Math 52 0 - Linear algebra, Spring Semester 2012-2013
Dan Abramovich

Fields.
We learned to work with fields of
numbers 1n school:
Q = fractions of integers o
R = all real numbers, represented
by infinite decimal expansions.
C = complex numbers, written as
{a + byv/—1, where a,b € R}.
These satisty the usual commuta-
tivity and associativity of addition
and multiplication, they have 0 and
1, oppostites —z and inverses of nonzero
elements 1/x, and satisfy distribu-

tivity.



why—
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Note: Z = all integers is not a field
N = positive integers even more so

Also note that Q € R C C are
subfields. since they are closed un-
der all operations, including negatives
and inverses.

You can’t be a computer scien-

tist without working also with the
field

Fy =10, 1},
with usual multiplication and boolean

addition defined by 1 +1 = 0.
Is Fy a subfield of Q7

YOU MUST NOW BECOME



A MATHEMATICTAN

Fix a field F- almost always we'll
work with F = R. Elements of the
field will be called scalars.

Definition. A vector space is
a set V' with two operations: addi-
tion

V xV V

(v, w) v+ w

and multiplication by scalars

FxV V

(c,v)———cv
satistying axioms:

<—preach

<—big breath



satistying axioms: for all u, v, w &
Ve, deFF
() v4+w=w+V;
2)(u+v)+w=u+(v+w);
(3) there is 0 € V' such that
O+v=yv;

(4) there is —v € V such that
—v+v=0;
Je(u+v) =cu+cv;
)(c+d)(v) =cv +dv;
) (cd)(v) = c(dv);  and
)



examples

R™ is an R-vector space.
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R™ is an R-vector space.
Q" is a Q-vector space.

C" is a C-vector space.
5 1s a Fo-vector space.

<—of dimension n
<—of dimension n

<—of dimension n

C is an R-vector space
R is a Q-vector space

<—huh?
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The collection of all real valued func-
tions on a set S, say S = [0,1], is a
real vector space.

Notation: R”.

The collection of all continuous
real valued functions on, say S = R,

is a real vector space.
Notation: C(R).

The collection of all differentiable
real valued functions on, say S = R,
is a real vector space.

Notation: C'(R).



The collection of all polynomials
in variable t € R, is a real vector
space.

Notation: R[t].
Book’s notation: P.

The collection of all polynomials
in variable ¢ € R of degree at most
n, is a real vector space.

Book’s notation: P,.
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Definition. A subset W C V is
a subspace of V' if it is closed un-
der addition and multiplication by
scalars.

examples: W =V is a subspace;
W = {0} is a subspace.

Many examples above!

When is a line in R? a subspace?
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We use the word vector for an el-
ement 1 a vector space.

Can we talk about a linear com-
bination of vectors

Vl,,VnEV?

Can we talk about the span of vec-

tors
Vl,,VnEV?
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Let’s tie these together:

Theorem. The span of a set of
vectors in V' is always a subspace of

V.

Theorem. A subset W C V is
a subspace if and only if it is closed
under taking linear combinations.
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The fundamental subspaces.

Say A is m X n real matrix. So
it gives a linear transformation from

R™ to R™,

Definition. The null space of A,
denoted

Null A ¢ R,

is the set of solutions of
Ax = 0.



Theorem.
Null A is a subspace of R".

Proof.
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Example: line in R3 through 0:

<—stress advantages

T — 23 = (
o — x3 = 0
Parametric, or explicit, equation:
-
x=1t|1
_1_

Example: plane in R3 through O:
r1 — 19 — x3 = 0
Parametric, or explicit, equation:
. 0
x=s|1|+t]0
0 1




Definition The column space Col A C
R™ of
A=la] --- ap]

is the span of the columns ay, ..., a,.

So we do not need a new theorem:
Col A C R is a subspace.

Interpretation: Col A is the set of
b € R" for which the equation

Ax =D

has a solution.

So: the set of b € R" for which
the equation Ax = b has a solution
is a subspace!
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Definition. Suppose V, W are R-
vector spaces.
A linear transformation

T:V =W
is a function such that
el'(u+v)=T(u)+T(v) and
o I'(cu) =cI'(u).

