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1. Preamble

in which
we tell a story on how moduli spaces
lead to logarithmic geometry

1.1. Moduli spaces. At least since Riemann, we want to classify va-
rieties. The first thing we do is fix some numerical invariants; for
instance “dimension” and “genus”, which lead to the classical case of
moduli of algebraic curves. We expect varieties with fixed invariants,
e.g. algebraic curves with fixed genus, to be parametrized by an alge-
braic variety - in the example, the moduli space Mg of curves of genus
g is a quasi-projective algebraic variety (Ahlfors-Bers, Mumford).

But quasi-projective varieties are not necessarily projective.
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2 ABRAMOVICH

Working with a non-complete moduli space is like keep-
ing change in a pocket with holes

Angelo Vistoli

1.2. Compactification. Deligne and Mumford provided a natural com-
pactification Mg ⊂ M g which is projective, and in fact “smooth”, by
allowing certain singular algebraic curves to be parametrized by the
moduli space - these are stable curves.1 The singularities are normal

1→
crossings: xy = 0.

What’s so great about normal crossings?

1.3. Differentials. Consider a smooth family π : X → S of curves.
The homomorphism π∗Ω1

S → Ω1
X has a locally free quotient Ω1

X/S. This

is a sheaf theoretic manifestation of smoothness. Its rank, rk(Ω1
X/S) =

1 is a sheaf theoretic manifestation of the fact we are looking at curves.

If we now consider a family π : X → S of curves acquiring a node
over s ∈ S, say with equation xy = t, then in Ω1

X/S we have 0 = dt =

d(xy) = x dy+y dx. This implies that the nonzero section x dy = −y dx
of Ω1

X/S is annihilated by both x, y, so it is torsion. This is a sheaf
theoretic manifestation of non-smoothness. It focuses our attention on
the divisor s in S and its inverse image {t = 0} = Y1 + Y2 ⊂ X.

Consider instead logarithmic differentials: Ω1
S(log(s)) generated by

dt
t
; and Ω1

X(log(Y1 + Y2)) generated by dx
x

and dy
y

. Then dt
t

= dx
x

+ dy
y

,

and the quotient Ω1
X/S,log is free, generated by dx

x
= −dy

y
.

It follows that from the point of view of logarithmic differentials, a
node is as good as a smooth point.

More generally, for a normal crossings degeneration t = x1 · · · xk, the
sheaf π∗Ω1

S(log s), generated by

dt

t
=
dx1

x1

+ · · ·+ dxn
xn

is a subbundle of Ω1
X(log(Y1 + . . . + Yn)), so the quotient is a vector

bundle. Again:

From the point of view of logarithmic differentials, a
semistable degeneration is as good as a smooth family.

1.4. The structure of a semistable variety. Mouli spaces require
looking at families, but also at the fibers of the families.

Consider the singular fiber of X → S above. Can one say that any
such variety is “good”?

1(Dan) Add picture
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Here is a problem: consier X = E×P1, where E is an elliptic curve.
Inside we have a section D = {0} × P1. If we take the trivial family
X×A1 → A1 and blow up D×0, the central fiber is X tDX. One can
deform one component to X ′ = PE(O⊕L), where L is any line bundle
L of degree 0 on E. The resulting variety cannot be smoothed. From
the point of view of moduli spaces this is bad: near the moduli point of
X tD X there is the point corresponding to X (good) but also points
corresponding to X ′ tD X, lying on a different and totally undesirable
component (bad).

Logarithmic geometry, by some magic, knows not to deform the bad
way! There is a structure on X → S, called a logarithmic structure,
which restricts nicely to the fiber, and the fiber with this additional
structure can only deform in a good way.

2. Logarithmic structures

in which

our main characters are introduced

2.1. Pre-logarithmic and logarithmic structures. We define a
pre-logarithmic structure to be

X = (X,M
α→ OX)

for which one usually uses the shorthand X = (X,M), where

• X is a scheme,
• M is a sheaf of monoids on X, and
• α is a monoid homomorphism, where the monoid structure on
OX is the multiplicative structure.

Example 2.1.1.

• (X,O∗X ↪→ OX), the trivial structure. We sometimes write just
X for this structure.
• (X,OX

∼→ OX), looks as easy but surprisingly not interesting,
and
• (X,N α→ OX), where α is determined by an arbitrary choice of
α(1). This one is important but will need to be modified soon.

We define a logarithmic structure to be a pre-logarithmic structure
in which the restriction α : α−1O∗X → O∗X is an isomorphism. So the
first two examples are logarithmic structures, and the last isn’t.

A logarithmic scheme X is another name for a logarithmic structure
on a scheme X.
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2.2. Morphisms. For a scheme X we define a morphism from a pre-
logarithmic structure M1

α1→ OX to M2
α2→ OX to be

M1
β

//

α1
!!

M2

α2
}}

OX

This also defines a morphism of pre-logarithmic schemes (X ,M2)
β→

(X ,M1) in a contravariant manner. The reason for doing it contravari-
antly is that a logarithmic structure is thought of as an extension of
the structure sheaf, which behaves contravariantly in schemes.

