satosies the condition in (2).

Proof of (1).
We work on Alo.
Theorem: An abelon group G is injudge
$$C \rightarrow H$$
 is
dissible ($\forall n \neq 0$, $\forall e pomp G \rightarrow G \rightarrow G$
Swytchne).
Pt: Suppose G is injudged, so that
 $O \rightarrow N \rightarrow M$ exact
jus Holm $_{2}(N,G) \rightarrow Horzy(N,G) \rightarrow O$ exact.
So $O \rightarrow NTb \stackrel{:}{\rightarrow} B$ exact
gues
 $Hom _{2}(2,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $\int \int_{V} \frac{v}{V}$
 $G \rightarrow NTb \stackrel{:}{\rightarrow} B$ exact
gues
 $Hom _{2}(2,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $\int \int_{V} \frac{v}{V}$
 $G \rightarrow N \rightarrow M$
 $Hom _{2}(2,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $\int \int_{V} \frac{v}{V}$
 $G \rightarrow N \rightarrow M$
 $Hom _{2}(2,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $Horz (NB,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $Horz (NB,G) \rightarrow Horzy(NB,G) \rightarrow O$
 $Horz (NB,G) \rightarrow Horz(NB,G)$
 $Horz (NB,G) \rightarrow Horz (NB,G)$
 $Horz (NB,G)$
 $Horz (NB,G) \rightarrow Horz (NB,G)$
 $Horz (NB,G) \rightarrow Horz (NB,G)$
 $Horz (NB,G)$

as follows: the set consists of pusts

$$(N', \Psi)$$
,
where $N \leq N' \leq M$, $\Psi: N' \rightarrow G$ with $\Psi|_{V} = \Psi_{H}$)
and
 $(N', \Psi') \perp (N', \Psi') \equiv N' \leq N''$ and
 $\Psi''|_{N'} = \Psi'$. Now given an asserbing dum
 $\cdots \geq (A_{i}, \Psi_{i}) \geq (A_{i+1}, \Psi_{in}) \perp \cdots$,
he form a max'l elt (A_{i}, Ψ) by
 $A \equiv \bigcup A_{i}$,
and $\Psi(\alpha) \equiv \Psi_{i}(\alpha)$ if $\alpha \in A_{i}$. So applying
Zorn's lemma, the poset (S, \bot) has a brayinal
chenent (H, Ψ) . We dare $H=M$. Ohuman,
Suppose $x \in M \setminus H$. We can exclude Ψ to $H + exp$
as follows: if $exp(M) = e$, then $H + exp = H(Bex)$
and there is the obvious ensured Ψ of G_{i} .
 $\exists g \in G \quad S.U$ and $= \Psi(nR)$; define $\Psi': H + exp = G$
by $\Psi'(R) = g$. This constradicts maximality of H , so $H=M_{i}///$

Hom_{TL}
$$(G_1, G_1T_2) \rightarrow Hon_{TL}(c_{97}, G_1T_2) \rightarrow 0;$$

by injecturity of G_1T_2 , so we only read to prove
lemma for cycler groups. Given n , find
 $Y \in Hom_{TL}(T_2, G_1T_2) = G_1T_2 \quad \text{with} \quad Y(1) = 1, so \quad Y(c_2) = 0,$
get $T_2 = G_1T_2 \quad \text{with} \quad Y(1) = 1, so \quad Y(c_2) = 0,$
 $J_1 = \frac{1}{2} \int_{T_2} \frac{1}{$

¥ +0.///

Required lemma:
Suppose I is as stated. The for any M,
the canonical wap
$$\eta: M \rightarrow h_2h_2(M)$$
 is injectule
PE: Let $K = Ker M$, so we have a diagram
 $K \longrightarrow M$
 $M_{K} \int M$
 $h_2h_2(M) \rightarrow h_2h_3(M)$.
Since I injecture, $h_3(M) \rightarrow h_3(K)$ is stretche,
so $h_2h_3(K) \longrightarrow h_3h_3(M)$ is injecture. By
commutativity of the disigram, thus there is

Now we prove (2).
Proof of (2): let M be a nonscrop R-module, we
what in injection
$$M \rightarrow J$$
 for some injective R-module
J. Fix I is in the statement. Find a free
nosolution
 $R^{(I)} \rightarrow h_I(M) \rightarrow O$
so as always,
 $O \rightarrow h_I h_I(M) \rightarrow h_I(R^{(I)})$
where $I (R^{(I)}) = II_{I} (R^{(I)})$

while $h_{I}(\mathbf{r}^{(f)}) = Hom_{\mathbf{r}}(\mathbf{r}^{(f)}, \mathbf{I}) \cong \prod \mathbf{I}$ is injective. Tweefore

Proof of (3): To finish, we need to show the existence
of an injustice R-module I see.
$$h_{I}(M) \neq 0$$

 $\forall M \neq 0$.
(Lam: I = Hom_{TL}(R, Q/TL) works.
F: For $M \neq 0$,
 $h_{I}(M) = Han_{R}(M, I) = Hom_{R}(M, Hom_{R}(R, Q, M, U))$
(tensor-here adjustion) $\equiv Hom_{R}(M, Q, TL)$
 $= Hom_{R}(M, Q, TL) \neq 0$.
Moreouter, the exactness of Hom_R(-, Q, TL)
Implies exactness of Hom_R(-, I). III