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FUNCTIONAL EQUATION FOR GENERALIZED ZETA FUNCTION

1. Intro

Recall, last week, David introduced the Riemann Zeta Function:

ζ(s) =
∞
∑

n=1

1

ns
=

∏

p prime

(1 + p−s)−1

which converges for Re(s) > 1, and he gave us an analytic continuation to the right half plane
Re(s) > 0.

But we want our zeta function to be meromorphic in all of C, so we need some sort of functional
equation to extend it in the other direction. We start by defining the gamma function

Γ(s) =

∫ ∞

0
e−yys

dy

y

which converges for Re(s) > 0. You may recall, either from undergrad number theory, or from last
lecture, that ζ satisfies the functional equation in K = Q

ζ(s) = π
s−1

2 Γ

(

1− s

2

)

ζ(1− s)Γ
(s

2

)−1

which we can also write as:

π
−1

2
sΓ
(s

2

)

ζ(s) = π
−1

2
(1−s)Γ

(

1− s

2

)

ζ(1− s)

so that you can see the symmetry. Thus, we can extend ζ meromorphically across all of C, where
the only pole is at s = 1 of residue 1. Note: this is the Zeta function for Q, so we want to define an
analogue for higher number fields.

2. Quick Proof of Q Case

We’re going to do a super-quick proof of the functional equation in Q, just to give you a sense of
how it works, because the generalization works similarly. We define

F (s) = π−s/2Γ
(s

2

)

ζ(s)

Then, we note that we can scale our variable y, like
∫ ∞

0
e−yys

dy

y
=

∫ ∞

0
e−ay(ay)s

dy

y

for a > 0, because e−yys−1 is absolutely integrable from 0 to ∞. You might wonder, why do we
care? So, now we have

Γ
(

s
2

)

as
=

∫ ∞

0
e−y

( y

a2

)s/2 dy

y

=

∫ ∞

0
e−a2y

(

a2y

a2

)s/2
dya2

a2y

=

∫ ∞

0
e−a2yys/2

dy

y

1
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Well, since

F (s) = π−s/2Γ
(s

2

)

ζ(s)

=
∞
∑

n=1

π−s/2n−sΓ
(s

2

)

=

∫ ∞

0

∞
∑

n=1

e−πn2yys/2
dy

y

And we define g(y) =
∑∞

n=1 e
−πn2y for notational brevity.

=

∫ 1

0
g(y)ys/2

dy

y
+

∫ ∞

1
g(y)ys/2

dy

y

= I + II

We do a change of variables on I, to get

I =

∫ 1

0
g(y)ys/2

dy

y
=

∫ ∞

1
g(1/y)y−s/2 dy

y

Here, we introduce the theta function

θ(y) =
∞
∑

−∞

e−n2πy

First, we note that 2g(y) = θ(y) − 1, so g(y) = 1
2(θ(y) − 1), and immediately from the Poisson

summation formula, we have θ(y−1) = y1/2θ(y). Then,

F (s) =

∫ ∞

1
g(1/y)y−s/2 dy

y
+

∫ ∞

1
g(y)ys/2

dy

y

=
1

2

∫ ∞

1
(θ(1/y)− 1)y−s/2 dy

y
+

1

2

∫ ∞

1
(θ(y)− 1)ys/2

dy

y

=
1

2

∫ ∞

1
(y1/2θ(y)− 1)y−s/2 dy

y
+

1

2

∫ ∞

1
(θ(y)− 1)ys/2

dy

y

=
1

2

∫ ∞

1
(θ(y)− 1)(y(1−s)/2 + ys/2)

dy

y
+

1

2

∫ ∞

1
(y(1−s)/2 − y−s/2)

dy

y

=

∫ ∞

1
(y(1−s)/2 + ys/2)g(y)

dy

y
− 1

1− s
− 1

s

which is clearly symmetric under s 7→ 1− s, so

F (s) = F (1− s)

π−s/2Γ
(s

2

)

ζ(s) = π(1−s)/2Γ

(

1− s

2

)

ζ(1− s)