2.3. Key examples.

2.3.1. Divisorial logarithmic structure. LetX,D ⊂ X be a variety with
a divisor. Define

MD(U) =
{
f ∈ OX(U)

∣∣ fUrD ∈ O×X(U rD)
}
.

This is particularly important for normal crossings divisors and toric
varieties - these will be logarithmically smooth structures.

2.3.2. Logarithmic points. Let k be a field, P a monoid with unique
invertible element 0. Consider the map P → k sending 0 7→ 1 and
p 7→ 0 otherwise, and take the resulting M := P ⊕ k× α→ k.

This is what you get when you restrict the structure on an affine
toric variety associated to P (denoted Spec(P → k[P ]) below) to the
maximal ideal generated by {p 6= 0}. It is called the P -logarithmic
point. When P = N it is known as the standard logarithmic point.

2.4. The associated logarithmic structure. A morphism of loga-
rithmic structures is a morphism of pre-logarithmic structures which
happen to be logarithmic structures. So we have a fully faithful em-
bedding

{logarithmic structures on X} ↪→ {pre-logarithmic structures on X}.

Theorem 1 (K. Kato). This has an adjoint - given M
α→ OX there is a

logarithmic structure Ma αa−→ OX , the associated logarithmic structure,
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and a universal morphism

M
β

//

α
!!

Ma

αa||

OX

Proof sketch: this is a three step exercise.

Step 1: define the pushout of a diagram of monoids:

M1

!!

M0

f1
==

f2 !!

M3

M1

==

by M3 = M1 ⊕ M2/ ∼, with the equivalence generated by (m1 +
f1(x),m2) = (m1,m2 + f2(x)).

Step 2: show that if f1 is injective then M2 →M3 is injective.

Step 3: given a pre-logarithmic structure α : M → O use the
diagram

α−1O∗ � � //

��

M

�� α

��

O∗ � � //

//

Ma

αa

!!

O

Check that it is a logarithmic structure and is universal. ♣
Note that this gives (X,Ma)→ (X,M).

2.5. Inverse image. Given f : X → Y and Y = (Y ,MY ) define the
pre-logarithmic inverse image by composing

f−1MY → f−1OY
f]→ OX

and then the logarithmic inverse image is

f ∗MY = (f−1MY )a.
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This is the universal logarithmic structure on X with a diagram

(X, f ∗MY ) //

��

Y

��

X // Y

2.6. Morphisms of logarithmic schemes. A morphism X → Y
over a given f : X → Y is finally defined to be a morphism of logarith-
mic structures f ∗MY →MX .

2.7. Fibered products. The fibered product X ×Z Y exists, and is
defined as follows:

• X ×Z Y = X ×Z Y
• If N is the pushout of

π−1
Z MZ

%%yy

π−1
X MX π−1

Y MY

then the log structure on X ×Z Y is defined by Na.

2.8. Monoid algebras. Let P be a monoid, R a ring. We obtain a
monoid algebra R[P ] and a scheme X = SpecR[P ]. There is an evi-
dent monoid homomorphism P → R[P ] inducing sheaf homomorphism
PX → OX , a pre-logarithmic structure, giving rise to a logarithmic
structure

(PX)a → OX .
This is a basic example. It deserves a notation:

X = Spec(P → R[P ]).

The most basic example is X0 = Spec(P → Z[P ]). The morphism
f : Spec(R[P ])→ Spec(Z[P ]) gives

X = X ×X0 X0.

2.9. Charts. Logarithmic structures X are particularly manageable if
one has a constant sheaf PX and a homomorphism PX → OX such that
X is the associated logarithmic structure:

A chart for MX is a monoid homomorphism P → Γ(X,MX) such
that P a →MX is an isomorphism, where P a is associated to PX → OX
coming from P → Γ(MX)→ Γ(OX).

A local chart is of course a chart on an open U of X.
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Note that giving a chart is equivalent to giving a logarithmic mor-
phism

X → Spec(P → Z[P ])

such that f [ is an isomorphism.

Also note:

HomLogSch(X, Spec(P → Z[P ]))→ HomMon(P,Γ(X,MX))

is canonically bijective.

Let us now look at charts for morphisms:

Given a morphism of logarithmic schemes f : X → Y , a chart for f
is a triple

(PX →MX , QY →MY , Q→ P )

such that

(1) PX →MX and QY →MY are charts for MX and MY , and
(2) the diagram

QX

��

// f−1MY

��

PX // MX

is commutative.

2.10. Types of logarithmic structures. We say that (X,MX) is
quasi coherent if étale locally at every point there is a monoid P and a
local chart PX → OX for X.

We say that (X,MX) is coherent if such a monoid P can be taken
finitely generated - the image of Nk.

A monoid P is integral if P → P gp is injective.

It is saturated if integral and whenever p ∈ P gp and m · p ∈ P for
some integrer m > 0 then p ∈ P . I.e., not like {0, 2, 3, . . .}.

