Logarithmic Geometry and Moduli

Tropical Geometry and Moduli Spaces ICM 2018 Satellite Cabo Frio, Rio de Janeiro

Dan Abramovich

Brown University

August 13 - 17, 2018.

Moduli of curves

 \mathcal{M}_{g} - a quasiprojective variety.

Working with a non-complete moduli space is like keeping change in a pocket with holes

Angelo Vistoli

Deligne-Mumford

- ullet $\mathcal{M}_g\subset\overline{\mathcal{M}}_g$ moduli of *stable* curves, a modular compactification.
- allow only nodes as singularities
- What's so great about nodes?
- One answer: from the point of view of logarithmic geometry, these are the *logarithmically smooth* curves.

Logarithmic structures

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{\alpha}{\to} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- \bullet <u>X</u> is a scheme the *underlying scheme*
- M is a sheaf of monoids on X, and
- α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha: \alpha^{-1}\mathcal{O}_X^* \to \mathcal{O}_X^*$ is an isomorphism.

"Trivial" examples

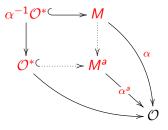
Examples

- $(\underline{X}, \mathcal{O}_{\underline{X}}^* \hookrightarrow \mathcal{O}_{\underline{X}})$, the trivial logarithmic structure. We sometimes write just \underline{X} for this structure.
- \bullet $(\underline{X}, \mathcal{O}_{\underline{X}} \stackrel{\sim}{\to} \mathcal{O}_{\underline{X}})$, looks as easy but surprisingly not interesting, a and
- $(\underline{X}, \mathbb{N} \stackrel{\alpha}{\to} \mathcal{O}_{\underline{X}})$, where α is determined by an arbitrary choice of $\alpha(1)$. This one is important but only pre-logarithmic.

anot according to Dhruv!

The associated logarithmic structure

You can always fix a pre-logarithmic structure:



Key examples

Example (Divisorial logarithmic structure)

Let $\underline{X}, D \subset \underline{X}$ be a variety with a divisor. We define $M_D \hookrightarrow \mathcal{O}_{\underline{X}}$:

$$M_D(U) = \left\{ f \in \mathcal{O}_{\underline{X}}(U) \mid f_{U \smallsetminus D} \in \mathcal{O}_{\underline{X}}^{\times}(U \smallsetminus D) \right\}.$$

This is particularly important for normal crossings divisors and toric divisors - these will be logarithmically smooth structures.

Example (Standard logarithmic point)

Let k be a field,

$$\mathbb{N} \oplus k^{\times} \to k
(n,z) \mapsto z \cdot 0^{n}$$

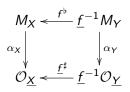
defined by sending $0 \mapsto 1$ and $n \mapsto 0$ otherwise.

Works with P a monoid with $P^{\times}=0$, giving the P-logarithmic point. This is what you get when you restrict the structure on an affine toric variety associated to P to the maximal ideal generated by $\{p \neq 0\}$.

Morphisms

A morphism of (pre)-logarithmic schemes $f: X \to Y$ consists of

- $\underline{f}: \underline{X} \to \underline{Y}$
- A homomorphism f^{\flat} making the following diagram commutative:



Definition (Inverse image)

Given $\underline{f}: \underline{X} \to \underline{Y}$ and $Y = (\underline{Y}, M_Y)$ define the *pre-logarithmic inverse image* by composing

$$\underline{f}^{-1}M_Y \to \underline{f}^{-1}\mathcal{O}_{\underline{Y}} \xrightarrow{\underline{f}^{\sharp}} \mathcal{O}_{\underline{X}}$$

and then the logarithmic inverse image is defined as

$$\underline{f}^*M_Y=(\underline{f}^{-1}M_Y)^a.$$

This is the universal logarithmic structure on X with commutative

$$(\underline{X}, \underline{f}^*M_Y) \longrightarrow Y$$

$$\downarrow$$

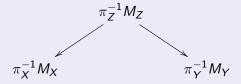
$$X \longrightarrow \underline{Y}$$

 $X \to Y$ is **strict** if $M_X = f^* M_Y$.