3. Complicating Things A Bit: Number Fields

So, for a number field K, with [K : Q] = n, we define the Zeta function

ζK(s) =
∑

a

1

(Na)s
=

∏

p prime

(1− (Np)−s)−1

where we range a over the non-zero ideals of K and p over the prime ideals in K. David showed us
last week that this converges when ζQ does.
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So, a natural question arises: is there a similar functional equation for ζK? Yes, but it’s not quite
as nice. To get there, we’re going to restrict the zeta function a little bit: (don’t worry, we’ll bring
it back to normal at the end)

4. Ideal Class Group

Recalling that I is the multiplicative group of non-zero fractional ideals and P the subset of
principal ideals, we define I/P as the ideal class group. Letting K be an ideal class of I/P , we define

ζ(s,K) =
∑

a∈K

1

Nas

Note, that then we have

ζK(s) =
∑

K

ζ(s,K)

Then, let a ∈ K−1. Then, we have the map φ : b → ba−1 = (ξ), where b ∈ K, ξ ∈ a, since two
ideals are in the same class if they satisfy a = (α)b. We can easily see, then, that φ is a bijection
between ideals b ∈ K and the equivalence classes of nonzero elements of a. Let R(a) be a set of these
representatives: then,

Na−sζ(s,K) = Na−s
∑

b∈K

1

Nbs

=
∑

b∈K

1

(NbNa)s

=
∑

b∈K

1

N(ab)s
since norm is multiplicative

=
∑

ξ∈R(a)

1

Nξs
since φ is a bijection

So,

ζ(s,K) = Nas
∑

ξ∈R(a)

1

Nξs

Note, from here, we can write ξ = x1α1 + ...+ xnαn for {α1, ..., αn} a basis of a over Z. We’ll be
writing ξv = σvξ, where σv are the embeddings of K in R or C.

5. The Theorem, for one ideal class

As above, let K be an ideal class, where we’ll keep [K : Q] = n = r1+2r2, where r1 is the number
of real absolute values of K and r2 is the number of conjugate pairs of complex embeddings. We’ll
write DK for the absolute value of the discriminant of K. Define

A = 2−r2D
−1/2
K · π−n/2

Then, we define

F (s,K) = AsΓ
(s

2

)r1
Γ(s)r2ζ(s,K)

Let d be the different of K/Q, and let K′ be the ideal class denoted by d−1K−1. Then, F is analytic
except for simple poles at s = 0 and s = 1, and F satisfies the functional equation

F (s,K) = F (1− s,K′).
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6. The Proof, for one ideal class

6.1. The Gamma Function. We start by remembering the gamma function

Γ(s) =

∫ ∞

0
e−yys

dy

y

which converges for Re(s) > 0. Also, recall that we can scale our variable y, like
∫ ∞

0
e−yys

dy

y
=

∫ ∞

0
e−ay(ay)s

dy

y

for a > 0. So, now we have

Γ
(

s
2

)

as
=

∫ ∞

0
e−a2yys/2

dy

y

We then recall that Da = Na2DK , (this is the absolute value of the discriminant of a. Now, we’re
going to separate by our absolute values, putting real and complex as separate cases.

6.2. Case 1: Real. Let v be a real valuation. Set a2 = πD
−1/n
a |ξv|2. Then, we substitute this a2

in our equation above. So, we have
(

D
1/2n
K Na1/n√
π|ξv|

)s

Γ
(s

2

)

=

∫ ∞

0
e−πD

−1/n
a

|ξv|2yys/2
dy

y

6.3. Case 2: Complex. Let v be a complex valuation. Set a = 2πD
1/n
a |ξv|2. Then, we substitute

again, (also, we’re going to substitute 2s for s here, so that Γ will be over s, not s/2, and we find,
(

D
1/n
K Na2/n

2π|ξv |2

)s

Γ(s) =

∫ ∞

0
e−2πD

−1/n
a

|ξv|2yys
dy

y

Now, (noticing that we have almost the same expressions on the right,) we’ll use this to split up
F . First, we let y =

∏

v yv be our variable over the (r1 + r2)-space we’re creating, and this allows
dy
y =

∏

v
dyv
yv

to be our measure. Then, we have

AsΓ
(s

2

)r1
Γ(s)r2

Na2

Nξs
= (2−r2D

1/2
K π−n/2)sΓ

(s

2

)r1
Γ(s)r2

=

(

Γ
(s

2

) D
s/2n
K Nas/n

πs/2Nξs/n

)r1

·
(

Γ(s)
D

s/n
K Na2s/n

2sπsNξ2s/n

)r2

at this point, I’m going to switch from writing ey to exp(y), for clarity’s sake

=

∫ ∞

0
· · ·
∫ ∞

0
exp(

∑

that stuff above)||y||s/2 dy
y

=

∫ ∞

0
· · ·
∫ ∞

0
exp(−πD−1/n

a

∑

v

Nv|ξv|2yv)||y||s/2
dy

y

where here we have that Nv = the number of valuations conjugate to v, so Nv = 1 if v is real and 2
if v is complex.

