Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich

Determinants

The determinant of a square matrix A determines whether or not it is invertible.

We have seen the 2×2 determinant:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

In multivariable calculus we teach about 3×3 determinants:

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix}$$

$$+ a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

If we write A_{ij} for the matrix with row i and column j removed, this reads:

$$\det A =$$

$$a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$$
.

 $\begin{array}{c} \text{examples and} \\ \text{pictures} \rightarrow \end{array}$

 \leftarrow do 4×4

In general one defines for an $n \times n$ matrix:

$$\det A =$$

$$a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum (-1)^{1+j} a_{1j} \det A_{1j}.$$

you can expand by any row. It is convenient to define the **cofactors**

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$

and then

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in}$$

Also

$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj}$$

To prove this, you can go through a formula using generalized diagonals, which we will skip.

You almost never calculate large determinants by expansion! We'll see how to do it faster.

The one and only easy case: If A is triangular, then

$$\det A = a_{11} \cdot a_{22} \cdots a_{nn}$$

This works for echelon forms, and two types of elementary matrices!

Determinants and row operations

Theorem 3a

Start with A.

If you make a replacement - add a multiple of row i to another row j, getting B, then

$$\det B = \det A$$

In terms of matrices:

$$\det(EA) = \det A$$

Note that $\det E = 1$ so

$$\det(EA) = \det E \det A$$

Theorem 3b

Start with A.

If you switch row i and row j getting B, then

$$\det B = -\det A$$

In terms of matrices:

$$det(EA) = -\det A$$
this time $\det E = -1$ so

$$\det(EA) = \det E \det A$$

Theorem 3c

Start with A.

If you multiply row i by constant c getting B, then

$$\det B = c \det A$$

In terms of matrices:

$$\det(EA) = c \det A$$
this time $\det E = c$ so

$$\det(EA) = \det E \, \det A$$

Calculating the determinant

Say you bring A to echelon form U, no rescalings. Say you used r switches precisely.

Then $\det A = (-1)^r \det U$.

So:

- If A is singular, $\det A = 0$.
- If A is invertible, $\det A = (-1)^r (\text{product of pivots in } U)$

Two beautiful theorems:

Theorem A is invertible if and only if $\det A \neq 0$.

Theorem $\det AB = \det A \det B$. Proof: Cramer's rule for $A\mathbf{x} = \mathbf{b}$.

Denote by $A_i(b)$ the matrix where the *i*-th column of A is replaced by **b**.

example $I_i(\mathbf{b}) \rightarrow$

Theorem. Assume A invertible. Then

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}$$

 $\mathbf{example} {\rightarrow}$

Proof

a formula for the inverse

$$(A^{-1})_{ij} = \frac{\det A_i(\mathbf{e}_j)}{\det A}$$

but
$$\det A_i(\mathbf{e}_j) = C_{ji}$$

←draw it

Write adj(A) for the matrix whose ij-entry is C_{ji}

(transpose the matrix of C's)

Then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj}(A)$$

What does the determinant signify geometrically?

 2×2 :

 $|\det A|$ signifies area of parallelogram.

 3×3 :

 $\det A$ signifies area of whatsit.

Reason: elementary matrices!

Consequence: S a finite area plane region, T a linear transformation. Then

$$Area(T(S)) = \det T \cdot Area(S).$$

 \leftarrow explain

This is the reason for the change of variable formula!