We say that a logarithmic structure is fine if it is coherent with local
charts PX → OX with P integral.

We say that a logarithmic structure is fine and saturated (or fs) if it
is coherent with local charts PX → OX with P integral and saturated.

We say that a logarithmic structure is locally free if it is coherent
with local charts Nk → OX (where k depends on the chart).

Almost all work is done with fine logarithmic schemes, and much
of that is restricted to fs logarithmic schemes. General logarithmic
schemes are used as a tool.

For instance, if X, Y, Z are coherent then X ×Z Y is still coherent.2 ←2

2(Dan) exercises fine, saturated
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2.11. The characteristic sheaf. Given a logarithmic structure X =
(X,M), the quotient sheaf M := M/O×X is called the characteristic
sheaf of X.

3. Differentials

in which
Grothendieck’s formalism is adapted
to logarithmic structures

3.1. How to deform a point on a scheme (Grothendieck).

3.1.1. Ingredients: T0 = SpecC, T = SpecC[ε/ε2], f : X → Y

Diagram:

X

��

T0

00

� � // T //

??

Y

If Y is a point, or more generally if T → Y factors through the
retraction T → T0, then there is a lift g0 : T → X. But anyway let us
assume a lift g0 exists and analyze possible other lifts g1:

X

��

T0

φ
00

� � // T
ψ
//

g0

GG

g1

88

Y.

This translates to a diagram of groups:

C φ−1OXoo

g]0
��

g]1
vv

C[ε]

OO

ψ−1OYoo

OO

The difference g]1 − g
]
0 is a map φ−1OX

d // εC ' C . Since g]i are

ring homomorphisms d is linear. Moreover d(f1f2) = f2df1 + f1df2: 3
3→

3(Dan) exercise
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d(f1f2) =g1(f1f2)− g0(f1f2)

= g1(f1)g1(f2)− g0(f1)g1(f2)

+ g0(f1)g1(f2) − g0(f1)g0(f2)

=g1(f2)df1 + g0(f1)df2

=f2df1 + f1df2

This is a derivation φ−1OX → C.

3.1.2. Remove assumptions: T0 any scheme, T = T0[J ] a square-0
extension. Get instead a derivarion

φ−1OX → J.

3.1.3. Can further allow Ker(OT → OT0) to be an OT0-module J . Get
again a derivarion φ−1OX → J .

3.1.4. The universal derivation d : OX → Ω1
X/Y occurs when T0 = X,

T = X ′ := SpecX×YX O/(I∆)2:

X

��

X

Id
00

� � // X ′ //

?

>>

Y.

Here Ω1
X/Y is the OX-module generated by symbols df modulo all re-

quired relations.

3.2. How to deform a point on a logarithmic scheme (Kato).

3.2.1. We upgrade the data: a morphism T0 → T is said to be strict
if T0 = T 0 ×T T . A strict closed embedding is a strict morphism which
is a closed embedding on underlying schemes. A strict square-0 embed-
ding is a strict morphism which is a square-0 embedding on underlying
schemes:

0→ J → OT → OT 0
→ 0.

Note that we obtain an exact sequence of multiplicative groups

1→ (1 + J)→ O×T → O
×
T 0
→ 1.

This induces an exact sequence of monoids

1→ (1 + J)→MT →MT0 → 1,

in the sense that the group 1 +J acts freely on MT with quotient MT0 .
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3.2.2. The diagram

X

��

T0

φ
00

� � // T
ψ
//

g0

GG

g1

88

Y

induces two diagrams. First the familiar

OT 0
φ−1OXoo

g]0
��

g]1
vvOT

OO

ψ−1OYoo

OO

which induces the familiar derivation φ∗OX → J . In addition we ob-
tain:

MT0 φ−1MX
φ[
oo

g[0
��

g[1
vv

MT

OO

ψ−1MY
oo

OO

We define D : φ−1MX → J by the equation

g[1(m) = (1 +D(m)) + g[2(m).

It is well defined. Also it is a monoid homomorphism: D(m1 +m2) =
D(m1) + D(m2), since it measures the difference, in a group, between
two monoid homomorphisms.

Key properties:

(1) D|ψ−1MY
= 0

(2) α(m)D(m) = d(α(m)),

in other words,
D(m) = d log(α(m)),

which justifies the name of the theory.

I have checked the second property. I refuse to reproduce it here.

3.3. Logarithmic derivations. The discussion above justifies defin-
ing a logarithmic derivation in J to be a pair (d,D) where d : OX → J
is a derivation and D : MX → J a monoid homomorphism satisfying
(1) and (2). The collection of all logarithmic derivations form the log-
arithmic tangent sheaf TX/Y . Better still, there exists a module Ω1

X/Y

and a universal logarithmic derivation (d,D) in Ω1
X/Y . It is the module

generated by symbols df and D(m) subject to the conditions above:

Ω1
X/Y = (Ω1

X/Y ⊕ (OX ⊗Mgp
X ))/K,
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where K is the collection of necessary relations coming from (1) and
(2).

