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Moduli of curves

M, - a quasiprojective variety.
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Moduli of curves

My - a quasiprojective variety.

Working with a non-complete moduli space is like keeping
change in a pocket with holes

Angelo Vistoli
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Deligne—-Mumford

e Mg C M, - moduli of stable curves, a modular compactification.
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Deligne—-Mumford

e Mg C M, - moduli of stable curves, a modular compactification.

@ allow only nodes as singularities
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Deligne—-Mumford

e Mg C M, - moduli of stable curves, a modular compactification.
@ allow only nodes as singularities

@ What's so great about nodes?
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Deligne—-Mumford

o Mg C M, - moduli of stable curves, a modular compactification.
@ allow only nodes as singularities
@ What's so great about nodes?

@ One answer: from the point of view of logarithmic geometry, these
are the logarithmically smooth curves.
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@ Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert
o K. Kato
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Logarithmic structures

Definition

A pre logarithmic structure is

X=(X,M3 Ox)
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Logarithmic structures
Definition

A pre logarithmic structure is

X=(X,M3 Ox) or just

(X, M)
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Logarithmic structures
Definition
A pre logarithmic structure is
X=(X,M30x) orjust (X,M)

such that

@ X is a scheme - the underlying scheme

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 6 /54



Logarithmic structures
Definition
A pre logarithmic structure is
X=(X,M30x) orjust (X,M)

such that
@ X is a scheme - the underlying scheme

@ M is a sheaf of monoids on X, and
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Logarithmic structures

Definition
A pre logarithmic structure is

X=(X,M30x) orjust (X,M)

such that
@ X is a scheme - the underlying scheme
@ M is a sheaf of monoids on X, and
@ o is a monoid homomorphism, where the monoid structure on Oy is

the multiplicative structure.
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Logarithmic structures

Definition
A pre logarithmic structure is

X=(X,M%0x) orjust (X,M)

such that
@ X is a scheme - the underlying scheme
@ M is a sheaf of monoids on X, and

@ o is a monoid homomorphism, where the monoid structure on Oy is
the multiplicative structure.

Definition

It is a logarithmic structure if o : a‘l(Dj‘( — Oy is an isomorphism.
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“Trivial” examples

Examples

° (X, O = Ox), the trivial logarithmic structure.

We sometimes write just X for this structure.
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“Trivial” examples

Examples

o (X,0x — Ox), the trivial logarithmic structure.
We sometimes write just X for this structure.

o (X,0x = Ox), looks as easy but surprisingly not interesting,
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“Trivial” examples

Examples

o (X,0x — Ox), the trivial logarithmic structure.
We sometimes write just X for this structure.

o (X,0x = Ox), looks as easy but surprisingly not interesting, and

o (X,N 3 Ox), where « is determined by an arbitrary choice of a(1).
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“Trivial” examples

Examples

o (X,0x — Ox), the trivial logarithmic structure.
We sometimes write just X for this structure.

o (X,0x = Ox), looks as easy but surprisingly not interesting, and

o (X,N 3 Ox), where « is determined by an arbitrary choice of a(1).
This one is important but only pre-logarithmic.
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The associated logarithmic structure

You can always fix a pre-logarithmic structure:

O —— /|

O*Co - M2
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You can always fix a pre-logarithmic structure:

a lo——s M

O*Co - M2
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The associated logarithmic structure

You can always fix a pre-logarithmic structure:

a lorc—s M

O -~ M?
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Key examples

Example (Divisorial logarithmic structure)

Let X, D C X be a variety with a divisor. We define Mp — Ox:
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Key examples

Example (Divisorial logarithmic structure)
Let X, D C X be a variety with a divisor. We define Mp — Ox:

Mp(U) = {fe Ox(U) | fup € OF(U~ D)}.
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Key examples

Example (Divisorial logarithmic structure)
Let X, D C X be a variety with a divisor. We define Mp — Ox:

Mp(U) = {fe Ox(U) | fup € OF(U~ D)}.

This is particularly important for normal crossings divisors and toric
divisors - these will be logarithmically smooth structures.
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Example (Standard logarithmic point)
Let k be a field,

N & k*

(n,z) +— z-0"

— k
defined by sending 0 — 1 and n — 0 otherwise.
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Example (Standard logarithmic point)

Let k be a field,
Nag k* — k

(n,z) +— z-0"

defined by sending 0 — 1 and n + 0 otherwise.

Works with P a monoid with P* = 0, giving the P-logarithmic point.
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Example (Standard logarithmic point)

Let k be a field,
Nag k* — k
(n,z) +— z-0"

defined by sending 0 — 1 and n + 0 otherwise.

Works with P a monoid with P* = 0, giving the P-logarithmic point.
This is what you get when you restrict the structure on an affine toric
variety associated to P to the maximal ideal generated by {p # 0}.
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Morphisms

A morphism of (pre)-logarithmic schemes f : X — Y consists of
o f: X—Y
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Morphisms

A morphism of (pre)-logarithmic schemes f : X — Y consists of
e f: X—Y

@ A homomorphism f” making the following diagram commutative:

Mx i f My
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Definition (Inverse image)
Given f : X — Y and Y = (Y, My) define the pre-logarithmic inverse
image by composing

f
My = £710y 5 0y
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Definition (Inverse image)
Given f : X — Y and Y = (Y, My) define the pre-logarithmic inverse
image by composing

f
My = 10y 5 0y

and then the logarithmic inverse image is defined as

£ My = (£ My).
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Definition (Inverse image)

Given f : X — Y and Y = (Y, My) define the pre-logarithmic inverse
image by composing

f
My = 10y 5 0y

and then the logarithmic inverse image is defined as

£ My = (£ My).

