
Math 52 0 - Linear algebra, Spring Semester 2012-2013
Dan Abramovich

Fields.

We learned to work with fields of
numbers in school:

Q = fractions of integers ←hardest in school

R = all real numbers, represented
by infinite decimal expansions.

C = complex numbers, written as
{a + b

√
−1, where a, b ∈ R}.

These satisfy the usual commuta-
tivity and associativity of addition
and multiplication, they have 0 and
1, oppostites−x and inverses of nonzero
elements 1/x, and satisfy distribu-
tivity.
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Note: Z = all integers is not a field
why→

N = positive integers even more so

math 153 0→

Also note that Q ⊂ R ⊂ C are
subfields, since they are closed un-
der all operations, including negatives
and inverses.

You can’t be a computer scien-
tist without working also with the
field

F2 = {0, 1},
with usual multiplication and boolean
addition defined by 1 + 1 = 0.

Is F2 a subfield of Q?

YOU MUST NOW BECOME
a bit of a→
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A MATHEMATICIAN←preach

Fix a field F- almost always we’ll
work with F = R. Elements of the
field will be called scalars.

Definition. A vector space is
a set V with two operations: addi-
tion

V × V //V

(v, w) � // v + w

and multiplication by scalars

F× V //V

(c, v) � // cv

satisfying axioms: ←big breath
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satisfying axioms: for all u,v,w ∈
V , c, d ∈ F
(1) v + w = w + v;
(2) (u + v) + w = u + (v + w);
(3) there is 0 ∈ V such that

0 + v = v;
(4) there is −v ∈ V such that
−v + v = 0;

(5) c(u + v) = cu + cv;
(6) (c + d)(v) = cv + dv;
(7) (cd)(v) = c(dv); and
(8) 1v = v.
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examples

Rn is an R-vector space. ←of dimension n
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examples

Rn is an R-vector space.
of dimension n→

Qn is a Q-vector space.
of dimension n→

Cn is a C-vector space.
of dimension n→

Fn2 is a F2-vector space.
of dimension n→
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examples

Rn is an R-vector space. ←of dimension n

Qn is a Q-vector space. ←of dimension n

Cn is a C-vector space. ←of dimension n

Fn2 is a F2-vector space. ←of dimension n

C is an R-vector space ←what?

R is a Q-vector space ←huh?
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The collection of all real valued func-
tions on a set S, say S = [0, 1], is a
real vector space.
Notation: RS.

The collection of all continuous
real valued functions on, say S = R,
is a real vector space.
Notation: C(R).

The collection of all differentiable
real valued functions on, say S = R,
is a real vector space.
Notation: C1(R).
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The collection of all polynomials
in variable t ∈ R, is a real vector
space.
Notation: R[t].
Book’s notation: P. ←yuck

The collection of all polynomials
in variable t ∈ R of degree at most
n, is a real vector space.
Book’s notation: Pn. ←ouch
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Definition. A subset W ⊂ V is
a subspace of V if it is closed un-
der addition and multiplication by
scalars.

examples: W = V is a subspace;
W = {0} is a subspace.

Many examples above!

When is a line in R3 a subspace?
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We use the word vector for an el-
ement in a vector space.

Can we talk about a linear com-
bination of vectors

v1, . . . ,vn ∈ V ?

Can we talk about the span of vec-
tors

v1, . . . ,vn ∈ V ?
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Let’s tie these together:

Theorem. The span of a set of
vectors in V is always a subspace of
V .

Theorem. A subset W ⊂ V is
a subspace if and only if it is closed
under taking linear combinations.
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The fundamental subspaces.

Say A is m × n real matrix. So
it gives a linear transformation from
Rn to Rm.

Definition. The null space of A,
denoted

Null A ⊂ Rn,
is the set of solutions of

Ax = 0.
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Theorem.

Null A is a subspace of Rn.

Proof.
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Example: line in R3 through 0: ←stress advantages

x1 − x3 = 0
x2 − x3 = 0

Parametric, or explicit, equation:

x = t

1
1
1

 .
Example: plane in R3 through 0:

x1 − x2 − x3 = 0

Parametric, or explicit, equation:

x = s

1
1
0

 + t

1
0
1

 .
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Definition The column space Col A ⊂
Rm of

A = [a1 · · · an]

is the span of the columns a1, . . . , an.

So we do not need a new theorem:
Col A ⊂ Rm is a subspace.

Interpretation: Col A is the set of
b ∈ Rm for which the equation

Ax = b

has a solution.

So: the set of b ∈ Rm for which
the equation Ax = b has a solution
is a subspace!
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Definition. Suppose V,W are R-
vector spaces.

A linear transformation

T : V → W

is a function such that

• T (u + v) = T (u) + T (v) and
• T (cu) = cT (u).