Examples: compute the cases of DNC, toric, log point.

4. Logarithmic smoothness

in which

the plot thickens

4.1. Smoothness and logarithmic smoothness. Recall from Grothendieck
that a morphism of schemes X → Y is smooth if

(1) it is locally of finite presentation, and
(2) Whenever T0 is affine and T0 ⊂ T a square-0 embedding and

any diagram

X

��

T0

00

� � // T //

∃

??

Y

there exists a lifting as indicated.

The morphism is étale if the lifting in (2) is unique.

We define a morphism X → Y of fine logarithmic schemes to be
logarithmically smooth if

(1) X → Y is locally of finite presentation, and
(2) Whenever a fine logarithmic scheme T0 is affine and T0 ⊂ T a

strict square-0 embedding and given a diagram of logarithmic
schemes

X

��

T0

00

� � // T //

∃

??

Y

there exists a lifting as indicated.

The morphism is logarithmically étale if the lifting in (2) is unique.

The value of the assumption that everything be fine will remain a
bit mysterious. It is an indication that logarithmic schemes which are
not fine are a bit of a problem. The characterization below will simply
be false otherwise.

Remark: the assumption that T0 is affine is a way to say that for
whatever T0, a lifting exists locally on T . One direction is evident. For
the other: if T is affine and there are local liftings, the differences are
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sections of sheaves of derivations LogDer(φ−1OX , J) which are quasi
coherent on an affine T so cohomology vanishes.

Remark: For étale morphisms uniqueness means that “existence
locally” implies “existence”: unique liftings must coincide on overlaps.
Maps which coincide on overlaps glue together.

4.2. Characterization of logarithmic smoothness. Principle: log-
arithmic smoothness is characterized by (1) a collection of basic cases
and (2) pullbacks and covers.

4.2.1. Strict smooth morphisms: ifX → Y is strict andX → Y smooth
then X → Y is logarithmically smooth. Indeed there is a lifting

X

��

T 0

00

� � // T //

∃

??

Y

since X → Y smooth, and the lifting of morphism of monoids comes
by the universal property of pullback.

4.2.2. Combinatorial morphisms.

Proposition 1. Say P,Q are finitely generated integral monoids, R a
ring, Q→ P a monoid homomorphism.

Write X = Spec(P → R[P ]) and Y = Spec(Q→ R[Q]).

Assume

(1) Ker(Qgp → P gp) is finite and with order invertible in R,
(2) TorCoker(Qgp → P gp) has order invertible in R.

Then X → Y is logarithmically smooth.4
4→

If also the cokernel is finite then X → Y is logarithmically étale.

Idea in proof: first, it is enough to lift the maps of monoids in the
lifting diagram.

We use the sequence

1→ (1 + J)→MT →MT0 → 1.

4(Dan) indicate proof in notes?
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We note that by integrality Mgp
T0

= Mgp
T /(1+J), and there is a cartesian

diagram

(1) MT

��

// MT/(1 + J) = MT0

��

Mgp
T

// Mgp
T /(1 + J) = Mgp

T0
.

A lifting on the group level

Mgp
T0

P gpoo

∃
}}

Mgp
T

OO

Qgpoo

OO

exists by kernel/cokernel assumptions and diagram chasing. The carte-
sian diagram (1) shows that the lifting exists on the monoid level.

4.2.3. Characterization.

Theorem 2 (K. Kato). Let X, Y be fine logarithmic schemes, and let
QY → MY be a chart. Then a morphism X → Y is logarithmically
smooth if and only if étale locally on X there is a chart PX → MX

and a monoid homomorphism Q→ P , which, together with QY →MY

makes a chart for X → Y such that

(1) Q → P satisfies the conditions of the proposition for smooth-
ness, and

(2) X → Y ×SpecZ[Q] SpecZ[P ] is smooth

For the proof, see Kato. It uses the fact that Ω1
X/Y is coherent locally

free, but more.

4.3. Key examples.

(1) Nodal curves.
(2) Marked nodal curves.
(3) Toric varieties
(4) SpecC[t]→ SpecC[s] given by s = t2

(5) SpecC[x, y]→ SpecC[t] given by t = xmyn

(6) SpecC[x, y]→ SpecC[x, z] given by z = xy.
(7) Spec(N→ C[N])→ Spec(Nr1 → C[Nr1]).

Exercise. Show by explicit calculation that these are logarithmi-
cally smooth.
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4.4. Integral morphisms. We note a disturbing feature: the last two
examples are not flat. It is of interest to delineate those logarithmically
smooth morphisms which are flat.

We define a monoid homomorphism Q→ P to be integral if

Z[Q]→ Z[P ]

is flat.

A morphism f : X → Y of logarithmic schemes is integral if for every
geometric point x of X the homomorphism

(f−1MY )x → (MX)x

of characteristic sheaves is integral.

Equivalently, there is a chart with Q→ P integral.

Remark 4.4.1. This implies that X → Y is universally integral. h :
Q→ P is integral if for every integral Q′ and homomorphism Q→ Q′

the pushout P ′ = P ⊕Q Q′ is integral.