This is the universal logarithmic structure on X with commutative

(X, £*My) —=Y

|

X

I<~—
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Definition (Inverse image)

Given f : X — Y and Y = (Y, My) define the pre-logarithmic inverse
image by composing

i
f My — f 10y = Ox
and then the logarithmic inverse image is defined as

£ My = (£ My).

This is the universal logarithmic structure on X with commutative

(X, £*My) —=Y

|

X

I<~—

X — Y is strict if Mx = f*My .
June 16-17, 2014 12 /54



Definition (Fibered products)
The fibered product X xz Y is defined as follows:
e XxzY=XxzY
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Definition (Fibered products)

The fibered product X xz Y is defined as follows:
o Xxz7Y=XxzY
o If N is the pushout of

-1
w5 Mz

N

-1 -1
Ty Mx Ty My

then the log structure on X X z Y is defined by N?.
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Definition (The spectrum of a Monoid algebras)
Let P be a monoid, R a ring.
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P].
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism

P — R[P] inducing sheaf homomorphism Px — Ox, a pre-logarithmic
structure,
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism

P — R[P] inducing sheaf homomorphism Px — Ox, a pre-logarithmic
structure, giving rise to a logarithmic structure

(Px)‘:J — O&.
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism

P — R[P] inducing sheaf homomorphism Px — Ox, a pre-logarithmic
structure, giving rise to a logarithmic structure

(Px)‘:J — O&.
This is a basic example. It deserves a notation:

X = Spec(P — R[P]).
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism

P — R[P] inducing sheaf homomorphism Px — Ox, a pre-logarithmic
structure, giving rise to a logarithmic structure

(Px)‘:J — O&.
This is a basic example. It deserves a notation:

X = Spec(P — R[P]).

The most basic example is Xy = Spec(P — Z[P]).
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Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a
scheme X = Spec R[P]. There is an evident monoid homomorphism

P — R[P] inducing sheaf homomorphism Px — Ox, a pre-logarithmic
structure, giving rise to a logarithmic structure

(Px)a — O&.
This is a basic example. It deserves a notation:

X = Spec(P — R[P]).

The most basic example is Xy = Spec(P — Z[P]).

The morphism f : Spec(R[P]) — Spec(Z[P]) gives

X:KX&X().
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
Px — Ox to which X is associated.
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
Px — Ox to which X is associated.

This is the same as a strict morphism X — Spec(P — Z[P])
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
Px — Ox to which X is associated.

This is the same as a strict morphism X — Spec(P — Z[P])

Given a morphism of logarithmic schemes f : X — Y, a chart for f is a
triple

(PX — Mx,Qy — MY,Q — P)
such that
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
Px — Ox to which X is associated.

This is the same as a strict morphism X — Spec(P — Z[P])

Given a morphism of logarithmic schemes f : X — Y, a chart for f is a
triple

(PX — Mx,Qy — MY,Q — P)
such that

@ Px — Mx and Qy — My are charts for Mx and My, and
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Charts

A chart for X is given by a monoid P and a sheaf homomorphism
Px — Ox to which X is associated.

This is the same as a strict morphism X — Spec(P — Z[P])

Given a morphism of logarithmic schemes f : X — Y, a chart for f is a
triple

(PX — Mx,Qy — MY;Q — P)
such that

@ Px — Mx and Qy — My are charts for Mx and My, and
o the diagram

Qx —=f My
Px — My

is commutative.
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Types of logarithmic structures

e We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.
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Types of logarithmic structures

e We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.

@ A monoid P is integral if P — P®P is injective.
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Types of logarithmic structures

e We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.

@ A monoid P is integral if P — P®P is injective.

@ It is saturated if integral and whenever p € P8P and m- p € P for
some integrer m > 0 then p € P.
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Types of logarithmic structures

e We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.

@ A monoid P is integral if P — P®P is injective.

@ It is saturated if integral and whenever p € P8P and m- p € P for
some integrer m > 0 then p € P. l.e., not like {0,2,3,...}.
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Types of logarithmic structures

e We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.

@ A monoid P is integral if P — P®P is injective.

@ It is saturated if integral and whenever p € P8P and m- p € P for
some integrer m > 0 then p € P. l.e., not like {0,2,3,...}.

@ We say that a logarithmic structure is fine if it is coherent with local
charts Px — Ox with P integral.
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Types of logarithmic structures

We say that (X, Mx) is coherent if étale locally at every point there is
a finitely generated monoid P and a local chart Px — Ox for X.

A monoid P is integral if P — PSP is injective.

It is saturated if integral and whenever p € P8P and m- p € P for
some integrer m > 0 then p € P. l.e., not like {0,2,3,...}.

We say that a logarithmic structure is fine if it is coherent with local
charts Px — Ox with P integral.

We say that a logarithmic structure is fine and saturated (or fs) if it is
coherent with local charts Px — Ox with P integral and saturated.
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Definition (The characteristic sheaf)

Given a logarithmic structure X = (X, M), the quotient sheaf
M := M/O% is called the characteristic sheaf of X.
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Definition (The characteristic sheaf)

Given a logarithmic structure X = (X, M), the quotient sheaf
M := M/O% is called the characteristic sheaf of X.

The characteristic sheaf records the combinatorics of a logarithmic
structure, especially for fs logarithmic structures.
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Differentials

Say To = Speck and T = Spec k[e]/(¢?), and consider a morphism
X =Y.
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Differentials

Say To = Speck and T = Spec k[e]/(¢?), and consider a morphism
X =Y.