Definition (Fibered products)

The fibered product $X \times_Z Y$ is defined as follows:

- $\bullet \ X \times_Z Y = \underline{X} \times_{\underline{Z}} \underline{Y}$
- If *N* is the pushout of



then the log structure on $X \times_Z Y$ is defined by N^a .

Definition (The spectrum of a Monoid algebras)

Let P be a monoid, R a ring. We obtain a monoid algebra R[P] and a scheme $\underline{X} = \operatorname{Spec} R[P]$. There is an evident monoid homomorphism $P \to R[P]$ inducing sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$, a pre-logarithmic structure, giving rise to a logarithmic structure

$$(P_X)^a \to \mathcal{O}_{\underline{X}}.$$

This is a basic example. It deserves a notation:

$$X = \operatorname{Spec}(P \to R[P]).$$

The most basic example is $X_0 = \operatorname{Spec}(P \to \mathbb{Z}[P])$.

The morphism $\underline{f} : \operatorname{Spec}(R[P]) \to \operatorname{Spec}(\mathbb{Z}[P])$ gives

$$X = \underline{X} \times_{X_0} X_0.$$

Charts

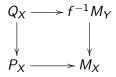
A *chart* for X is given by a monoid P and a sheaf homomorphism $P_X \to \mathcal{O}_{\underline{X}}$ to which X is associated.

This is the same as a strict morphism $X \to \operatorname{Spec}(P \to \mathbb{Z}[P])$ Given a morphism of logarithmic schemes $f: X \to Y$, a chart for f is a triple

$$(P_X \to M_X, Q_Y \to M_Y, Q \to P)$$

such that

- $P_X o M_X$ and $Q_Y o M_Y$ are charts for M_X and M_Y , and
- the diagram



is commutative.

Types of logarithmic structures

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_{\underline{X}}$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is *saturated* if integral and whenever $p \in P^{gp}$ and $m \cdot p \in P$ for some integrer m > 0 then $p \in P$. I.e., not like $\{0, 2, 3, \ldots\}$.
- We say that a logarithmic structure is *fine* if it is *coherent* with local charts $P_X \to \mathcal{O}_X$ with P integral.
- We say that a logarithmic structure is *fine and saturated* (or fs) if it is coherent with local charts $P_X \to \mathcal{O}_X$ with P integral and saturated.

Definition (The characteristic sheaf)

Given a logarithmic structure $X = (\underline{X}, M)$, the quotient sheaf $\overline{M} := M/\mathcal{O}_X^{\times}$ is called the *characteristic sheaf* of X.

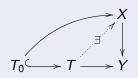
The characteristic sheaf records the combinatorics of a logarithmic structure, especially for fs logarithmic structures.

Smoothness

Definition

We define a morphism $X \to Y$ of fine logarithmic schemes to be logarithmically smooth if

- $1 \times X \to Y$ is locally of finite presentation, and
- 2 For \mathcal{T}_0 fine and affine and $\mathcal{T}_0 \subset \mathcal{T}$ strict square-0 embedding, given



there exists a lifting as indicated.

The morphism is *logarithmically étale* if the lifting in (2) is unique.

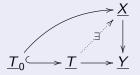
Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $\underline{X} \to \underline{Y}$ smooth then $X \to Y$ is logarithmically smooth.

Proof.

There is a lifting



since $\underline{X} \to \underline{Y}$ smooth, and the lifting of morphism of monoids comes by the universal property of pullback.

Combinatirially smooth morphisms

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism.

Write $X = \text{Spec}(P \to R[P])$ and $Y = \text{Spec}(Q \to R[Q])$.

Assume

- ullet Ker $(Q^{
 m gp}
 ightarrow P^{
 m gp})$ is finite and with order invertible in R,
- ullet TorCoker($Q^{
 m gp} o P^{
 m gp}$) has order invertible in R.

Then $X \rightarrow Y$ is logarithmically smooth.

If also the cokernel is finite then $X \to Y$ is logarithmically étale.