There is an explicit criterion for integrality: say a1, a2 ∈ Q and
b1, b2 ∈ P satisfy h(a1) + b1 = h(a2) + b2. Then in fact there are
a3, a4 ∈ Q and b ∈ P so that b1 = h(a3) + b and b2 = h(a4) + b, and
a1 + a3 = a2 + a4.

Exercise 4.4.2. P = N, Q = Nr 1, show that P ⊕Q P is not integral.
Show that the criterion fails for a1 = 2, a2 = 3, b1 = 1, b2 = 0. Show
that the blowup example of z = xy is not integral.

Remark 4.4.3. Later we’ll worry about saturated morphisms

5. Logarithmically smooth deformations

in which

the thickening is plotted

5.1. Local deformations. Recall that if X0 → Y 0 is smooth, Y 0 ⊂ Y
a square-0 (or artinian) extension, then locally X0 can be lifted to a
smooth X → Y .

Proposition 2 (K. Kato). The same is true for logarithmically smooth
deformations.

Sketch of proof: locally X0 → X ′0 → Y0, where

X ′0 = Y0 ×SpecZ[Q] SpecZ[P ].

So X ′0 → Y0 is combinatorially smooth, and automatically provided a
deformation to

Y ×SpecZ[Q] SpecZ[P ],
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and X0 → X ′0 is strict and smooth so deforms by the classical result.

5.2. Kodaira-Spencer theory.

Theorem 3 (K. Kato). Let Y0 be artinian, Y0 ⊂ Y a strict square-0
extension with ideal J , and f0 : X0 → Y0 logarithmically smooth. Then

(1) There is a canonical element ω ∈ Ext2(Ω1
X0/Y0

, f ∗0J) such that
a logarithmically smooth deformation X → Y exists if and only
if ω = 0.

(2) If ω = 0, then isomorphism classes of such X → Y correspond
to elements of a torsor under Ext1(Ω1

X0/Y0
, f ∗0J).

(3) Given such deformation X → Y , its automorphism group is
Hom(Ω1

X0/Y0
, f ∗0J).

Sketch of proof: cover X0 by affines U
(i)
0 , and on each U

(i)
0 fix a

deformation U (i) → Y . As we have seen, all such lifts are isomorphic.

To glue, we need to choose isomorphisms U (i,j) → U (j,i) - these lie in
a torsor under Hom(Ω1

U
(j,i)
0 /Y0

, f ∗0J). Such isomorphisms patch if they

are in agreement on U (j,i,k).

Corollary 5.2.1. Logarithmically smooth curves are unobstructed.

5.3. Saturated morphisms. Recall that the monoid homomorphism

N ·2→ N gives an integral logarithmically étale map with non-reduced
fibers. An integral Q→ P of saturated monoids is said to be saturated
if Spec(P → Z[P ])→ Spec(Q→ Z[Q]) has reduced fibers. An integral
morphism X → Y of fs logarithmic schemes is saturated if it has a satu-
rated chart. This guarantees that if X → Y is logarithmically smooth,
then he fibers are reduced. It also guarantees that the morphism is
universally saturated.

6. Interlude: moduli of curves

in which
a crash course on the moduli of stable
curves is provided

We describe the Deligne–Mumford–Knudsen theory. No logarithmic
structures here.

6.1. Prestable curves. A prestable n-marked curve C/S is a flat,
proper morphism with connected reduced fibers of dimension 1, along
with disjoint sections si : S → C for i = 1, . . . , n in the smooth locus
of C/S. We require all fibers have at most nodes as singularities.

We denote by pi the images of si.
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6.2. Stable curves.

6.2.1. A prestable curve C/S is stable if for every geometric fiber the
automorphism group Aut(C0, p1, . . . , pn) is finite.

6.2.2. A prestable curve C/S is stable if for every irreducible compo-
nent C ′ of the normalization Cν of a geometric fiber

(1) If C ′ ' P1 then C ′ contains at least 3 special points: marked
points or points mapping to nodes.

(2) If g(C ′) = 1 then C ′ contains at least 1 special point.

6.2.3. A prestable curve C/S is stable if ωC/S(
∑
pi) is π-ample.

Proposition 3. All three definitions coincide

6.3. Moduli of stable curves.

Theorem 4 (Deligne–Mumford–Knudsen). Stable curves form a proper,
smooth Deligne–Mumford stack Mg,n over Z with projective coarse
moduli space. The universal curve is Mg,n+1.