We contemplate the following diagram:
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Differentials (continued)
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Differentials (continued)

This translates to a diagram of groups

C=— ¢_1 Ox
L

|

Cle] =— 10y
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Differentials (continued)

To—— T_¢> Y.

This translates to a diagram of groups and a diagram of monoids

C=—9 10)( MTO<—¢_1M
P s ]

° &f ° &l
Cl) =— v 10y Mr<— 1My
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Differentials (continued)

¢b
C<~——9¢7'0x M
¥
/0t

o < ¢_1MX
g
Cl =—vt0y
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Differentials (continued)

C<— ¢10x My, <2 g1
° & e
Cl)=—v 10y M7 <— 1My

The difference gf — g is a derivation ¢~1Ox 4. C~C
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Differentials (continued)

b
Ce—¢ 10y My, <2 ¢71M
/"’,,gf’ /g ° &
Cl =— vty My <— ¢~ My

The difference gf — g is a derivation ¢~1Ox 4. C~C

It comes from the sequence

0—>J—>OI—>OIO—>O.
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Differentials (continued)

b
C<~——0¢10x M, <L¢_1Mx
P Var:d
Cl] =— 10y My <— ¢~ My

The difference gf — g is a derivation ¢~1Ox 4. C~C
It comes from the sequence

0—>J—->01r—>0r1,—0.

The multiplicative analogue

X X
1_>(1+J)_>OI_>OL,_>1
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Differentials (continued)

b
C<~——0¢10x M, <L¢_1Mx
P Var:d
Cl] =— 10y My <— ¢~ My

The difference gf — g is a derivation ¢~1Ox 4. C~C

It comes from the sequence

0—>J—->01r—>0r1,—0.

The multiplicative analogue
X X
1_>(1+J)_>OI_>OL,_>1
means, if all the logarithmic structures are integral,
1-(1+J)—> My — Mp, — 1.
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Differentials (continued)

C<———¢'0x M, <ib¢571Mx
T /gu/ T T /gb/ T
ng 0___8{...

Cl] =—vy~'0y My S— My
1-(1+J)—= Mr— Mp,—1
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Differentials (continued)

C~—¢l0x My, < 61hy
/g"gf /?__.gf"

Cl] =—vy~'0y Mr ~— ¢t My
1-(1+J)—= Mr— Mp,—1

means that we can take the “difference”

g1(m) = (1+ D(m)) + g5(m).
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Differentials (continued)

C~—¢l0x My, < 61hy
et ars

Cl] =—vy~'0y Mr ~— ¢t My
1-(1+J)—= Mr— Mp,—1

means that we can take the “difference”

g1(m) = (1+ D(m)) + g5(m).

Namely D(m) = “gi(m) — gj(m)" € J.
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Key properties:

) D(m1 + m2) = D(ml) + D(mz)
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Key properties:

) D(m1 + m2) = D(ml) + D(mz)
(-] D|,¢]—1MY =0
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Key properties:

) D(m1 + m2) = D(ml) + D(mz)
(-] D|,¢]—1MY =0

e a(m) - D(m) = d(a(m)),
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Key properties:

) D(m1 + m2) = D(ml) + D(mg)
(-] D|¢—1MY =0
e a(m) - D(m) = d(a(m)),

in other words,
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Key properties:

) D(m1 + m2) = D(ml) + D(mz)
(-] D|¢—1MY =0
e a(m) - D(m) = d(a(m)),

in other words,
D(m) = dlog (a(m)),

which justifies the name of the theory.
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Key properties:

) D(m1 + m2) = D(ml) + D(mz)

(] D|1/1_1MY =0

e a(m) - D(m) = d(a(m)),
in other words,

D(m) = dlog (a(m)),

which justifies the name of the theory.
Definition
A logarithmic derivation:

1
oo

satisfying the above.
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Logarithmic derivations
Definition

A logarithmic derivation:

20

1
.

satisfying the above.
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Logarithmic derivations

Definition
A logarithmic derivation:

~ <

satisfying the above.

The universal derivation:

d:0— Ql&/l = O ®gz O/relations
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Logarithmic derivations

Definition
A logarithmic derivation:

d:0 — J;
D:M — J
satisfying the above. )
The universal derivation:
d:0— Ql&/l = O ®gz O/relations

The universal logarithmic derivation takes values in

Q%</Y = (QIK/L ® (0 ®z Mgp)) /relations
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Smoothness

Definition
We define a morphism X — Y of fine logarithmic schemes to be
logarithmically smooth if
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Smoothness

Definition
We define a morphism X — Y of fine logarithmic schemes to be
logarithmically smooth if

1 X — Y is locally of finite presentation,
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Smoothness

Definition
We define a morphism X — Y of fine logarithmic schemes to be
logarithmically smooth if

1 X — Y is locally of finite presentation, and

2 For Ty fine and affine and Ty C T strict square-0 embedding, given

X

Tol—>T—>Y

there exists a lifting as indicated.
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Smoothness

Definition
We define a morphism X — Y of fine logarithmic schemes to be
logarithmically smooth if

1 X — Y is locally of finite presentation, and

2 For Ty fine and affine and Ty C T strict square-0 embedding, given

X

To—— T;Y

there exists a lifting as indicated.