Examples:

- matrices

- derivatives

- integrals
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The corresponding notions:

Ker T = {x ∈ V : T (v) = 0} ⊂ V

corresponds to Null A,

Range T = {T (v) : v ∈ V } ⊂ W

corresponds to Col A
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Linear independence

A set of vectors {v1, . . . ,vn} in a
vector space V is linearly depen-
dent if there are scalars c1, . . . , cn,
not all 0, such that

c1v1 + · · · + cnvn = 0.

Otherwise it is linearly indepen-
dent.

This means: the only solution of
c1v1 + · · · + cnvn = 0 is the triv-
ial solution c1 = · · · = cn = 0.
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Theorem. {v1, . . . ,vn} is linearly
dependent if and only if some vj
is a linear combination of

v1, . . . ,vj−1.

Proof
two ways→
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A Basis of a vector space is what
gives it coordinates:

Definition B ⊂ V is a basis if
B is linearly independent and
spans V .

This is the same as saying: every
u ∈ V is written in a unique way
as

u = c1v1 + · · · + cnvn

with v1, . . . ,vn ∈ B. ←prove
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General examples:

{e1, . . . , en} is a basis of Rn.

The columns of an invertible matrix
form a basis of Rn.

Special examples:

give some→
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Theorem.

Every finite subset S ⊂ V span-
ning V contains a basis B ⊂ S of V .

Lemma. If vk ∈ S is a linear
combination of the others, then

S r vk
spans V .

Proof.
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Apply this to fundamental spaces:

For Null A, row reduction produces
an independent set of vectors span-
ning it. So it is a basis!

For Col A we have:

Theorem The pivot columns of A
span Col A.



25

Dimension

Theorem. Suppose {v1, . . . ,vm}
is a basis of V . Then any set {w1, . . . ,wn}
of more than m vectors is linearly
dependent.

Proof. Since {v1, . . . ,vm} is a
basis, every wj is in their span. Write
this out this way:

w1 = a11v1 + · · · + am1vm
... ... ...

wn = a1nv1 + · · · + amnvm

We seek a solution of

x1w1 + · · ·xnwn = 0.

This means
(a11x1 + · · · + a1nxn)v1 +

... ...
+ (am1x1 + · · · + amnxn)vm = 0
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. . . This means

(a11x1 + · · · + a1nxn)v1 +
... ...

+ (am1x1 + · · · + amnxn)vm = 0

Since {v1, . . . ,vm} is independent
this must be trivial:

a11x1 + · · · + a1nxn = 0
... ...

am1x1 + · · · + amnxn = 0

or
Ax = 0.

Since n > m, there are more vari-
ables than equations, so there is a
non-trivial solution!
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Theorem All bases of a vector space
have the same size.

Definition. The dimension of
a vector space V is the size of any of
its bases. ←many examples

Proof of theorem.
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Theorem. If dimV is finite, H ⊂
V a subspace, and S ⊂ H is linearly
independent, then there is a basis B
for H containing S.

discussion→

Proof
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Theorem. Suppose dimV = n.

(1) suppose S ⊂ V is linearly inde-
pendent and of size n. Then S
is a basis of V .

(2) suppose S ⊂ V spans V and of
size n. Then S is a basis of V .
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Back to fundamental spaces:

dim Null A = number of free columns.

dim Col A = number of pivot columns.

We give dim Col A a name: Rank A.

Theorem. for an m × n matrix
A we have

Rank A + dim Null A = n
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2.3
When is a matrix invertible?

Theorem. T.F.A.E. for n × n
matrix A:
(1) A is invertible
(2) A is row equivalent to In
(3) A has n pivot positions
(4) The only solution of Ax = 0 is x = 0
(5) a1, . . . , an are linearly independent
(6) The transformation x 7→ Ax is 1-to-1.
(7) Ax = b is consistent for all b ∈ Rn.
(8) Span(a1, . . . , an) = Rn

(9) The transformation x 7→ Ax is onto.
(10) There is C such that CA = In
(11) There is D such that AD = In
(12) AT is invertible
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A basis gives coordinates to the
space it spans:

Theorem if B = {b1, . . . ,bn} is
a basis of V , then every x ∈ V has
a unique expression

x = c1b1 + · · · + cnbn.
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Again B = {b1, . . . ,bn} is a basis
of V , and x ∈ V , so

x = c1b1 + · · · + cnbn.

Then c1, . . . , cn are the coordinates
of x in the basis B,

[x]B =

c1
...
cn

 ∈ Rn

is the coordinate vector, and x 7→
[x]B is the coordinate mapping. ←examples
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What if V = Rn?

Write P = PB = [b1 · · ·bn].

Proposition

(1) x = PB[x]B.

(2) PB is invertible

(3) [x]B = (PB)−1x.
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In general:

Theorem if B = {b1, . . . ,bn}
is a basis of V , then the coordinate
mapping

V → Rn
x 7→ [x]B

is an invertible linear transformation.
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What if I have two bases B and C?