Examples:
- martrices

- derivatives
- integrals
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The corresponding notions:

Ker T={xeV :T(v)=0}CV
corresponds to Null A,

Range T'={T(v):veV}CW
corresponds to Col A



Linear independence
A set of vectors {vy,...,vp} in a
vector space V' is linearly depen-

dent if there are scalars cq, ..., cp,
not all 0, such that

V] + -+ cpvp = 0.

Otherwise it is linearly indepen-
dent.

This means: the only solution of
c1vy + -+ cpvp = 0 1s the triv-
ial solution ¢y =---=¢, = 0.
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Theorem. {vi,..., vy} islinearly
dependent if and only if some v;
is a linear combination of

Vi,... 7Vj—1-

Proof



A Basis of a vector space is what
gives it coordinates:

Definition B C V is a basis it
B is linearly independent and
spans V.

This is the same as saying: every
u € V is written in a unique way
as

u=cvy+t--+cpvp
with vi,...,v,, € B.

<—prove



give some—
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General examples:
{eq,...,ep} is a basis of R".
The columns of an invertible matrix

form a basis of R".

Special examples:
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Theorem.

Every finite subset S C V span-
ning V' contains a basis B C S of V.

Lemma. If vip € S is a linear
combination of the others, then

S N\ vy
spans V.

Proof.
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Apply this to fundamental spaces:

For Null A, row reduction produces
an independent set of vectors span-
ning it. So it is a basis!

For Col A we have:

Theorem The pivot columns of A
span Col A.
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Dimension

Theorem. Suppose {vy,..., v}
is a basis of V. Then any set {w{,...,wp}
of more than m vectors is linearly
dependent.

Proof. Since {vy{,...,v;;} is a
basis, every w; is in their span. Write
this out this way:

Wl = a11Vl + -0+ AmlVm

Wpn = G1pV] + - + AGmnVm

We seek a solution of

This means
(@121 + -+ + a1pTn)vi +

+ (amix1 + -+ + amnxn)vm = 0
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... This means

(ap1x1 + -+ + apzp)Vy +

T <am1~731 Rl amnxn>vm =0

Since {vq,..., vy} is independent
this must be trivial:

apnry + - + apen =0

or
Ax = 0.

Since n > m, there are more vari-
ables than equations, so there is a
non-trivial solution!



Theorem All bases of a vector space
have the same size.

Definition. The dimension of
a vector space V is the size of any of
its bases.

<—many examples

Proof of theorem.



Theorem. If dim V is finite, H C
V a subspace, and S C H is linearly
independent, then there is a basis B
for H containing S.

Proof
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Theorem. Suppose dim V' = n.

(1) suppose S C V is linearly inde-
pendent and of size n. Then S
is a basis of V.

(2) suppose S C V spans V' and of
size n. Then § is a basis of V.
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Back to fundamental spaces:
dim Null A = number of free columns.
dim Col A = number of pivot columns.

We give dim Col A aname: Rank A.

Theorem. for an m X n matrix
A we have

Rank A+ dimNull A =n




31

2.3
When is a matrix invertible?

Theorem. T.F.A.E. forn xn
matrix A:

2)
3) A has n pivot positions

4) The only solution of Ax =0isx =0
5)ay,...,a, are linearly independent

6) The transformation x — Ax is 1-to-1.
7) Ax = b is consistent for all b € R".
8) Span(ay,...,a,) =R"

9) The transformation x — Ax is onto.
0) There is C' such that CA = I,

1) There is D such that AD = I,

2) AT is invertible
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A basis gives coordinates to the
space 1t spans:

Theorem if B = {by,...,by} is
a basis of V', then every x € V has
a unique expression

X =ciby+ -+ cpbp.



Again B = {by,..., by} is a basis
of V,and x € V', so

Then cq, ..., ¢y are the coordinates
of x in the basis B,
o
[X]B = | : c R"
_Cn_

is the coordinate vector, and x
x| is the coordinate mapping.

% exam

ples
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What if V' =R"?

