
Math 52 0 - Linear algebra, Spring Semester 2012-2013
Dan Abramovich

Review: we understood linear
transformations and matrices.

2.1 Matrix operations

Matrices behave in many ways like
vectors:

you can add two matrices of the
same dimensions term by term: a11 · · · a1n

... . . . ...
am1 · · · amn

+

 b11 · · · b1n
... . . . ...

bm1 · · · bmn


=

 (a11 + b11) · · · (a1n + b1n)
... . . . ...

(am1 + bm1) · · · (amn + bmn)
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or multiply by a scalar:

c

 a11 · · · a1n
... . . . ...

am1 · · · amn

 =

 ca11 · · · ca1n
... . . . ...

cam1 · · · camn


Example:

do this now→

2

([
1 2
3 4

]
+

[
1 0
1 1

])
=
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There is a more delicate operation
- matrix multiplication. The rule for
multiplying matrices AB is similar
to that of multiplying a vector Ax :

First the matrix B should have as
many rows as A has columns. So
you multiply an m× n matrix A by
an n× k matrix B ←draw it
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If the columns of B are b1, . . .bk
then

AB =
[
Ab1 . . . Abk

]
.

“the j-th column of AB is A mul-
tiplied by the jth column of B”

Example
do it now→ [

1 0 1
1 1 2

]0 1
1 0
0 2

 =
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Justification for definition: think about
composing linear transformations.

This is the only way we get

A(Bx) = (AB)x ←prove it
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Other rules, in particular the Row
column rule

draw it→

(AB)ij = ai1b1j + · · · + ainbnj

Also the row rule:

“The i-th row of AB is the i-th
row of A multiplied by B.”
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Wonderful:

Theorem

A(BC) = (AB)C
A(B + C) = AB + AC
(A + B)C = AC + BC
c(AB) = (cA)B = A(cB)

The proof of the first is interesting! ←do it
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The idenity matrix In
The square matrix

In =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


behaves a bit like the number 1:

Theorem:

AIn = A, InB = B

whenever the sizes fit!
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The transpose of a matrix

AT is obtained by flipping around
the diagonal. ←draw it

a1j
...
...

ai1 · · · aij · · · · · · ain
...

amj



T

=



ai1
...

a1j · · · · · · aij · · · amj
...
...
ain


so (AT )ji = Aij
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Example
do it now→ [

1 0 1
1 1 2

]T
=

0 1
1 0
0 2

T =

0 1
1 0
0 2

T [1 0 1
1 1 2

]T
=
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Theorem:

(AB)T = BTAT
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2.2 The inverse of a square
matrix It is interesting to find an
analogue of a reciprocal of a matrix.
Can only do it if the matrix is square:

Defnition: an n× n matrix A is
invertible if there is a matrix V such

temporary name→

that
AV = V A = In.

Also known as nonsingular (if not
invertible it is “singular”)

The matrix V is then unique, and
is denoted

A−1
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For 2× 2 there is a simple formula,
which you get by solving algebraic
equations:a b

c d

−1

=
1

ad− bc

 d −b

−c a


In fact the matrix is invertible pre-

cisely when the 2×2 determinant

detA = ad− bc

is nonzero.

In higher dimensions, determinants
exist, are important, but are a terri-
ble computational tool in general.
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1 2
2 5

]−1

=?

[
1 2
2 4

]−1

=?
do these now→
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Theorem Suppose A is invertible.
Then the matrix equation Ax = b
always has solution x = A−1b.

Solve[
1 2
2 5

] [
x
y

]
=

[
1
1

]
←do these now

Proof.
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Theorem

(A−1)−1 = A

(AB)−1 =

what is it?→

(AT )−1 = (A−1)T
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Elementary matrices: what you
get if you do one row operation to
In:

e.g. a replacement

E1 =


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
5 0 · · · 1


a switch

E2 =


1 0 · · · 0
0 0 · · · 1
... ... . . . ...
0 1 · · · 0


rescaling

E3 =


1 0 · · · 0
0 3 · · · 0
... ... . . . ...
0 0 · · · 1
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Key observation Consider ele-
mentary matrix E of a certain row
operation. Then EA is the matrix
obtained from A by the same row
operation.

