(1) Let A be a ring. Show that if A_{p} is reduced for every prime p then A is reduced.
(2) Give an example of an integral $B \supset A$ and a prime P_{B} over P_{A} such that $B_{P_{B}}$ is not integram over $A_{P_{A}}$.
(3) Let M be a torsion module over a Dedekind domain A. Show that $M=\oplus_{i=1}^{k} A / p_{i}^{r_{i}}$ for some primes p_{i} and integers r_{i}.
(4) Is the number $(3+2 \sqrt{6}) /(1-\sqrt{6})$ an algebraic integer?
(5) Show that if A is integrally closed then $A[X]$ is integrally closed.
(6) For a square free $D \in \mathbb{Z}$ find the ring of integers $\mathcal{O}_{\mathbb{Q}(\sqrt{D})}$.
(7) Show that $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})}=\mathbb{Z}[\sqrt[3]{2}]$. How about $\mathcal{O}_{\mathbb{Q}\left(\sqrt[3]{2 \cdot 5^{2}}\right)}$? (Take some traces.)
(8) If A a Dedekind domain, I a nonzero ideal, and $c \in C l(A)$. Then there is an ideal $J \in c$ which is prime to I.
(9) Suppose A Dedekind with field K, and $L, L^{\prime} / K$ separable extensions inside \bar{K}, and $P \subset A$ totally splits in L and in L^{\prime}. Then P is totally splits in the compositum $L L^{\prime}$.
(10) Suppose A Dedekind with field K, and L / K a separable extension. Then $P \subset A$ totally splits in L if and only if it is totally split in its Galois closure.