In case V = Rn then we can de-
duce from above:

• x = PB[x]B,

• [x]C = (PC)−1x

so

[x]C = (PC)−1PB [x]B.

examples→
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We get a hint by understanding what
(PC)−1PB does to ei:

PBei = bi

(PC)−1bi = [bi]C

so

(PC)−1PBei = [bi]C

Summarizing:

P
C←B

:= (PC)−1PB =
[
[b1]C . . . [bn]C

]

Direct calculation:

[PCPB] ∼ [ In P
C←B

]



38

Theorem ifB andC are two bases
for V

define

P
C←B

=
[
[b1]C . . . [bn]C

]

then for any x ∈ V

[x]C = P
C←B

[x]B
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Row space. ←should have done

earlier

the row space of a matrixA is the
space spanned by the row vectors.

Theorem. if A ∼ B then the row
spaces are the same.

If B is in echelon form, the nonzero
rows form a basis. Its size is the
number of pivots.

Theorem.

dim Row(A) = dim Col (A)
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The Fibonacci sequence is de-
fined by a recursive formula:

Fk = Fk−1 + Fk−2
for all k ≥ 2, starting from

F0 = 0;F1 = 1.

It looks like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Of course you can also go backwards,
since Fk−2 = Fk − Fk−1

so it looks like

. . . ,−8, 5−3, 2,−1, 1, 0, 1, 1, 2, 3, 5, 8, . . .
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We want to relate this to linear al-
gebra:

• Think about the space as a vec-
tor space
• Think about the recursion as a

linear transformation
• Think about the solutions as null

space
• Think about the dimension of the

solution space
• Find the solution in terms of a

basis
• Think about matrices
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The space: all sequences, infinite on
both sides.

This is just the space of real valued
functions on the integers:

RZ

We know it is a vector space. It is
infinite dimensional.

The book called it the space of
signals.



43

The recursion, also known as dif-
ference equation:

Fk+2 − Fk+1 − Fk = 0

If we write Gk = Fk+2−Fk+1−Fk
we get a mapping

T : RZ→ RZ

(. . . Fk . . . ) 7→ (. . . Gk . . . )
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What are the sequences satisfying
the recursion?

These are precisely the subspace

Ker T ⊂ RZ
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Given a linear recursion of order
(length) n ≥ 1, write it this way: ←difference equation

(1) Fk+n + a1Fk+(n−1) + · · · + anFk,

with an 6= 0 .

Theorem. For any choice of “free
variables”

F0, . . . , Fk−1

the recursion (1) has a unique solu-
tion. ←intuit

Corollary. The space of solutions
Ker T has dimension n = the order
of the recursion.

Basis: F (i) starts just like ei:

0, 0, . . . , 0, 1, 0, . . . , 0, F
(i)
n , F

(i)
n+1, . . .
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But how about a closed formula?

Examples:

(1) Fk+1 − Fk = 0

(2) Fk+1 + Fk = 0

(3) Fk+1 − 2Fk = 0

(4) Fk+2 − 3Fk+1 + 2Fk = 0
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Theorem. if r is a solution of the
polynomial equation

rn+ a1r
n−1 + · · ·+ an−1r+ an = 0

Then the sequence

Fk = rk

is a solution of the recursion

Fk+n + a1Fk+(n−1) + · · · + anFk,

If the polynomial has n distinct roots
ri then the sequences

Fk = rki
form a basis.
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Fk+2 − Fk+1 − Fk = 0

write the associated polynomial equa-
tion

r2 − r − 1 = 0

the solutions are r12 = 1±
√

5
2
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So if α = 1+
√

5
2 and β = 1−

√
5

2

then

Gk = αk and Hk = βk

are a basis for solutions.

Write Fk = x1Gk + x2Hk.

Since F0 = 0, F1 = 1 get
x1 + x2 = 0,
αx1 + βx2 = 1

Fk =
αk − βk√

5
.
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We know that

B = {G,H}
is a basis and

C = {F (1,0), F (0,1)}
is a basis.

Gn = F (1,0) + αF (0,1)

Hn = F (1,0) + βF (0,1)

So

P
C←B

=

[
1 1
α β

]
So

P
B←C

= ( P
C←B

)−1 =
−1√

5

[
β −1
−α 1

]
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F (0,1)

]
C

=

[
0
1

]
so
[
F (0,1)

]
C

= P
B←C

[
0
1

]
= −1√

5

[
−1
1

]
So the Fibonacci sequence, which is
F (0,1), is just

Fk =
αn − βn√

5
.
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More on Fibonacci:

If xk =

[
Fk
Fk+1

]
Then xk+1 =

[
Fk+1
Fk+2

]
=

[
Fk+1

Fk + Fk+1

]
which is Axk with A =

[
0 1
1 1

]
So xk = Akx0 = Ak

[
0
1

]
We “just” need a simple formula for
Ak. . .