The morphism is logarithmically étale if the lifting in (2) is unique.
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Strict smooth morphisms

Lemma

If X — Y is strict and X — Y smooth then X — Y is logarithmically

smooth.
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Strict smooth morphisms

Lemma
If X = Y is strict and X — Y smooth then X — Y s logarithmically
smooth. )

Proof.
There is a lifting

since X — Y smooth,
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Strict smooth morphisms

Lemma
If X = Y is strict and X — Y smooth then X — Y s logarithmically
smooth.

Proof.
There is a lifting

B

since X — Y smooth, and the lifting of morphism of monoids comes by
the universal property of pullback.

T, —T T—>

)

v
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Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, @ — P a

monoid homomorphism.
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Combinatirially smooth morphisms

Proposition
Say P, Q are finitely generated integral monoids, R a ring, @ — P a

monoid homomorphism.
Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
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Combinatirially smooth morphisms

Proposition
Say P, Q are finitely generated integral monoids, R a ring, @ — P a
monoid homomorphism.
Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
Assume
o Ker(Q8P — P8P) js finite and with order invertible in R,
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Combinatirially smooth morphisms

Proposition
Say P, Q are finitely generated integral monoids, R a ring, @ — P a
monoid homomorphism.
Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
Assume
o Ker(Q8P — P8P) js finite and with order invertible in R,

o TorCoker( Q8P — P2P) has order invertible in R.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 26 / 54



Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, @ — P a
monoid homomorphism.

Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
Assume
o Ker(Q8P — P8P) js finite and with order invertible in R,
o TorCoker(Q8P — P&P) has order invertible in R.
Then X — Y s logarithmically smooth.
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Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, @ — P a
monoid homomorphism.

Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
Assume
o Ker(Q8P — P8P) js finite and with order invertible in R,
o TorCoker(Q8P — P&P) has order invertible in R.

Then X — Y s logarithmically smooth.
If also the cokernel is finite then X — Y is logarithmically étale.
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Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, @ — P a
monoid homomorphism.

Write X = Spec(P — R[P]) and Y = Spec(Q — R[Q]).
Assume
o Ker(Q8P — P8P) js finite and with order invertible in R,
o TorCoker(Q8P — P&P) has order invertible in R.

Then X — Y s logarithmically smooth.
If also the cokernel is finite then X — Y is logarithmically étale.

(proof on board!)
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Key examples

@ Dominant toric morphisms
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Key examples

@ Dominant toric morphisms
o Nodal curves.
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Key examples

@ Dominant toric morphisms
o Nodal curves.

@ Marked nodal curves.
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Key examples

Dominant toric morphisms
Nodal curves.
Marked nodal curves.

Spec C[t] — Spec C[s] given by s = t2
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Key examples

@ Dominant toric morphisms

@ Nodal curves.

@ Marked nodal curves.

e SpecC[t] — SpecC[s] given by s = t2

e SpecC|[x, y] — SpecC[t] given by t = x™y"
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Key examples

@ Dominant toric morphisms
@ Nodal curves.

@ Marked nodal curves.

Spec C[t] — Spec C[s] given by s = t2

e SpecC|[x, y] — SpecC[t] given by t = x™y"
e SpecCJx, y] — SpecC|x, z] given by z = xy.
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Key examples

@ Dominant toric morphisms
o Nodal curves.
]

Marked nodal curves.

Spec C[t] — Spec C[s] given by s = t2

e SpecC|[x, y] — SpecC[t] given by t = x™y"

e SpecCJx, y] — SpecC|x, z] given by z = xy.

@ Spec(N — C|[N]) — Spec((Nx\1) — C[(N\1)]).
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Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat?
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Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat?
We define a monoid homomorphism Q@ — P to be integral if

Z|Q] — Z[P]
is flat.
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Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat?
We define a monoid homomorphism Q — P to be integral if

Z|Q] — Z[P]

is flat.

A morphism f : X — Y of logarithmic schemes is integral if for every
geometric point x of X the homomorphism

(fﬁlﬂy)x — (Mx)x

of characteristic sheaves is integral.
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Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat?
We define a monoid homomorphism Q — P to be integral if

Z|Q] — Z[P]

is flat.

A morphism f : X — Y of logarithmic schemes is integral if for every
geometric point x of X the homomorphism

(fﬁlﬂy)x — (Mx)x

of characteristic sheaves is integral.
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Characterization of logarithmic smoothness
Theorem (K. Kato)

X, Y fine, Qy — My a chart.
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Characterization of logarithmic smoothness
Theorem (K. Kato)
X, Y fine, Qy — My a chart.

Then X — Y is logarithmically smooth iff there are extensions to local
charts

(PX — Mx,Qy — MY,Q — P)
for X — Y such that
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Characterization of logarithmic smoothness
Theorem (K. Kato)
X, Y fine, Qy — My a chart.

Then X — Y is logarithmically smooth iff there are extensions to local
charts

(PX — Mx,Qy — MY,Q — P)
for X — Y such that

@ @ — P combinatorially smooth,
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Characterization of logarithmic smoothness
Theorem (K. Kato)
X, Y fine, Qy — My a chart.

Then X — Y is logarithmically smooth iff there are extensions to local
charts

(PX — Mx,Qy — MY,Q — P)
for X — Y such that

@ @ — P combinatorially smooth, and

° X — Y Xspecz[Q] SPecZ[P] is smooth
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Characterization of logarithmic smoothness
Theorem (K. Kato)

X,Y fine, Qy — My a chart.

