Math 161 0 - Probability, Fall Semester 2012-2013
Dan Abramovich

Continuous probabilities

Example 1: Consider a spinner.
You assume the angle is “random”
and record
X =a/2m) € 0,1).

What's the probability that X =
07

What'’s the probability that the spin-
ner’'s head lands in the top half, i.e.
X <1/27

Example 2: consider the square
{(z,y): 0 <2,y <1} = [0, 1] x[0, 1],
Assume the coordinates are chosen
“at random”. What's the probabil-
ity that y < 237
What’s the probability that
x? 42 < 17



In these examples we had €2 a set
of cardinality a continuum. It makes
no sense to require a positive proba-
bility for every w € ().

In this course we will allow no pos-
itive probability for any w € (0.

What's important in this case is that
there are measurable eventstor which
we might expect a positive probabil-
ity!

The rules of the game are spelled
out in our countable theorem:

(1) P(0) =0, P(Q2) = 1.

(2)0 < P(E) <1

(3) If A; are disjoint measurable events,
then P(UAZ) = ZZ P(AZ)

at least for finitely many A,



One case when this happens:

() = interval,

Measurable events: intervals, or fi-
nite unions of intervals.

And then set

P(E) = /E F(t) dt.

What do we need from such f(¢)?
(1) Riemann integrable.

(2) f(t) =20

(3) Jo f(t)dt =1

Uniform distribution: f = 1/Vol({?)
constant!
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Another case: €2 C R" a reasonable
domain, and

/ [ for sz da

The functlon f has to satisty pre-
cisely the same axioms as before.

For instance, when you play darts
on Q = {2 + y* < 1}, the uniform
choice of f would be f =1/m, so

1
—// —dz dy.
ET

Such a function is called a proba-
bility density function, and the
pair

(€2, f) will constitute a probability
space, though this is not the stan-
dard terminology:.

* dajn
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It X : Q — R is a continuous
function it will be a called a random
variable.

Even if ) is complicated, one can
oet simplified pictures using random
variables. But one needs some defi-
nitions and care as we'll see.

Cumulative distribution func-
tion:

Fx(z)=P(X <x).

If Q=R and X(w) = w we have
the tollowing relationship by the FTC:

Theorem.

Fa) = Fx(o) - [ ; £ dt

and

d

ZF(x) = f(

whenever defined.



Note: Q = [0, 1] with uniform den-
sity f = 1. Let X(¢) = t2. What is
the cumulative distribution?

Assume 0 < x < 1. Then

Fy(z)=P(X <z)=P(t’ < x)
—P(t< VT) = VE

This defines Fy(z) = y/x for 0 <
r < 1. We extend it for all = by
noting that P(X < 0) = 0 and
P(X >1)=0,so
(0 <0
Fy(z)=q vz 0<z<1
I z>1

\
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. d .

The function fx(r) = ZFx(r)isa

density function for R as a new prob-

ability space measuring the probabil-
ities of events in terms of X. So

P(X <x) = /:; fx(x)dz.

Note that in the last example fx(x)
1S not continuous.

Challenge: do the same with the
random variable Y = —logt.
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Example Alice and Bob arrive at
BMC between 10 and 11. Assume
cach arrives independently “at ran-
dom”. What'’s the cumulative distri-
bution function of the time the first
has to wait for the second?

Q) = [0,1]%, A = arrival of Alice;
B = arrival of Bob. Wish to study
X =|A-B|.

Fx(x)=P(|A-B| < z) = P(E;)

P(E;)=1-(1—z)*for0<z <1

What'’s the density?

0 x <0
fx(x)=<2-2x O0<z<1
0 l <z



Exponential distributions

B e M >0

Claim: this is a density function.

Challenge: What's the cumula-
tive distribution?

As we'll see this is a model for wait-
ing times for random occurrences (an
inconsiderate bus company).

It is “memory-less” - we’'ll come back
to this when we talk about condi-
tional probabilities.



Beautiful example: simulat-
ing contnuum by infinity of dis-
crete variables. Countably many
fair coin tosses. H =1, T= 0.

Q = {0, 1}, probability as “inde-
pendent variables” .

By, : © — {0, 1} the n-th coin toss

X=> Bp/2":Q—=R

What is F'x(0.19)7
Thisis P(B; =0) = 1/2

What is F'x(0.019)7
Thisis P(Bj = By=0) = 1/4

What is F'x(0.119)7
Thisis P(B;y =0o0r By =0) = 3/4

Inductively, if x is a finite binary
number then Fy(xr) = x, and by
continuity this will hold for every «!

Note: fx(z) = F ().

So F'x(x) is a uniform distribution!



