- (1) Let A be a ring. Show that if A_p is reduced for every prime p then A is reduced.
- (2) Give an example of an integral $B \supset A$ and a prime P_B over P_A such that B_{P_B} is not integram over A_{P_A} .
- (3) Let M be a torsion module over a Dedekind domain A. Show that $M = \bigoplus_{i=1}^{k} A/p_i^{r_i}$ for some primes p_i and integers r_i .
- (4) Is the number $(3+2\sqrt{6})/(1-\sqrt{6})$ an algebraic integer?
- (5) Show that if A is integrally closed then A[X] is integrally closed.
- (6) For a square free $D \in \mathbb{Z}$ find the ring of integers $\mathcal{O}_{\mathbb{Q}(\sqrt{D})}$.
- (7) Show that $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2})} = \mathbb{Z}[\sqrt[3]{2}]$. How about $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2\cdot 5^2})}$? (Take some traces.)
- (8) If A a Dedekind domain, I a nonzero ideal, and $c \in Cl(A)$. Then there is an ideal $J \in c$ which is prime to I.
- (9) Suppose A Dedekind with field K, and L, L'/K separable extensions inside \overline{K} , and $P \subset A$ totally splits in L and in L'. Then P is totally splits in the compositum LL'.
- (10) Suppose A Dedekind with field K, and L/K a separable extension. Then $P \subset A$ totally splits in L if and only if it is totally split in its Galois closure.