Write P = Pg = [by - -+

Proposition
(1) x = Pp[x|p.
(2) Pp is invertible

(3) x| = (Pp) 'x



In general:

Theorem if B = {by,...,b,}
is a basis of V', then the coordinate
mapping

V — R”
x — [X|p
is an invertible linear transformation.
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What if I have two bases B and C7
In case V = R" then we can de-

duce from above:
e x = Pp[X|p,
o x]o=(Po) 'x

SO

xlc = (Po) 'Pplx]p.
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We get a hint by understanding what
(Pr)~1Pg does to e;:

Ppe; = b;

(Pc)~'b; = bilc

SO

(Pc)~'Ppe; = bilc
Summarizing:

Po= (Po)™'Pp = [Pl balc]

Direct calculation:

PoPg] ~ [l P ]



Theorem if B and (' are two bases
for V

define

b= [bi]c .. [balc]

then for any x € V'
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Row space.

the row space of a matrix A is the
space spanned by the row vectors.

Theorem. if A ~ B then the row
spaces are the same.

If B is in echelon form, the nonzero
rows form a basis. Its size is the
number of pivots.

Theorem.

dim Row(A) = dim Col (A)

<—should have done
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The Fibonacci sequence is de-
fined by a recursive formula:

Bl = Py + Il
for all £ > 2, starting from

Fy=0F =1

It looks like this:
0,1,1,2,3,5,8,13,21, ...

Of course you can also go backwards,
since Fk—Z = Fk — Fk—l

so 1t looks like

... —85-3.2,-1,1,0,1,1,2,3,5,8. . ..



We want to relate this to linear al-
oebra:

e Think about the space as a vec-
tor space

e Think about the recursion as a
linear transformation

e Think about the solutions as null
space

e Think about the dimension of the
solution space

e F'ind the solution in terms of a
basis

e Think about matrices
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The space: all sequences, infinite on

both sides.

This is just the space of real valued
functions on the integers:

RZ

We know it is a vector space. It is
infinite dimensional.

The book called it the space of
signals.
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The recursion, also known as dif-
ference equation:

Flyo = Py — £ =0
[t we write Gk = Fk+2_Fk+1_Fk
we get a mapping

T - RZ 5 RZ
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What are the sequences satistying
the recursion?

These are precisely the subspace

Ker T c RZ
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(Given a linear recursion of order
(length) n > 1, write it this way:

(1) Fk+n + ale—l—(n—l) Tt aana
with lay, # 0.

Theorem. For any choice of “free
variables”

Fo ... F_
the recursion (1) has a unique solu-
t1on.

Corollary. The space of solutions
Ker T" has dimension n = the order
of the recursion.

Basis: F) starts just like e;:

0,0,....0,1.0, ... .0 F gl

n_|_1’...
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But how about a closed formula’?
Examples:

(1) Fgy1 — F =0
(2) Fiy1 + Fj, =0
(3) Fi1 — 2F% =0

(4) Fiy2 — 3Fp41 + 215 = 0



Theorem. if r is a solution of the
polynomial equation

P e a, g r+a, =0

Then the sequence
F =T k

1s a solution of the recursion

Fk—|—n + CLle+<n_1) + o+ apty,

If the polynomial has n distinct roots
r; then the sequences

Fk:Tf

form a basis.
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Flyo = Pl — 1, =0

write the associated polynomial equa-
tion
r2—r—1=0

S

the solutions are ri9 = %
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then
Gk:ak and szﬁk

are a basis for solutions.
Write Fi. = 21G + xoHp.
Since Fp =0, F1 =1 get

x1+ 29 =0,
axr] + Bxo =1
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We know that
B={G,H}
is a basis and
¢ — (P10, pl0.0)

1S a basis.

Hy, = F10) 4 gp01)
SO
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0 —1
F<071)} _ "
> { C ch 1 Vo | 1
So the Fibonacci sequence, which is
F<O>1), 1S just
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More on Fibonacci:

Fy,
Fk+1

_ | | Frn
ThenXp41 = [Fk+2] N [Fk+Fk+1

Ika:

which is Ax;. with A = [(1) ﬂ

So xj, = AFxg = AF [(1)]

We “just” need a simple formula for

AP