We’re now going to sum over ξ ∈ R(a), so no two ξ are equivalent. Notice that this sum will
be absolutely and uniformly convergent for Re(s) > 1. Then, since ζ(s,K) = Nas

∑

ξ∈R(a)
1

Nξs , we

have that

F (s,K) = AsΓ
(s

2

)r1
Γ(s)r2ζ(s,K)

=

∫ ∞

0
· · ·
∫ ∞

0

∑

ξ∈R(a)

exp(−πD−1/n
a

∑

v

Nv|ξv|2yv) · ||y||s/2
dy

y
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6.4. Some Algebraic Manipulation. We then want to simplify, so instead of integrating n times
over R+, we’re going to integrate once over G = R+ × · · · × R+ =

∏

R+
v . (via chalkboard magic...)

We’re also going to change dy
y to the appropriate measure d∗y.

F (s,K) =

∫

G

∑

ξ∈R(a)

exp(−πD−1/n
a

∑

v

Nv|ξv|2yv) · ||y||s/2d∗y

We then investigate G: as usual, let U ⊂ K be the group of units, and let V ⊂ G be the image of
U under the map ψ : K → G defined by ψ(x) = (|xv|). (If we think about the kernel of this map,
it’s pretty easy to see that it’ll be the roots of unity.) If we let G0 = {y ∈ G : ||y|| = 1} be the set
of elements in G of norm 1, we have that V is a subgroup of G0, and G0/V is compact.

However, given any element y = (y1, ..., yn) ∈ G, we can also write y = ||y|| · c, where ||c|| = 1, so
we know that any y ∈ G can be rewritten as y = t1/nc = (t1/ncv), where t ∈ R+, c = (cv) ∈ G0. So,
G can also be written as the product G = R+ ×G0, and ||y|| = t. Then, we have that

F (s,K) =

∫ ∞

0

∫

G0

∑

ξ∈R(a)

exp(−πD−1/n
a

∑

v

Nv|ξv|2t1/ncv) · ts/2d∗c
dt

t

noting that d∗c is the appropriate measure on G0. We then need one more manipulation (aside: one
of the best descriptions of number theory proofs: A number theorist sits down with an expression.
Rearranges it once. Rearranges it twice. Rearranges it a third time and exclaims, I’ve proved
something!) We can define E as the fundamental domain of V 2 in G0. (a fundamental domain is
a collection of representatives, one each from the orbits created by multiplying by elements in V 2)
So, by definition,

G0 =
⋃

η∈V

η2E

So, we can change the integral over G0 to be over E: let w be the number of roots of unity in K,
we now switch our c to be in E

F (s,K) =

∫ ∞

0

∫

E

1

w

∑

η∈V

∑

ξ∈R(a)

exp(−πD−1/n
a

∑

v

Nv|ξv|2t1/n(η2cv)) · ts/2d∗c
dt

t

and since ηv = |uv|, we can pull this term inside our absolute value

=

∫ ∞

0

∫

E

1

w

∑

u∈U

∑

ξ∈R(a)

exp(−πD−1/n
a

∑

v

Nv|uvξv|2t1/ncv) · ts/2d∗c
dt

t

6.5. The Theta Function: Hecke. Maybe we’re going to rewrite this expression more than just
three times...to rewrite it this time, we’re going to need to introduce a new function, thanks to
Hecke: Let c1, ..., cn be positive real numbers, such that cr1+v = cr1+v+r2 , so we have r1 individual
values and r2 pairs of values. We keep the same definition of Da. Recall that ξ = x1α1 + ...+ xnαn

