Math 52 0 - Linear algebra, Spring Semester 2012-2013

Dan Abramovich

Review

We saw: an **algorithm** - row reduction, bringing to reduced echelon form - answers the questions:

- **consistency** (no pivot on right)
- dimension (count free variables)
- write all solutions:
- free variables **arbitrary**
- **basic** variable x_i appearing as pivot in row k: the equation says

←reduced echelon...

$$x_i + a_{k i+1} x_{i+1} + \dots a_{kn} x_n = b_k$$

$$x_i = b_k - (a_{k i+1} x_{i+1} + \dots a_{kn} x_n).$$

Theorem said: reduced echelon form is **unique**.

people asked if we get the same thing!! \rightarrow

we may! \rightarrow

Say x_j is a free variable. Set $x_j = 1$ and all other free variables to be 0. This determines all the basic variables. We get the equation

$$x_i + 0 + \dots + 0 + \boxed{a_{kj} \cdot 1} + 0 + \dots = b_k,$$

$$x_i + \boxed{a_{kj} \cdot 1} = b_k,$$

which means

$$\overline{|a_{kj}|} = b_k - x_i.$$

This determines U, given which variables are free!

and which basic \rightarrow

To determine that it is best to think in terms of *vectors*.

Vectors

A *column* vector is a matrix with one column. Here is a 3-vector:

 $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

The order of the entries does matter.

Basic operations:

1. addition - you add two vectors of the same size and get again a vector of the same size:

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} e \\ f \\ g \end{bmatrix} = \begin{bmatrix} a+e \\ b+f \\ c+g \end{bmatrix}$$

do example \rightarrow

2. rescaling, or multiplication by a scalar:

$$d \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} da \\ db \\ dc \end{bmatrix}$$

Notation issues: different texts and different people use different nota-

tions. I grew up with $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Vectors are also denoted in different ways:

$$\vec{x}, \overline{x}, \underline{x}$$
 or \mathbf{x} .

Get used to it!

Given a coordinate system, 2-vectors correspond to points in the plane. 3-vectors to points in space. We can interpret the basic operations of addition and rescaling - you may have seen this in calculus.

 $examples! \rightarrow$

The vector of all zeros is the zero vector, denoted ${\bf 0}$

but we will imagine --

n-vectors? we give up imaging them. Physicists know that they do appear in nature. So do computer scientists.

The operations have the usual properties (p27):

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

$$\mathbf{u} + \mathbf{0} = \mathbf{u} = \mathbf{0} + \mathbf{u}$$

$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

$$(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

$$1\mathbf{u} = \mathbf{u}.$$

we'll see these as axioms for a **vec- tor space**

a most important $notion \rightarrow$

linear combination.

we say that the vector

$$c_1\mathbf{v}_1 + \cdots + c_k\mathbf{v}_k$$

is a linear combination of the vectors

$$\mathbf{v}_1, \dots, \mathbf{v}_k.$$

The set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is their **span**.

Example:

All plane vectors are linear combi-

nations of
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Question: is the vector
$$\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

a linear combination of
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{a}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$?

Namely are there x_1, x_2 so that we have the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}?$$

 \leftarrow do this

A vector equations

$$x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

is equivalent to the system of linear equations with augmeted matrix

$$\begin{bmatrix} \vdots & \vdots & & \vdots & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n & \mathbf{b} \\ \vdots & \vdots & & \vdots & \vdots \end{bmatrix}$$

It answer the question:

In what ways is **b** a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$?

Uniqueness of reduced echelon form, one more step:

We need to determine basic variables, so pivot columns.

In an echelon form U, the k-th column is a pivot column exactly if it is not a linear combination of the previous columns.

still need to show: the same holds on A!!

The equation Ax = bDefinition

Say $m \times n$ matrix A has columns

$$\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n, \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Then $A\mathbf{x} = x_1\mathbf{a}_1 + \cdots + x_n\mathbf{a}_n$ Do this:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Note: matching n, result is an m vector.

justify notation \rightarrow

The system of linear equations with augmeted matrix

$$\begin{bmatrix} \vdots & \vdots & & \vdots & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n & \mathbf{b} \\ \vdots & \vdots & & \vdots & \vdots \end{bmatrix}$$

Is equivalent to the vector equation

$$A\mathbf{x} = \mathbf{b}$$
.

Do this

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

Theorem. A an $m \times n$ matrix. The following are equivalent:

- (1) $A\mathbf{x} = \mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^m$
- (2) every \mathbf{b} is a linear combination of columns of A

(3) The echelon form of A has a pivot in every row.