Then X — Y is logarithmically smooth iff there are extensions to local
charts

(PX — Mx,Qy — MY,Q — P)
for X — Y such that
@ @ — P combinatorially smooth, and

° X — Y Xspecz[Q] SPecZ[P] is smooth

One direction:

X—Y X SpecZ[Q] SpeCZ[P] - SpeCZ[P]

| |

Y Spec Z[Q]
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Deformations

Proposition (K. Kato)

If Xo — Yo is logarithmically smooth, Yo C Y a strict square-0 extension,
then locally Xqo can be lifted to a smooth X — Y.
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Deformations

Proposition (K. Kato)

If Xo — Yo is logarithmically smooth, Yo C Y a strict square-0 extension,
then locally Xqo can be lifted to a smooth X — Y.

Sketch of proof: locally Xo — X[ — Yo, where
X(/) =Y X SpecZ[Q] Spec Z[P]

So X} — Yo is combinatorially smooth, and automatically provided a
deformation to
Y Xspecz[qQ] SPeCZ[P],

and Xp — Xj is strict and smooth so deforms by the classical result.
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Yy be artinian, Yo C Y a strict square-0 extension with ideal J, and
fo : Xo — Yo logarithmically smooth.
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Yy be artinian, Yo C Y a strict square-0 extension with ideal J, and
fo : Xo — Yo logarithmically smooth. Then

@ There is a canonical element w € H?(Xo, Txo/v, ® fg'J) such that a

logarithmically smooth deformation X — Y exists if and only if
w = 0.
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Yy be artinian, Yo C Y a strict square-0 extension with ideal J, and
fo : Xo — Yo logarithmically smooth. Then

@ There is a canonical element w € H?(Xo, Txo/v, ® fg'J) such that a
logarithmically smooth deformation X — Y exists if and only if
w = 0.

o Ifw =0, then isomorphism classes of such X — Y correspond to
elements of a torsor under H(Xo, Txo/vo @ o).
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Yy be artinian, Yo C Y a strict square-0 extension with ideal J, and
fo : Xo — Yo logarithmically smooth. Then

@ There is a canonical element w € H?(Xo, Txo/v, ® fg'J) such that a
logarithmically smooth deformation X — Y exists if and only if
w =0.

o Ifw =0, then isomorphism classes of such X — Y correspond to
elements of a torsor under H(Xo, Txo/vo @ o).

@ Given such deformation X — Y, its automorphism group is
HO(XGo, Txo/ve ® foJ).
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Kodaira-Spencer theory

Theorem (K. Kato)

Let Yy be artinian, Yo C Y a strict square-0 extension with ideal J, and
fo : Xo — Yo logarithmically smooth. Then

@ There is a canonical element w € H?(Xo, Txo/v, ® fg'J) such that a
logarithmically smooth deformation X — Y exists if and only if
w =0.

o Ifw =0, then isomorphism classes of such X — Y correspond to
elements of a torsor under H(Xo, Txo/vo @ o).

@ Given such deformation X — Y, its automorphism group is
HO(XGo, Txo/ve ® foJ).

Corollary

Logarithmically smooth curves are unobstructed.
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Saturated morphisms

Recall that the monoid homomorphism N AN gives an integral
logarithmically étale map with non-reduced fibers.
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Saturated morphisms

Recall that the monoid homomorphism N AN gives an integral
logarithmically étale map with non-reduced fibers.

Definition
@ An integral @ — P of saturated monoids is said to be saturated if
Spec(P — Z[P]) — Spec(Q — Z[Q]) has reduced fibers.
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Saturated morphisms

Recall that the monoid homomorphism N AN gives an integral
logarithmically étale map with non-reduced fibers.

Definition
@ An integral @ — P of saturated monoids is said to be saturated if
Spec(P — Z[P]) — Spec(Q — Z[Q]) has reduced fibers.

@ An integral morphism X — Y of fs logarithmic schemes is saturated
if it has a saturated chart.
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Saturated morphisms

Recall that the monoid homomorphism N AN gives an integral
logarithmically étale map with non-reduced fibers.

Definition
@ An integral @ — P of saturated monoids is said to be saturated if
Spec(P — Z[P]) — Spec(Q — Z[Q]) has reduced fibers.
@ An integral morphism X — Y of fs logarithmic schemes is saturated
if it has a saturated chart.

This guarantees that if X — Y is logarithmically smooth, then the fibers
are reduced.
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Heros:

../Vg

@ Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert
o K. Kato
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Heros:

@ Olsson; Chen, Gillam, Huang, Satriano, Sun; Gross - Siebert
o M,

o K. Kato

o F. Kato
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Log curves

Definition

A log curve is a morphism f : X — S of fs logarithmic schemes satisfying:
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Log curves

Definition
A log curve is a morphism f : X — S of fs logarithmic schemes satisfying:

o f is logarithmically smooth,
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Log curves

Definition
A log curve is a morphism f : X — S of fs logarithmic schemes satisfying:
o f is logarithmically smooth,

o f is integral, i.e. flat,
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Log curves

Definition

A log curve is a morphism f : X — S of fs logarithmic schemes satisfying:
o f is logarithmically smooth,
o f is integral, i.e. flat,

@ f is saturated, i.e. has reduced fibers, and
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Log curves

Definition

A log curve is a morphism f : X — S of fs logarithmic schemes satisfying:
o f is logarithmically smooth,
o f is integral, i.e. flat,

@ f is saturated, i.e. has reduced fibers, and

@ the fibers are curves i.e. pure dimension 1 schemes.
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Theorem (F. Kato)

Assume m: X — S is a log curve.
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Theorem (F. Kato)

Assume 7 : X — S is a log curve. Then

@ Fibers have at most nodes as singularities
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Theorem (F. Kato)

Assume 7 : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that
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Theorem (F. Kato)