Key examples

- Dominant toric morphisms
- Nodal curves.
- Marked nodal curves.
- Spec $\mathbb{C}[t] o \operatorname{Spec} \mathbb{C}[s]$ given by $s = t^2$
- Spec $\mathbb{C}[x,y] \to \operatorname{Spec} \mathbb{C}[t]$ given by $t = x^m y^n$
- Spec $\mathbb{C}[x,y] \to \operatorname{Spec} \mathbb{C}[x,z]$ given by z = xy.
- $\bullet \ \mathsf{Spec}(\mathbb{N} \to \mathbb{C}[\mathbb{N}]) \to \mathsf{Spec}((\mathbb{N} \! \smallsetminus \! 1) \to \mathbb{C}[(\mathbb{N} \! \smallsetminus \! 1)]).$

Integral morphisms

Disturbing feature: the last two examples are not flat. Which ones are flat? We define a monoid homomorphism $Q \to P$ to be *integral* if

$$\mathbb{Z}[Q] \to \mathbb{Z}[P]$$

is flat.1

A morphism $f: X \to Y$ of logarithmic schemes is *integral* if for every geometric point x of X the homomorphism

$$(f^{-1}\overline{M}_Y)_X \to (\overline{M}_X)_X$$

of characteristic sheaves is integral.

¹Has natural universal property

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \rightarrow M_Y$ a chart.

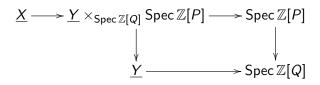
Then $X \rightarrow Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \to M_X, Q_Y \to M_Y, Q \to P)$$

for $X \rightarrow Y$ such that

- ullet Q o P combinatorially smooth, and
- $\underline{X} \to \underline{Y} \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P]$ is smooth

One direction:



Deformations

Proposition (K. Kato)

If $X_0 \to Y_0$ is logarithmically smooth, $Y_0 \subset Y$ a strict square-0 extension, then locally X_0 can be lifted to a smooth $X \to Y$.

Sketch of proof: locally $X_0 \to X_0' \to Y_0$, where

$$X_0' = Y_0 \times_{\operatorname{\mathsf{Spec}} \mathbb{Z}[Q]} \operatorname{\mathsf{Spec}} \mathbb{Z}[P].$$

So $X_0' \to Y_0$ is combinatorially smooth, and automatically provided a deformation to

$$Y \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P],$$

and $X_0 \to X_0'$ is strict and smooth so deforms by the classical result.

Kodaira-Spencer theory

Theorem (K. Kato)

Let Y_0 be artinian, $Y_0 \subset Y$ a strict square-0 extension with ideal J, and $f_0: X_0 \to Y_0$ logarithmically smooth. Then

- There is a canonical element $\omega \in H^2(X_0, T_{X_0/Y_0} \otimes f_0^*J)$ such that a logarithmically smooth deformation $X \to Y$ exists if and only if $\omega = 0$.
- If $\omega = 0$, then isomorphism classes of such $X \to Y$ correspond to elements of a torsor under $H^1(X_0, T_{X_0/Y_0} \otimes f_0^*J)$.
- Given such deformation $X \to Y$, its automorphism group is $H^0(X_0, T_{X_0/Y_0} \otimes f_0^* J)$.

Corollary

Logarithmically smooth curves are unobstructed.

Saturated morphisms

Recall that the monoid homomorphism $\mathbb{N}\stackrel{\cdot 2}{\to} \mathbb{N}$ gives an integral logarithmically étale map with non-reduced fibers.

Definition

- An integral $Q \to P$ of saturated monoids is said to be *saturated* if $\operatorname{Spec}(P \to \mathbb{Z}[P]) \to \operatorname{Spec}(Q \to \mathbb{Z}[Q])$ has reduced fibers.^a
- An integral morphism $X \to Y$ of fs logarithmic schemes is *saturated* if it has a saturated chart.

^aHas natural universal property

This guarantees that if $X \to Y$ is logarithmically smooth, then the fibers are reduced.

Log curves

Definition

A *log curve* is a morphism $f: X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,
- f is saturated, i.e. has reduced fibers, and
- the fibers are curves i.e. pure dimension 1 schemes.

Theorem (F. Kato)

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i:\underline{S}\to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that
 - Away from s_i we have that $X^0 = \underline{X}_0 \times_{\underline{S}} S$, so π is strict away from s_i
 - Near each si we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on \mathbb{A}^1 .

• étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 o \mathbb{Z}[\mathbb{N}^2]) o \mathit{Spec}(\mathbb{N} o \mathbb{Z}[\mathbb{N}])$$

where $\mathbb{N} \to \mathbb{N}^2$ is the diagonal. Here the image of $1 \in \mathbb{N}$ in \mathcal{O}_S is f and the generators of \mathbb{N}^2 map to x and y.

Stable log curves

Definition

A *stable log curve* $X \rightarrow S$ is:

- a log curve $X \to S$,
- sections $s_i: S \to X$ for i = 1, ..., n,

such that

- $(\underline{X} \rightarrow \underline{S}, s_i)$ is stable,
- the log structure is strict away from sections and singularities of fibers, and "divisorial along the sections".

Moduli of stable log curves

We define a category $\overline{\mathcal{M}}_{g,n}^{\log}$ of stable log curves: objects are log (g,n)-curves $X\to S$ and arrows are fiber diagrams compatible with sections

There is a forgetful functor

$$\begin{array}{ccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \mathfrak{LogSch}^{\mathsf{fs}} \\ (X \to S) & \mapsto & S. \end{array}$$

So $\overline{\mathcal{M}}_{g,n}^{\log}$ is a category fibered in groupoids over $\mathfrak{Log}\mathfrak{Sch}^{\mathrm{fs}}.$

Moduli of stable log curves (continued)

We also have a forgetful functor

$$\begin{array}{ccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne–Knudsen–Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor. As such it represents a category fibered in groupoids $(\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}})$ over $\mathfrak{Log}\mathfrak{Sch}^{\mathsf{fs}}$.

Theorem (F. Kato)

$$\overline{\mathcal{M}}_{g,n}^{\log} \simeq (\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}}).$$

The stack $\overline{\mathcal{M}}_{g,n}^{\log}$ is huge!

- Given a stable log curve $X \to S$ and an arbitrary log point S' then $X \times S' \to S \times S'$ is a stable log curve on the same underlying scheme.
- Given $S = \operatorname{Spec}(\mathbb{N}^2 \to \mathbb{C})$, a stable log curve $X \to S$ and a quotient $\mathbb{N}^2 \to \mathbb{N}$ we get a log point $S' = \operatorname{Spec}(\mathbb{N} \to \mathbb{C}) \to S$ and a new stable log curve $X' \to S'$ on the same underlying scheme.
- We claim that some stable log curves $X \to S$ are more fundamental than others.
- Not all logarithmic moduli problems are so lucky! There are issues with logarithmic \mathbb{G}_m and logarithmic Picard (Molcho-Wise).

Minimality

Given a stable curve $\underline{X} \rightarrow \underline{S}$ we define

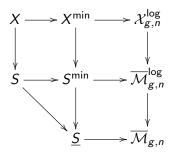
$$X^{\min} = \underline{X} \times_{\overline{\mathcal{M}}_{g,n+1}} \overline{\mathcal{M}}_{g,n+1}^{\log} \quad \text{and} \quad S^{\min} = \underline{S} \times_{\overline{\mathcal{M}}_{g,n}} \overline{\mathcal{M}}_{g,n}^{\log}.$$

The logarithmic structures $X^{\min} \to S^{\min}$ are called the *minimal* or *basic* logarithmic structures on a log curve.

We write

$$S^{\min} = (\underline{S}, M_{X/S}^S)$$
 and $X^{\min} = (\underline{X}, M_{X/S}^X)$.

Fundamental diagram



- ullet $\overline{\mathcal{M}}_{g,n}^{\log}$ parametrizes stable log curves over $\mathfrak{Log}\mathfrak{Sch}^{\mathsf{fs}}$
- $\overline{\mathcal{M}}_{g,n}$ parametrizes minimal stable log curves over $\mathfrak{S}\mathfrak{ch}$.

Stable logarithmic maps

Definition

A stable logarithmic map is a diagram

$$C \xrightarrow{f} X$$

$$S_{i} \left(\begin{array}{c} T \\ \uparrow \\ \uparrow \\ S \end{array} \right)$$

where

- $(C/S, s_i)$ is a prestable log curve, and
- in fibers $\operatorname{Aut}(\underline{C}_s \to \underline{X}, s_i)$ is finite.

contact orders

Apart from the underlying discrete data $\underline{\Gamma} = (g, \beta, n)$, a stable logarithmic map has *contact orders* c_i at the marked points.