Brief sketch of a proof:

(1) All stable n-pointed curves of genus g are uniformly embeddable
in PN by the 3-log-canonical system (ωC(

∑
pi))

⊗3.
(2) The corresponding Hilbert schemeHilbg,6g−6+3n,N contains point

scorresponding to all such embeddings.
(3) The locus of 3-log-canonically embedded curves is a locally

closed subscheme H0 of Hilbg,6g−6+3n,N .
(4) The ambiguity in choosing the embedding is accounted precisely

by the action of PGLN+1 on H0.
(5) The quotient M g,n = H0/PGLN+1 exists as a projective scheme

(GIT).
(6) The quotientMg,n = [H0/PGLN+1] exists as a Deligne–Mumford

stack.
(7) It is a beautiful argument of Knudsen that the universal curve

is indeed Mg,n+1

7. Log curves

in which
log curves are defined and character-
ized, and their moduli stack is identi-
fied

Definition 7.0.1. A log curve is a morphism f : X → S of fs logarith-
mic schemes satisfying:
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(1) f is logarithmically smooth
(2) f is integral i.e. flat
(3) f is saturated i.e. reduced fibers
(4) the fibers are curves i.e. pure dimension 1 schemes.

Theorem 5 (F. Kato). Assume π : X → S is a log curve. Then

(1) Fibers have at most nodes as singularities
(2) étale locally on S we can choose disjoint sections si : S → X in

the nonsingular locus X0 of X/S such that
(a) Away from si we have that X0 = X0 ×S S, so π is strict

away from si
(b) Near each si we have a strict étale

X0 → S × A1

with the standard divisorial logarithmic structure on A1.
(c) étale locally at a node xy = f the log curve X is the pullback

of

Spec(N2 → Z[N2])→ Spec(N→ Z[N])

where N→ N2 is the diagonal. Here the image of 1 ∈ N in
OS is f and the generators of N2 map to x and y.

Sketch of a proof. It is easy to see that the situations described
above satisfy K. Kato’s criteria for logarithmic smoothness. We need
to show the converse.

We consider the local factorization X → X ′ → S, where X → X ′ is
strict and smooth and X ′ → S is of combinatorial type. If X → X ′ is
of relative dimension 1 there isn’t much space for anything, so we get
case (2a).

Otherwise we may replace X by X ′ and use the fact that everything
is saturated and combinatorial to reduce to the case of toric varieties
X and S where dimX = dimS + 1.

The fact that the map is integral means in particular that any cone
in the fan of X maps onto a cone in the fan of S.

The fact that the map is saturated means that the map of lattices
of co-characters in each cone is surjective.

If there is a ray in a cone of X which maps to 0, we are in case (2b).

Otherwise one pulls back to a curve S1 in S and obtain a tori surface
X1 = X ×S S1. The case of toric surfaces is well understood.

7.1. Stable log curves. A stable log curve X → S is:

(1) a log curve X → S,
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(2) sections si : S → X for i = 1, . . . , n,

such that

(1) (X → S, si) is stable,
(2) the log structure is strict away from sections and singularities

of fibers, and “divisorial along the sections”.

7.2. Moduli. We define a categoryMlog

g,n of stable log curves: objects
are log curves X → S and arrows are fiber diagrams

X1
//

��

X2

��

S2
// S2

.

There is a forgetful functor

Mlog

g,n −→ LogSchfs

(X → S) 7→ S.

So Mlog

g,n is a category fibered in groupoids over LogSchfs.

and also

Mlog

g,n −→ Mg,n

(X → S) 7→ (X → S)

Note that the moduli stack Mg,n has a natural logarithmic smooth
structure M∆g,n given by the boundary divisor - this is a bit of a fu-
runate situation which does not repeat in other cases. As such it rep-
resents a category fibered in groupoids (Mg,n,M∆g,n) over LogSchfs.

Theorem 6 (F. Kato). Mlog

g,n ' (Mg,n,M∆g,n).

Sketch of a proof. First, it is not hard to show that the universal
family Cg,n =Mg,n+1 →Mg,n with its boundary logarithmic structure

is a log curve, so indeed we have a morphism Mlog

g,n ← (Mg,n,M∆g,n).

Also the forgetful morphismMlog

g,n −→Mg,n gives, for each log curve

X → S, a canonical morphism S →Mg,n and X →Mg,n+1. We define

Xmin = X ×Mg,n+1
Mlog

g,n+1 and Smin = S ×Mg,n
Mlog

g,n.

Lemma 7.2.1. The morphism S → S lifts uniquely to S → Smin, and
similarly X → Xmin. Moreover X = S ×Smin Xmin.

Sketch of proof. It is enough to work étale locally, so we may
replace Mg,n by a versal deformation space V which is étale over
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Spec k[t1, . . . , t3g−3+n], where t1, . . . , tm are equations of boundary divi-
sors defining nodes q1, . . . , qm, and we may assume a given point s ∈ S
maps to the origin. The logarithmic structure on V is associated to
Nm → O where generator ei 7→ ti.

To lift S → S to S → Smin we need to map Nm → MS. Consider
the i-th node qi in Xs for s ∈ S. It is given étale locally by xy = gi
where gi is the pullback of ti. The logarithmic structure on X → S
near qi was described as MS ⊕N N2 where the generator e of N maps
to gi. This allows us to map Nm → OS by sending ei to the generator
corresponding to gi.