Assume 7w : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that

Away from s; we have that X° = X, xs S, so 7 is strict away from s;
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Theorem (F. Kato)

Assume 7w : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that

Away from s; we have that X° = X xs S, so  is strict away from s;
Near each s; we have a strict étale

X% = S x Al

with the standard divisorial logarithmic structure on A*.
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Theorem (F. Kato)

Assume 7w : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that

Away from s; we have that X° = X xs S, so  is strict away from s;
Near each s; we have a strict étale

X% = S x Al

with the standard divisorial logarithmic structure on A*.
étale locally at a node xy = f the log curve X is the pullback of

Spec(N? — Z[N?]) — Spec(N — Z[N])
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Theorem (F. Kato)

Assume 7w : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that

Away from s; we have that X° = X xs S, so m is strict away from s;
Near each s; we have a strict étale

X% = S x Al

with the standard divisorial logarithmic structure on A*.
étale locally at a node xy = f the log curve X is the pullback of

Spec(N? — Z[N?]) — Spec(N — Z[N])

where N — N? js the diagonal.
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Theorem (F. Kato)

Assume 7w : X — S is a log curve. Then

o Fibers have at most nodes as singularities

@ étale locally on S we can choose disjoint sections s; : S — X in the
nonsingular locus X, of X/S such that

Away from s; we have that X° = X xs S, so m is strict away from s;
Near each s; we have a strict étale

X% = S x Al

with the standard divisorial logarithmic structure on A*.
étale locally at a node xy = f the log curve X is the pullback of

Spec(N? — Z[N?]) — Spec(N — Z[N])

where N — N2 js the diagonal. Here the image of 1 € N in Os is f and
the generators of N> map to x and y.

v
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Stable log curves

Definition

A stable log curve X — S is:
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Stable log curves

Definition

A stable log curve X — S is:

@ alog curve X — S,
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Stable log curves

Definition
A stable log curve X — S is:
@ alog curve X — S,

@ sectionss;: S — Xfori=1,...,n,
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Stable log curves

Definition
A stable log curve X — S is:

@ alog curve X — S,

@ sectionss;: S — Xfori=1,...,n,
such that

o (X — S,s) is stable,
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Stable log curves

Definition
A stable log curve X — S is:

@ alog curve X — S,

@ sectionss;: S — Xfori=1,...,n,
such that

o (X — S,s) is stable,

@ the log structure is strict away from sections and singularities of
fibers, and “divisorial along the sections”.
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Stable log curves

Definition
A stable log curve X — S is:

@ alog curve X — S,

@ sectionss;: S — Xfori=1,...,n,
such that

o (X — S,s) is stable,

@ the log structure is strict away from sections and singularities of
fibers, and “divisorial along the sections”.
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Moduli of stable log curves

We define a category Mlgo’gn of stable log curves: objects are log
(g, n)-curves X — S and arrows are fiber diagrams compatible with

sections
X1 ——=X5.
S—5
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Moduli of stable log curves

, —— :
We define a category Mgc’i of stable log curves: objects are log

(g, n)-curves X — S and arrows are fiber diagrams compatible with
sections

Xi——=X5.

|

S—5

There is a forgetful functor

ﬂlgo,g,, —  LogSch
(X—=S) —~ S.

So ﬂlzgn is a category fibered in groupoids over £og&Sch™.
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Moduli of stable log curves (continued)

We also have a forgetful functor

Mlgign —> mg’n
X—=S) —

(X—9)
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Moduli of stable log curves (continued)

We also have a forgetful functor

_|0 R
M — Mg,

g7n

X=S5 —» (X—=Y9)

Note that the Deligne—Knudsen—Mumford moduli stack M, , has a
natural logarithmic smooth structure Ma, , given by the boundary divisor.
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Moduli of stable log curves (continued)

We also have a forgetful functor

ME — Mg,
X=S5 —» (X—=Y9)

Note that the Deligne—Knudsen—Mumford moduli stack M, , has a
natural logarithmic smooth structure Ma, , given by the boundary divisor.

As such it represents a category fibered in groupoids (Mg, Ma, ) over
LogSch™.
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Moduli of stable log curves (continued)

We also have a forgetful functor

ME — Mg,
X=S5 —» (X—=Y9)

Note that the Deligne—Knudsen—Mumford moduli stack M, , has a
natural logarithmic smooth structure Ma, , given by the boundary divisor.
As such it represents a category fibered in groupoids (Mg, Ma, ) over
LogSch™.

Theorem (F. Kato)

——
M;’gn ~ (Mg’n, MAgm).
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Moduli of stable log curves (continued)

We also have a forgetful functor

ME — Mg,
X=S5 —» (X—=Y9)

Note that the Deligne—Knudsen—Mumford moduli stack M, , has a
natural logarithmic smooth structure Ma, , given by the boundary divisor.
As such it represents a category fibered in groupoids (Mg, Ma, ) over
LogSch™.

Theorem (F. Kato)

——
M;’gn ~ (Mg’n, MAgm).