At each such point the logarithmic structure at C has a factor \mathbb{N} , and the contact order is the homomorphism $f^*M_X\stackrel{c_i}{\to}\mathbb{N}$ at that marked point.

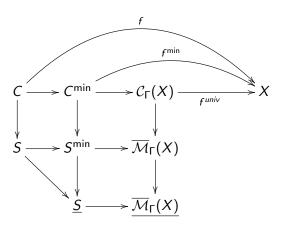
We collect the numerical data under the umbrella $\Gamma = (g, \beta, c_i)$.

Stable logarithmic maps (continued)

Theorem (Gross-Siebert, Chen, ℵ-Chen-Marcus-Wise)

Let X be projective logarithmically scheme. Stable logarithmic maps to X form a logarithmic Deligne–Mumford stack $\overline{\mathcal{M}}_{\Gamma}(X)$. It is finite and representable over $\overline{\mathcal{M}}_{\Gamma}(X)$.

Fundamental diagram



We are in search of a moduli stack $\overline{\mathcal{M}}_{\Gamma}(X)$ parametrizing *minimal* stable logarithmic maps over $\mathfrak{S}\mathfrak{ch}$.

As such it comes with a logarithmic structure $\overline{\mathcal{M}}_{\Gamma}(X)$ which parametrizes all stable logarithmic maps over $\mathfrak{Log}\mathfrak{Sch}^{\mathsf{fs}}$.

Stable logarithmic maps (continued)

This requires two steps:

- first find a morphism from $(C \to S, f : C \to X)$ to a *minimal* object $(C^{\min} \to S^{\min}, f^{\min} : C^{\min} \to X)$.
- then show that the object $(C^{\min} \to S^{\min}, f^{\min} : C^{\min} \to X)$ has a versal deformation space, $\underline{S} \to \underline{V}$, with universal family

$$(C_V^{\min} \to V^{\min}, f_V^{\min} : C_V^{\min} \to X),$$

whose fibers over any $\underline{T} \rightarrow \underline{V}$ are also minimal.

Minimal stable logarithmic maps

We consider X toric and a stable logarithmic map $(C/S, f : C \to X)$ over a P-logarithmic point S.

We wish to find a minimal Q-logarithmic point and a logarithmic map over it through which our object factors.

We might as well first pull back and replace S by a standard,

 $P = \mathbb{N}$ -logarithmic point!

Indeed if $S_P \to S$ is such a point and $S_P \to S_Q$ is its map to the minimal structure, then minimality says there is a unique $S \to S_Q$ factoring $S_P \to S_Q$

At the generic points

The curve C has components C_i with generic points η_i corresponding to vertices in the dual graph, and nodes q_j with local equations $xy = g_j$ corresponding to edges in the dual graph.

- The map f sends η_i to some stratum X_i of X with cone σ_i having lattice $N_i \subset \sigma_i$.
- ullet Departing from toric conventions we denote $M_i = N_i^{ee} = \operatorname{\underline{Hom}}(N_i, \mathbb{N}).$
- Since the logarithmic structure of C at η_i is the pullback of the structure on S, we have a map $f_i^{\flat}: M_i \to P$.
- It can dually be viewed as a map $P^{\vee} \to N_i$, or an element $v_i \in N_i$.
- If that were all we had, our final object would be $Q^{\vee} = \prod N_i$, and dually the initial monoid $Q = \bigoplus M_i$.

But the nodes impose crucial conditions.

At the nodes

• At a node q with branches η_q^1, η_q^2 we similarly have a map

$$f_q^{\flat}:M_q\to P\oplus^{\mathbb{N}}\mathbb{N}^2.$$

 Unfortunately it is unnatural to consider maps into a coproduct, and we give an alterante description of

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = P(\log x, \log y)/(\log x + \log y = \rho_q)$$

where $\rho_a = \log g_a \in P$.

