log curves over Sch.
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Stable logarithmic maps

Definition

A stable logarithmic map is a diagram

C
f //

π
��

X

S

si

AA

where

(C/S , si ) is a prestable log curve, and

in fibers Aut(C s → X , si ) is finite.
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contact orders

Apart from the underlying discrete data Γ = (g , β, n), a stable logarithmic
map has contact orders ci at the marked points.

At each such point the logarithmic structure at C has a factor N, and the
contact order is the homomorphism f ∗MX

ci→ N at that marked point.
We collect the numerical data under the umbrella Γ = (g , β, ci ).
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Stable logarithmic maps (continued)

Theorem (Gross-Siebert, Chen, ℵ-Chen-Marcus-Wise)

Let X be projective logarithmically scheme. Stable logarithmic maps to X
form a logarithmic Deligne–Mumford stack MΓ(X ). It is finite and
representable over MΓ(X ).
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Fundamental diagram

C //

��

f

  
C min //

��

f min

%%
CΓ(X )

��

f univ
// X

S //

  

Smin //

��

MΓ(X )

��
S //MΓ(X )

We are in search of a moduli stack MΓ(X ) parametrizing minimal stable
logarithmic maps over Sch.
As such it comes with a logarithmic structure MΓ(X ) which parametrizes
all stable logarithmic maps over LogSchfs.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 44 / 54



Fundamental diagram

C //

��

f

  
C min //

��

f min

%%
CΓ(X )

��

f univ
// X

S //

  

Smin //

��

MΓ(X )

��
S //MΓ(X )

We are in search of a moduli stack MΓ(X ) parametrizing minimal stable
logarithmic maps over Sch.

As such it comes with a logarithmic structure MΓ(X ) which parametrizes
all stable logarithmic maps over LogSchfs.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 44 / 54



Fundamental diagram

C //

��

f

  
C min //

��

f min

%%
CΓ(X )

��

f univ
// X

S //

  

Smin //

��

MΓ(X )

��
S //MΓ(X )

We are in search of a moduli stack MΓ(X ) parametrizing minimal stable
logarithmic maps over Sch.
As such it comes with a logarithmic structure MΓ(X ) which parametrizes
all stable logarithmic maps over LogSchfs.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 44 / 54



Stable logarithmic maps (continued)

This requires two steps:

first find a morphism from (C → S , f : C → X ) to a minimal object
(C min → Smin, f min : C min → X ).

then show that the object (C min → Smin, f min : C min → X ) has a
versal deformation space, whose fibers are also minimal.
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Minimal stable logarithmic maps

We consider X toric and a stable logarithmic map (C/S , f : C → X ) over
a P-logarithmic point S .

We wish to find a minimal Q-logarithmic point and a logarithmic map
over it through which our object factors.
We might as well first pull back and replace S by a standard,
P = N-logarithmic point!
The curve C has components Ci with generic points ηi corresponding to
vertices in the dual graph, and nodes qj with local equations xy = gj
corresponding to edges in the dual graph.
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At the generic points

The map f sends ηi to some stratum Xi of X with cone σi having lattice
Ni ⊂ σi .

Departing from toric conventions we denote Mi = N∨i = Hom(Ni ,N).
Since the logarithmic structure of C at ηi is the pullback of the structure
on S , we have a map f [i : Mi → P.
It can dually be viewed as a map P∨ → Ni , or an element vi ∈ Ni .
If that were all we had, our final object would be Q∨ =

∏
Ni , and dually

the initial monoid Q = ⊕Mi .
But the nodes impose crucial conditions.
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At the nodes

At a node q with branches η1
q, η

2
q we similarly have a map

f [q : Mq → P ⊕N N2.

Unfortunately it is unnatural to consider maps into a coproduct, and we
give an alterante description of

P ⊕N N2 = P〈log x , log y〉/(log x + log y = ρq)

where ρq = log gq ∈ P.
Recall that the stalk of a sheaf at a point q maps, via a “generization
map”, to the stalk at any point specializing to q, such as η1

q, η
2
q.
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At the nodes (continued)

P ⊕N N2 = P〈log x , log y〉/(log x + log y = ρq)

The map to the stalk at η1
q where x = 0 sends log y 7→ 0, and so

log x 7→ ρq.
The map to the stalk at η2

q where y = 0 sends log x 7→ 0, and so
log y 7→ ρq.
This means that we have a monoid homomorphism, which is clearly
injective,

P ⊕N N2 → P × P.

Its image is precisely the set of pairs

{(p1, p2)|p2 − p1 ∈ Zρq}
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At the nodes (continued)

P ⊕N N2 = {(p1, p2)|p2 − p1 ∈ Zρq}

f [q : Mq → P × P,

(p2 − p1) ◦ f [q : Mq → Zρq ⊂ Pgp.

Or better: we have uq : Mq → Z such that

(p2 − p1) ◦ f [q (m) = uq(m) · ρq. (0.0.1)
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Putting nodes and generic points together

The maps p1 ◦ f [q : Mq → P and p2 ◦ f [q : Mq → P, since they come from
maps of sheaves, are compatible with generization maps.

p1 ◦ f [q : Mq → P is the composition Mq → Mη1
q
→ P

p2 ◦ f [q : Mq → P is the composition of Mq → Mη2
q
→ P

the data of p1 ◦ f [q and p2 ◦ f [q is already determined by the data at the
generic points ηi of the curve.
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Putting nodes and generic points together (continued)

The only data the node provides is the element ρq ∈ P and
homomorphism uq : Mq → Z, in such a way that equation

(p2 − p1) ◦ f [q (m) = uq(m) · ρq. (0.0.2)

holds.

Qf =

((∏
η Mση ×

∏
q N
) /

R

)sat

where R is generated by all the relations implied by equation (0.0.2)
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Putting nodes and generic points together (continued)

Qf =

((∏
η Mση ×

∏
q N
) /

R

)sat

It is quite a bit more natural to describe the dual lattice

Q∨f ={(
(vη), (eη)

)
∈
∏
η Nση ×

∏
q N

∣∣∣∣ ∀ η1
q

q // η2
q

v 1
q − v 2

q = ejuq

}
.
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Tropical interpretation

Given a map f over an N-point we have a graph in Σ(X ) with

vertices vi ∈ Nση ⊂ ση
edges proportional to uq ∈ Ngp

q such that v 1
q − v 2

q = ejuq

this means

The equations v 1
q − v 2

q = ejuq define the cone of all such graphs

Q∨f is the integer lattice in that cone.

Theorem (Gross-Siebert)

The minimal object exists, with characteristic sheaf Qf , dual to the lattice
in the corresponding space of tropical curves.
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