Proof.

columns span $\mathbb{R}^m \to$

alternative rules

row rule:
$$A = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_m \end{bmatrix}$$
 then

$$A\mathbf{x} = \begin{bmatrix} \mathbf{r}_1 \mathbf{x} \\ \vdots \\ \mathbf{r}_m \mathbf{x} \end{bmatrix}$$

Completely explicitly

$$A\mathbf{x} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j}x_j \\ \sum_{j=1}^{n} a_{2j}x_j \\ \vdots \\ \sum_{j=1}^{n} a_{nj}x_j \end{bmatrix}$$

linearity of operation Theorem:

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
$$A(c\mathbf{u}) = cA\mathbf{u}$$

Proof. (1)

[a₁ a₂ ... a_n]
$$\begin{pmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \end{bmatrix} \begin{bmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

$$= (u_1 + v_1)\mathbf{a}_1 + \dots + (u_n + v_n)\mathbf{a}_n$$

$$= (u_1\mathbf{a}_1 + \dots + u_n\mathbf{a}_n)$$

$$+ (v_1\mathbf{a}_1 + \dots + v_n\mathbf{a}_n)$$

$$= A\mathbf{u} + A\mathbf{v}$$

Vector form of solutions

We looked at the system given by augmented matrix

$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

which has reduced echelon form

$$\begin{bmatrix}
1 & 0 & -3 & 0 & 5 \\
0 & 1 & 2 & 0 & -3 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

The original system is $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3 \\ 1 & 4 & 5 & -9 \end{bmatrix}; b = \begin{bmatrix} 9 \\ 1 \\ -1 \\ -7 \end{bmatrix}$$

Start with the associated **homogeneous** equation

$$A\mathbf{x}_h = \mathbf{0}.$$

which has reduced echelon form

$$\begin{bmatrix}
1 & 0 & -3 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

and solutions $x_1 = 3x_3, x_2 = -2x_3, x_4 =$ 0.

In vector form:

$$\mathbf{x}_{h} = \begin{bmatrix} 3x_{3} \\ -2x_{3} \\ x_{3} \\ 0 \end{bmatrix} = x_{3} \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

$$= x_{2}\mathbf{v}_{1}$$

at least there is always the trivial solution 0!

The original system has solutions $x_1 = 5+3x_3, x_2 = -3-2x_3, x_4 = 0.$

$$\mathbf{x} = \begin{bmatrix} 5 + 3x_3 \\ -3 - 2x_3 \\ x_3 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

$$=: \mathbf{p} + x_3 \mathbf{v}_1$$

This is called a paprametric vector solution.

Do this:
$$A\mathbf{x} = \mathbf{b}$$
 with $A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{pmatrix} x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$$

Always: "particular" + "general homogeneous".

Theorem. If \mathbf{p} is one solution of $A\mathbf{x} = \mathbf{b}$, then \mathbf{x} is a solution if and only if it is of the form $\mathbf{x} = \mathbf{p} + \mathbf{x}_h$, where \mathbf{x}_h satisfies $A\mathbf{x}_h = \mathbf{0}$.

Proof.

Example: a chemical reaction combines a number of Al_2O_3 molecules and a number of C atoms resulting in an amount of Al and an amount of CO_2 . What can we say about these amounts?

amounts?
$$x_{1} \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x_{3} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

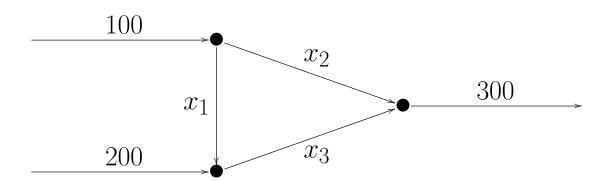
$$A\mathbf{x} = \mathbf{0}, \text{ where } A = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 3 & 0 & 0 & -2 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$
(Do this)

$$\begin{bmatrix} 1 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -4/3 \end{bmatrix}$$

Reduced echelon:
$$\begin{bmatrix} 1 & 0 & 0 & -2/3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -4/3 \end{bmatrix}$$
so $\mathbf{x} = x_4 \begin{bmatrix} 2/3 \\ 1 \\ 4/3 \\ 1 \end{bmatrix}$

To get integers take $x_4 = 3$ and get $2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2.$

netweork:



$$x_1 + x_2 = 100$$

 $x_1 - x_3 = -200$
 $x_2 + x_3 = 300$

The bottom two are the reduced echelon

$$x_{1} - x_{3} = -200$$

$$x_{2} + x_{3} = 300$$

$$\mathbf{x} = \begin{bmatrix} -200 \\ 300 \\ 0 \end{bmatrix} + x_{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

INDEPENDENCE

Consider the vector equation

$$x_1\mathbf{v}_1 + \dots + x_n\mathbf{v}_n = \mathbf{0}.$$

Definition. The vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ are

- linearly independent if the only solution is $\mathbf{x} = \mathbf{0}$, and
- linearly dependent if there is a nonzero solution.

←discuss explicitly

Examples: dependent or independent?

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}?$$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}?$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}?$$

When is \mathbf{v} linearly dependent?

What does it mean for $\mathbf{v}_1, \mathbf{v}_2$ to be linearly dependent?

Similar for $\mathbf{v}_1, \dots, \mathbf{v}_n$ to be linearly dependent?

Theorem

 $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent if and only if at least one of them is in the span of the others.

Proof.

 \leftarrow do it now

Columns of
$$\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$
?

Proposition. The columns of A are linearly independent if and only if

$$A\mathbf{x} = \mathbf{b}$$

has only the trivial solution.

Proof.

do it now \rightarrow

Theorem If \mathbf{v}_i are m-vectors, and n > m, then $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent.

Proof.

 \leftarrow do it now