- Recall that the stalk of a sheaf at a point q maps, via a "generization map", to the stalk at any point specializing to q, such as η_q^1, η_q^2 .
- The stalk at either η_q^1, η_q^2 is P.

At the nodes (continued)

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = P(\log x, \log y) / (\log x + \log y = \rho_q)$$

The map to the stalk P at η_q^1 where x=0 sends $\log y\mapsto 0$, and so $\log x\mapsto \rho_q$.

The map to the stalk P at η_q^2 where y=0 sends $\log x\mapsto 0$, and so $\log y\mapsto \rho_q$.

This means that we have a monoid homomorphism, which is clearly injective,

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 \to P \times P$$
.

Its image is precisely the set of pairs

$$\{(p_1, p_2)|p_2 - p_1 \in \mathbb{Z}\rho_q\}$$

At the nodes (continued)

$$P \oplus^{\mathbb{N}} \mathbb{N}^2 = \{(p_1, p_2) | p_2 - p_1 \in \mathbb{Z}
ho_q\}$$

- $f_a^{\flat}: M_q \to P \times P$,
- $(p_2-p_1)\circ f_q^{\flat}:M_q\to \mathbb{Z}\rho_q\subset P^{\mathrm{gp}}.$

Or better: we have $u_q:M_q\to\mathbb{Z}$ such that

$$(p_2 - p_1) \circ f_q^{\flat}(m) = u_q(m) \cdot \rho_q.$$
 (0.0.1)

Putting nodes and generic points together

The maps $p_1\circ f_q^{\flat}:M_q\to P$ and $p_2\circ f_q^{\flat}:M_q\to P$, since they come from maps of sheaves, are compatible with generization maps.

$$p_1\circ f_q^{lat}:M_q o P$$
 is the composition $M_q o M_{\eta_q^1} o P$

$$p_2\circ f_q^{lat}:M_q o P$$
 is the composition of $M_q o M_{\eta_q^2} o P$

the data of $p_1 \circ f_q^{\flat}$ and $p_2 \circ f_q^{\flat}$ is already determined by the data at the generic points η_i of the curve.

Putting nodes and generic points together (continued)

The additional data the node provides is the element $\rho_q \in P$ and homomorphism $u_q: M_q \to \mathbb{Z}$, in such a way that equation

$$(p_2 - p_1) \circ f_q^{\flat}(m) = u_q(m) \cdot \rho_q.$$
 (0.0.2)

holds.

$$Q_f = \left(\left(\prod_{\eta} M_{\sigma_{\eta}} imes \prod_{q} \mathbb{N}
ight) \ / \ R \
ight)^{ extsf{sat}}$$

where the saturated submonoid R is generated by all the relations implied by equation $(\ref{eq:Relation})$

Putting nodes and generic points together (continued)

$$Q_{f} = \left(\left(\prod_{\eta} M_{\sigma_{\eta}} imes \prod_{q} \mathbb{N}
ight) \ / \ R \
ight)^{\mathsf{sat}}$$

It is quite a bit more natural to describe the dual lattice

$$egin{aligned} \mathcal{Q}_{f}^{ee} &= \ &\left\{ ig((v_{\eta}), (e_{q}) ig) \in \prod_{\eta} \mathsf{N}_{\sigma_{\eta}} imes \prod_{q} \mathbb{N} \ \middle| \ igveeg_{ullet}^{\eta_{q}^{1}} & q \!\!\!\!\! \longrightarrow \!\!\!\!\! \bullet \ v_{q}^{1} - v_{q}^{2} = e_{q} u_{q} \end{aligned}
ight\}.$$

Tropical interpretation

Given a map f over an \mathbb{N} -point we have a graph in $\Sigma(X)$ with

- vertices $v_i \in N_{\sigma_\eta} \subset \sigma_\eta$
- ullet edges proportional to $u_q \in N_q^{
 m gp}$ such that $v_q^1 v_q^2 = e_q u_q$

this means

- The equations $v_q^1 v_q^2 = e_q u_q$ define the cone of all such graphs
- Q_f^{\vee} is the integer lattice in that cone.

Theorem (Gross-Siebert)

The minimal object exists, with characteristic sheaf Q_f , dual to the lattice in the corresponding space of tropical curves.