(Proof sketch on board)
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Minimality

Given a stable curve X — S we define

; ——log
min __ o
X - K ><-/\/lg,nwtl

g+l and
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Minimality

Given a stable curve X — S we define

. — ; Ewl
X" = X gy Mgeer and SN =Sk ME

The logarithmic structures X™" — S™" are called the minimal or basic
logarithmic structures on a log curve.
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Minimality

Given a stable curve X — S we define

XM= X xgg  Mgnpr  and S™M =5 x

The logarithmic structures X™" — S™" are called the minimal or basic
logarithmic structures on a log curve.
We write

ST = (S, Mg/s) and XM= (X, M),
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Fundamental diagram
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Fundamental diagram

X Xmin X8
A

§ —>mg,n

——lo, .
° ./\/lg’gn parametrizes stable log curves over LogSch™
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Fundamental diagram

X Xmin X8

|

5 gmin M

|

§ —>mg,n

——lo, .
° ./\/lg7gn parametrizes stable log curves over LogSch™

@ M, , parametrizes minimal stable log curves over Gcb.
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Stable logarithmic maps

Definition
A stable logarithmic map is a diagram

l

e (C/S,s;) is a prestable log curve, and
e in fibers Aut(C, — X, s;) is finite.

f

— X

Aa

™

n<~—o

where
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contact orders

Apart from the underlying discrete data ' = (g, 3, n), a stable logarithmic
map has contact orders c; at the marked points.
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contact orders

Apart from the underlying discrete data ' = (g, 3, n), a stable logarithmic
map has contact orders c; at the marked points.

At each such point the logarithmic structure at C has a factor N, and the
contact order is the homomorphism f*Mx 5 N at that marked point.
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contact orders

Apart from the underlying discrete data ' = (g, 3, n), a stable logarithmic
map has contact orders c; at the marked points.

At each such point the logarithmic structure at C has a factor N, and the
contact order is the homomorphism f*Mx 5 N at that marked point.
We collect the numerical data under the umbrella ' = (g, 3, ¢;).
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Stable logarithmic maps (continued)

Theorem (Gross-Siebert, Chen, R-Chen-Marcus-Wise)

Let X be projective logarithmically scheme. Stable logarithmic maps to X
form a logarithmic Deligne~Mumford stack Mr(X). It is finite and
representable over Mr(X).
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Fundamental diagram

fmin

T o Ccmin Cr(X) prs X
S

—— Smin T (X)
\ |

S ——= Mr(X)
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Fundamental diagram

S— Mp(X

We are in search of a moduli stack Mr(X) parametrizing minimal stable
logarithmic maps over Gcb.
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Fundamental diagram

S—— Mr(X)

We are in search of a moduli stack M (X) parametrizing minimal stable
logarithmic maps over Gcb.

As such it comes with a logarithmic structure Mp(X) which parametrizes
all stable logarithmic maps over Log&Sch.
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Stable logarithmic maps (continued)

This requires two steps:
e first find a morphism from (C — S, f : C — X) to a minimal object
(Cmin SN Smin fmin . Cmin — X)
o then show that the object (C™M — Smin fmin . Cmin _, X) has a
versal deformation space, whose fibers are also minimal.
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Minimal stable logarithmic maps

We consider X toric and a stable logarithmic map (C/S,f : C — X) over
a P-logarithmic point S.

Abramovich (Brown) Logarithmic geometry and moduli June 16-17, 2014 46 / 54
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We consider X toric and a stable logarithmic map (C/S,f : C — X) over
a P-logarithmic point S.

We wish to find a minimal Q-logarithmic point and a logarithmic map
over it through which our object factors.

We might as well first pull back and replace S by a standard,

P = N-logarithmic point!
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a P-logarithmic point S.

We wish to find a minimal Q-logarithmic point and a logarithmic map
over it through which our object factors.

We might as well first pull back and replace S by a standard,

P = N-logarithmic point!

The curve C has components C; with generic points 7; corresponding to
vertices in the dual graph, and nodes g; with local equations xy = g;
corresponding to edges in the dual graph.
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Minimal stable logarithmic maps

We consider X toric and a stable logarithmic map (C/S,f : C — X) over
a P-logarithmic point S.

We wish to find a minimal Q-logarithmic point and a logarithmic map
over it through which our object factors.

We might as well first pull back and replace S by a standard,

P = N-logarithmic point!

The curve C has components C; with generic points 7; corresponding to
vertices in the dual graph, and nodes g; with local equations xy = g;
corresponding to edges in the dual graph.
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At the generic points

The map f sends 7; to some stratum X; of X with cone o; having lattice
N; C ;.
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At the generic points

The map f sends 7; to some stratum X; of X with cone o; having lattice
N; C ;.
Departing from toric conventions we denote M; = N = Hom(N;, N).
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At the generic points

The map f sends 7; to some stratum X; of X with cone o; having lattice
N; C ;.

Departing from toric conventions we denote M; = N = Hom(N;, N).
Since the logarithmic structure of C at n; is the pullback of the structure
on S, we have a map 1‘,-b :M; — P.
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At the generic points

The map f sends 7; to some stratum X; of X with cone o; having lattice
N; C o;.

Departing from toric conventions we denote M; = N = Hom(N;, N).
Since the logarithmic structure of C at #; is the pullback of the structure
on S, we have a map 1‘,-b :M; — P.

It can dually be viewed as a map PV — N;, or an element v; € N;.

If that were all we had, our final object would be @ =[] N;, and dually
the initial monoid Q = ®M;.
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At the generic points

The map f sends 7; to some stratum X; of X with cone o; having lattice
N; C o;.

Departing from toric conventions we denote M; = N = Hom(N;, N).
Since the logarithmic structure of C at #; is the pullback of the structure
on S, we have a map 1‘,-b :M; — P.

It can dually be viewed as a map PV — N;, or an element v; € N;.

If that were all we had, our final object would be @ =[] N;, and dually
the initial monoid Q = ®M;.