The fact that the diagram

X //

��

Xmin

��

S // Smin

is commutative is easy diagram chasing. The fact that it is cartesian
follows again from F. Kato’s characterization of log curves. ♣

The theorem now follows: we have now defined a morphismMlog

g,n →
(Mg,n,M∆g,n) which is inverse to the one described in the beginning of
the proof. ♣

7.3. Minimality. The logarithmic structures Xmin → Smin are called
the minimal or basic logarithmic structures on a log curve. We write

Smin = (S,MS
X/S) and Xmin = (X,MX

X/S).

The following cartesian diagram is fundamental for understanding
what is going on:

(2) X //

��

Xmin //

��

X log
g,n

��

S //

  

Smin //

��

Mlog

g,n

��

S //Mg,n

The big rectangle in the top two rows exemplifies the fact that

Mlog

g,n = (Mg,n,M∆g,n) is the stack parametrizing log curves. The two
right columns exemplify something new and I contend quite surprising
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about Mg,n: it is a stack over the category of schemes parametrizing
minimal log curves.

It is a remarkable coincidence that the same moduli space Mg,n

serves both purposes. This is because a family of curves canonically
admits a log curve structure - the minimal structure. In other moduli
space life is not so easy, but the picture here is worth keeping in mind.
The typical effect will be that objects admitting a logarithmic structure
are better, and representability of logarithmic objects is tantamount to
the existence of minimal structures.

Indeed, F. Kato proceeds to show how to construct Xmin → Smin

directly from X → S without prior knowledge of Mg,n. If S = Spec k
is the spectrum of an algebraically closed field then indeed the minimal
logarithmic structure on S is associated with Nm. The local description
of a node xy = f and its logarithmic structure necessarily requires going
to étale charts, so the logarithmic structure on X requires the étale
topology and descent. Then one shows that these minimal logarithmic
structures are stable under small deformations.

8. Interlude: stable maps and Gromov–Witten theory

in which
we introduce stable maps and
Gromov–Witten theory in the
classical sense.

Once again, no logarithmic structures here.

8.1. Stable maps. A stable map is a diagram

C
f
//

π
��

X

S

si

BB

where

(1) (C/S, si) is a prestable curve, and
(2) in fibers Aut(Cs → X, si) is finite.

8.2. Gromov–Witten theory. We want to count curves onX of class
β ∈ H2(X,Z) meeting cycles Γ1, . . . ,Γn corresponding to cohomology
classes γi. For instance: lines through p1, p2.

Kontsevich’s method: the moduli of stable maps M :=Mg,n,β(X) is
a Deligne–Mumford stack with projective coarse moduli space. There
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are evaluation maps

M
ei→ X

(C/S, pi) 7→ f(pi)

and one defines the Gromov–Witten invariants

〈γ1 · · · γn〉Xg,β =

∫
[M ]vir

e∗1γ1 · · · e∗nγn.

The mysterious part is [M ]vir. This is there to make this a homologi-
cal and deformation invariant. This is akin to the fact that the number
of lines through p1, p2, namely the intersection number of the locus of
lines through p1 with the locus of lines through p2, is 1, whether or not
p1 = p2.

In order to define this one uses a perfect obstruction theory. In this
case it is given by R•π∗f

∗TX , represented by a 2-term complex on S.

9. Stable logarithmic maps

in which
our main characters arrive at an en-
chanted place, and we leave them
there.

9.1. Definition of stable logarithmic maps. A stable logarithmic
map is the same diagram

C
f
//

π
��

X

S

where C → S is a prestable log curve (with appropriate sections of the
underlying curve etc.).

A stable logarithmic map has additional deformation-invariant nu-
merical data - the contact orders of C with X at the marked points.
At each such point the logarithmic structure at C has a factor N cor-
responding to the marked point, and the contact order is the homo-
morphism f ∗MX

ci→ N at that marked point. We collect the numerical
data under the umbrella Γ = (g, β, ci). The underlying numerical data
are Γ = (g, β, n).
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9.2. Moduli. The following theorem was proven by Gross-Siebert and
Chen and ℵ-Chen under some assumptions; the assumptions removed
by ℵ-Chen-Marcus-Wise:

Theorem 7. Let X be projective logarithmically smooth scheme. Sta-
ble logarithmic maps to X form a logarithmic Deligne–Mumford stack
MΓ(X). It is finite and representable over MΓ(X).

The fact thatMΓ(X) is a logarithmic Deligne–Mumford stack is now
a consequence of work of Wise, who constructs logarithmic Hom-spaces
of logarithmic schemes.

The first observation is that what we are looking for is precisely the
analogue of diagram 2:

(3) C //

��

f

!!

Cmin //

��

fmin

&&
CΓ(X)

��

funiv
// X

S //

  

Smin //

��

MΓ(X)

��

S //MΓ(X)

We are in search of a moduli stack MΓ(X) parametrizing minimal
stable logarithmic maps over Sch. As such it comes with a logarithmic
structureMΓ(X) which parametrizes all stable logarithmic maps over
LogSchfs.