for αi a basis of a over Z. Furthermore, we’re going to let j ∈ (1, r1 + 2r2) be the indices for the

conjugates of K in C, so we can write ξ(j) = x1α
(j)
1 + ...+ xnα

(j)
n . Then, define

Θ(c, a) =
∑

x∈Zn

exp



−πD−1/n
a

n
∑

j=1

cj |ξ(j)|2




Thus, Θ satisfies the functional equation

Θ(c, a) =
1√

c1 · · · cn
Θ(c−1, a′)

where we use c−1 to denote c−1
1 , ..., c−1

n . Do you want to see the proof? If not (please), it’s just a
quick application of the Poisson summation formula.
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6.6. Back to Our Formula. So, since we’re summing over u and ξ both, we’re pretty much
summing over almost everything, with the exception of ξ = 0. Thus, we can rewrite our formula as,

F (s,K) =

∫ ∞

0

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t

(make sure you keep theta function on the board). We’re then going to split up our integral into
two parts, since we want to use this new functional equation we got for the Theta function:

F (s,K) =

∫ 1

0

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t
+

∫ ∞

1

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t

=

∫ 1

0

∫

E

1

w
Θ(t1/nc, a) · ts/2d∗cdt

t
+

∫ 1

0

1

w
ts/2d∗c

dt

t
+

∫ ∞

1

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t

=

∫ 1

0

∫

E

1

w
[Θ(t1/nc, a)] · ts/2d∗cdt

t
+
µ∗(E)2

ws
+

∫ ∞

1

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t

= I + II + III

where we’re setting µ∗(E) to be the measure of E under d∗c. Then, we use the functional equation
for Theta, noting that

Θ(t1/nc, a) =
1√
t
Θ(t−1/nc−1, a′)

since c ∈ G0, so ||c|| = 1. So, looking just at I, we have
∫ 1

0

∫

E

1

w
Θ(t1/nc, a) · ts/2d∗cdt

t
=

∫ 1

0

∫

E

1

w

[

1√
t
Θ(t−1/nc−1, a′)

]

· ts/2d∗cdt
t

=

∫ 1

0

∫

E

1

w

[

1√
t
Θ(t−1/nc−1, a′)− 1

]

· ts/2d∗cdt
t
+

µ∗(E)2

w(1 − s)

We then do a change of variables, letting τ = 1/t, so we have dτ = −dt/t2. Note that we can change
c−1 to c, since d∗c is invariant under that change. (doesn’t care)

= −
∫ 1

∞

∫

E

1

w

√
τΘ(τ1/nc, a′) · τ−s/2d∗cτ

−dτ
τ2

+
µ∗(E)2

w(1− s)

=

∫ 1

∞

∫

E

1

w
Θ(t1/nc, a′) · t(1−s)/2d∗c

dt

t
+

µ∗(E)2

w(1− s)

=

∫ 1

∞

∫

E

1

w
[Θ(t1/nc, a′)− 1] · t(1−s)/2d∗c

dt

t
+

µ∗(E)2

w(1− s)

Then, we have that

F (s,K) =

∫ ∞

1

∫

E

1

w
[Θ(t1/nc, a) − 1] · ts/2d∗cdt

t
+
µ∗(E)2

ws

+

∫ 1

∞

∫

E

1

w
[Θ(t1/nc, a′)− 1] · t(1−s)/2d∗c

dt

t
+

µ∗(E)2

w(1− s)

since this is the same for s 7→ 1−s and a 7→ a′, we have the functional equation F (s,K) = F (1−s,K′)!
Note here that both integrals converge absolutely for all complex s, with the exception of the two
simple poles at s = 0 and s = 1.

7. Going Back to General

Recall, a while back, we had

ζK(s) =
∑

K

ζ(s,K)
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Similarly, we’ll define

FK(s) =
∑

K

F (s,K) = AsΓ
(s

2

)r1
Γ(s)r2ζK(s)

From our proof above, we can easily see that

FK(s) =
∑

K

F (s,K) =
∑

K

F (1− s,K′) =
∑

K

F (1− s,K) = FK(1− s)

by reordering the ideal classes. So,

AsΓ
(s

2

)r1
Γ(s)r2ζK(s) = A1−sΓ

(

1− s

2

)r1

Γ(1− s)r2ζK(1− s)