But the nodes impose crucial conditions.
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At the nodes

At a node g with branches 73,73 we similarly have a map

f2: Mg — PN N2
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At the nodes

At a node g with branches 73,73 we similarly have a map
f2: Mg — P oV N2
Unfortunately it is unnatural to consider maps into a coproduct, and we
give an alterante description of
P @&" N> = P(log x,log y)/(log x + log y = pq)

where pg = log g4 € P.
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At the nodes

At a node g with branches 77‘17,773 we similarly have a map

f2: Mg — P oV N2
Unfortunately it is unnatural to consider maps into a coproduct, and we
give an alterante description of

P &" N? = P(log x,log y)/(log x + log y = pq)

where pg = log g4 € P.
Recall that the stalk of a sheaf at a point g maps, via a “generization
map”, to the stalk at any point specializing to g, such as n},,ng.
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At the nodes (continued)

P &N N? = P(log x, log y)/(log x + log y = pq)
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At the nodes (continued)

P &N N2 = P(log x,log y)/(log x + log y = pq)

The map to the stalk at 77(17 where x = 0 sends log y — 0, and so
log x — pg.
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At the nodes (continued)

P &N N2 = P(log x,log y)/(log x + log y = pq)

The map to the stalk at 77; where x = 0 sends log y — 0, and so
log x — pg.

The map to the stalk at 773 where y = 0 sends log x — 0, and so
logy — pg.
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At the nodes (continued)

P &N N2 = P(log x,log y)/(log x + log y = pq)

The map to the stalk at 77; where x = 0 sends log y — 0, and so
log x — pg.
The map to the stalk at 773 where y = 0 sends log x — 0, and so
logy — pg.
This means that we have a monoid homomorphism, which is clearly
injective,

PoNN2 — P xP.

Its image is precisely the set of pairs

{(p1,p2)|p2 — P1 € Zpg}
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At the nodes (continued)

P &N N2 = {(p1, p2)|p2 — p1 € Zpg}
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At the nodes (continued)

P &N N2 = {(p1, p2)|p2 — p1 € Zpg}

o f):Mg— PxP,
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At the nodes (continued)

P &N N2 = {(p1, p2)|p2 — p1 € Zpg}
o f): Mg — PxP,

® (p2—p1)ofy: Mg — Zpg C PP
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At the nodes (continued)

P a&NN? = {(p1, p2)|p2 — p1 € Zpg}

o f): Mg — PxP,
® (p2—p1)ofy: Mg — Zpg C PP

Or better: we have ug : Mg — Z such that

(P2 — pr) o £3(m) = ug(m) - pg. (0.0.1)
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Putting nodes and generic points together

The maps p; o fqb : Mg — P and poo fc? : Mg — P, since they come from
maps of sheaves, are compatible with generization maps.
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The maps p; o fqb : Mg — P and poo fc? : Mg — P, since they come from
maps of sheaves, are compatible with generization maps.

p1© fqb : Mgq — P is the composition Mg — M,1 — P

p2 o fqb : Mg — P is the composition of Mg — I\/I,hz7 — P
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Putting nodes and generic points together

The maps p; o fqb : Mg — P and poo fc? : Mg — P, since they come from
maps of sheaves, are compatible with generization maps.

p1© fqb : Mgq — P is the composition Mg — M,1 — P

p2 o fqb : Mg — P is the composition of Mg — I\/I,hz7 — P

the data of p; o fg and pp o fqb is already determined by the data at the
generic points 1); of the curve.
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Putting nodes and generic points together (continued)

The only data the node provides is the element p, € P and
homomorphism ug : My — Z, in such a way that equation

(P2 — p1) o £3(m) = ug(m) - pq. (0.0.2)
holds.
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Putting nodes and generic points together (continued)

The only data the node provides is the element p, € P and
homomorphism ug : My — Z, in such a way that equation

(P2 — p1) o £3(m) = ug(m) - pq. (0.0.2)
holds.

Qr = ((HnMganqN) /R)Sat

where R is generated by all the relations implied by equation (0.0.2)
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Putting nodes and generic points together (continued)

Qr = ((HnMganqN) /R)sat

It is quite a bit more natural to describe the dual lattice

Qf =
1 g 2
{((V")’(%DGHnNoanqN\ e }

2 _ o
Vg — Vg = €jlg
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Tropical interpretation

Given a map f over an N-point we have a graph in £(X) with
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Tropical interpretation

Given a map f over an N-point we have a graph in £(X) with

e vertices v; € N, C oy
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Tropical interpretation

Given a map f over an N-point we have a graph in £(X) with
e vertices v; € N, C oy

@ edges proportional to ug € N§¥ such that VC} — vg = ejug
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Given a map f over an N-point we have a graph in £(X) with
e vertices v; € N, C oy
@ edges proportional to ug € N§¥ such that v(} — vg = ejug
this means

@ The equations vc} — vg = ejuq define the cone of all such graphs
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Given a map f over an N-point we have a graph in £(X) with
e vertices v; € N, C oy
@ edges proportional to ug € N§¥ such that v(} — vg = ejug
this means

@ The equations vc} — vg = ejuq define the cone of all such graphs

e Q/ is the integer lattice in that cone.
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Tropical interpretation

Given a map f over an N-point we have a graph in £(X) with
e vertices v; € N, C oy
@ edges proportional to ug € N§¥ such that v(} — vg = ejug
this means
o The equations v; — v2 = ejug define the cone of all such graphs

e Q/ is the integer lattice in that cone.

Theorem (Gross-Siebert)

The minimal object exists, with characteristic sheaf Qr, dual to the lattice
in the corresponding space of tropical curves.
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