Michael Artin devised a way to verify that moduli problems are al-
gebraic stacks using deformation theory. There are some general prop-
erties one needs to verify. After this one takes an arbitrary geometric
object of the moduli space and needs to show that it has an algebraic
versal deformation space.

In our situation the general properties do hold for our moduli space.
But given a stable logarithmic map (C → S, f : C → X) with S =
Spec k a geometric point, diagram (3) requires two steps:

(1) first find a morphism from (C → S, f : C → X) to a minimal
object (Cmin → Smin, fmin : Cmin → X).

(2) then show that the object (Cmin → Smin, fmin : Cmin → X) has
a versal deformation space, whose fibers are also minimal.
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A precise study of minimality in the abstract is given in a paper of
William Daniel Gillam. It was further tied to moduli problems in work
of Junchao Shentu. In short, an object is minimal if it is essentially
a final object in a connected component of the category of objects on
the same underlying S. Here “essentially final” means “final up to
automorphisms of the minimal object”.

Fundamental work of Olsson guarantees that deformation spaces ex-
ist, so point (2) is under control. The key remaining promlem is (1).

9.3. Minimal stable logarithmic maps. I will describe minimal ob-
jects in case X is a toric variety. In this case one can use fans and refer
to Payne’s lectures. In general one uses the polyhedral cone complex of
a logarithmic scheme. I am focusing on the characteristic monoid - in
a sense this suffices, but for the full argument see the original papers.

9.3.1. Consider a stable logarithmic map (C/S, f : C → X) over
a P -logarithmic point S. We wish to find some Q-logarithmic point
and a logarithmic map over it through which our object factors. The
curve C has components Ci with generic points ηi corresponding to
vertices vi in the dual graph, and nodes qj with local equations xy = gj
corresponding to edges qj in the dual graph.

9.3.2. The map f sends ηi to some stratum Xi of X with cone σi
having lattice Ni ⊂ σi. Departing from toric conventions we denote
Mi = N∨i = Hom(Ni,N): the lattice Mi is the characteristic monoid of
X at a general point of Xi. It is the quotient of the lattice of characters
non-negative on σ by those vanishing on σ. Since the logarithmic
structure of C at ηi is the pullback of the structure on S, we have
a map f [i : Mi → P . It can dually be viewed as a map P∨ → Ni.

If that were all we had, our final object would be Q∨ =
∏
Ni, and

dually the initial monoid Q = ⊕Mi. But the nodes impose crucial
conditions.

9.3.3. At a node q with branches η1
q , η

2
q we similarly have a map f [q :

Mq → P ⊕N N2. Unfortunately it is unnatural to consider maps into a
coproduct, and we give an alterante description of

P ⊕N N2 = P 〈log x, log y〉/(log x+ log y = ρq)

where ρq = log gq ∈ P .

Recall that the stalk of a sheaf at a point q maps, via a “generization
map”, to the stalk at any point specializing to q, such as η1

q , η
2
q . The

map to the stalk at η1
q where x = 0 sends log y 7→ 0, and so log x 7→ ρq.
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The map to the stalk at η2
q where y = 0 sends log x 7→ 0, and so

log y 7→ ρq.

This means that we have a monoid homomorphism, which is clearly
injective,

P ⊕N N2 → P × P.
Its image is precisely the set of pairs

{(p1, p2)|p2 − p1 ∈ Zρq}

From this we obtain that the homomorphism f [q can be viewed as

mapping Mq → P×P , and the difference homomorphism (p2−p1)◦f [q :
Mq → P gp maps Mq to Zρq. We record this difference through the
homomorphism uq : Mq → Z such that

(4) (p2 − p1) ◦ f [q(m) = uq(m) · ρq.

9.3.4. Let us now analyze the two components. The maps p1 ◦ f [q :

Mq → P and p2 ◦ f [q : Mq → P , since they come from maps of sheaves,

are compatible with generization maps. In other words p1◦f [q : Mq → P

is the composition of Mq → Mη1q
→ P and similarly p2 ◦ f [q : Mq → P

is the composition of Mq →Mη2q
→ P

In other words the data of p1 ◦ f [q and p2 ◦ f [q is already determined
by the data at the generic points ηi of the curve.

The only data the node provides is the element ρq ∈ P and homomor-
phism uq : Mq → Z, in such a way that equation (4) holds. Therefore
the initial object is

Qf =

((∏
ηMση ×

∏
q N
) /

R

)sat
where R is generated by all the relations implied by equation (4).

It is quite a bit more natural to describe the dual lattice

Q∨f ={(
(vη), (eη)

)
∈
∏

ηNση ×
∏

q N
∣∣∣∣ ∀ η1

q
q // η2

q

v1
q − v2

q = ejuq

}
.

This has a beautiful interpretation in terms of tropical curves in the
fan of X, which I will describe if time permits. I am not sure I’ll have
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time to put this in any revision of these notes. (These are remarks 1.18
and 1.21 in Gross and Siebert’s paper.)

Department of Mathematics, Brown University, Box 1917, Provi-
dence, RI 02912, U.S.A.
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