E.G.:[
1 0
5 1

] [
1 2
3 4

]
=

do it→

Elementary matrices are in-
vertible!

do Ei→
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Theorem a n× n matrix A is in-
vertible if and only if it is row equiv-
alent to In.

Proof ←two ways!
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Algorithm:

A is invertible if and only if the ma-
trix

[ A I ]

is row reduced to the form

[ I A−1 ].

(same as solving Ax = ei for all ei)

[
1 2 1 0
2 5 0 1

]
⇒

do it→
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2.3
When is a matrix invertible?

Theorem. T.F.A.E. for n × n
matrix A:
(1) A is invertible
(2) A is row equivalent to In
(3) A has n pivot positions
(4) The only solution of Ax = 0 is x = 0
(5) a1, . . . , an are linearly independent
(6) The transformation x 7→ Ax is 1-to-1.
(7) Ax = b is consistent for all b ∈ Rn.
(8) Span(a1, . . . , an) = Rn

(9) The transformation x 7→ Ax is onto.
(10) There is C such that CA = In
(11) There is D such that AD = In
(12) AT is invertible
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Instructor’s notes:
one of many paths→

(1),(2),(3) are equivalent from the
last theorem.

(3),(4),(5) are equivalent as discussed
about independence

(6),(7),(8) are equivalent as discussed
about linear combinations

(1) and (12) are equivalent by trans-
pose theorem

(3) and (4) are equivalent by linear
equations

(3) and 7) are equivalent by linear
equations

(1) implies (10), and (10) implies
(4) by plugging in

(12) implies (11) by transposing twice.

(11) implies (7) by plugging in.
do them→
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Theorem A linear transformation
is invertible if an only if the associ-
ated matrix is.

Proof.
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Block matrices / partitioned
matrices:

If two matrices are subdivided in a
way that can be multiplied, you can
multiply as written:

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]

=


A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22


Note: keep the order!
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Most important case: the in-
verse of a block diagonal matrix:

A =


A11 0 · · · 0

0 A22 · · · 0
... ... . . . ...
0 0 · · · Akk


where Ajj are square (and all the

0s are really matrices!). Then

A−1 =


A−1

11 0 · · · 0

0 A−1
22 · · · 0

... ... . . . ...

0 0 · · · A−1
kk


Example: 1 2 0

2 5 0
0 0 3

−1

=



26

My architect friends use linear al-
gebra without knowing it:

they need to describe at the very
least

(1) rotations
(2) reflections
(3) rescaling
(4) Shears - occur as more exotic trans-

formations for special effects.
(5) parallel projections
(6) translations
(7) Stereographic (perspective) pro-

jections
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rotations in the plane:[
cos θ − sin θ
sin θ cos θ

]

rotation around, say y axis in space:
cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


(Other axes come with the theory

of eigenvalues!)
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Reflection, say through x axis in
plane: [

1 0
0 −1

]
through x = y:[

0 1
1 0

]
Through x = y in space:0 1 0

1 0 0
0 0 1


parallel projection on x−y plane

in space: 1 0 0
0 1 0
0 0 0


what about translation etc??
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Trick: add new coordinate 1

(put everything in a plane at dis-
tance 1).

These are “homogeneous” or “pro-
jective” coordinates.

The plane: (x, y) 7→ (x, y, 1).

Then translation by (a, b) becomes
a linear transfomation:1 0 a

0 1 b
0 0 1

xy
1

 =

 
Can do the same in space - move 1

away in 4th dimension!

The other transformation don’t re-
ally change - only another row/column
with 1 in corner.
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Geometers think about (x, y, 1) as
representing the whole line of view
(X, Y,H) where x = X/H and y =
Y/H .

Read about perspective projections.
This is the beginning of projective
geometry.

Projective geometry is the begin-
ning of algebraic geometry, my
subject.


