Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich

Orthogonality

Inner or dot product in \mathbb{R}^n :

$$\mathbf{u}^T \mathbf{v} = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n$$

 \leftarrow examples

Properties:

- $\bullet \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $\bullet (\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- $\bullet (c\mathbf{v}) \cdot \mathbf{w} = c(\mathbf{v} \cdot \mathbf{w})$
- $\mathbf{u} \cdot \mathbf{u} \ge 0$, and $\mathbf{u} \cdot \mathbf{u} > 0$ unless $\mathbf{u} = \mathbf{0}$.

Norm = length:

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

 \mathbf{u} is a unit vector if $\|\mathbf{u}\| = 1$.

If $\mathbf{v} \neq 0$ then

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$$

is a unit vector positively-proportional to \mathbf{v} .

 $examples \rightarrow$

We argue that $\mathbf{u} \perp \mathbf{v}$ if and only if $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} - (-\mathbf{v})\|$.

←perpendicular or orthogonal

This means

$$(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$

Expand and get

$$\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$
$$= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$$

So

$$\mathbf{u} \perp \mathbf{v} \Longleftrightarrow \mathbf{u} \cdot \mathbf{v} = 0$$

Exercise:

$$\mathbf{u} \perp \mathbf{v}$$
 $\iff \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$

Angles: We define the angle cosine between nonzero \mathbf{u} and \mathbf{v} to be

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

This fits with the law of cosines!

 $W \subset \mathbb{R}^n$ a subspace. we say

 $\mathbf{u} \perp W$ if for all $\mathbf{v} \in W$ we have $\mathbf{u} \perp \mathbf{v}.$

$$W^{\perp} = \{ \mathbf{u} \in \mathbb{R}^n | \mathbf{u} \perp W \}.$$

Theorem: if $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ spans W then

$$\mathbf{u} \perp W$$

if and only if

$$\mathbf{u} \perp \mathbf{v}_i$$
 for all i .

Theorem: $W^{\perp} \subset \mathbb{R}^n$ is a subspace.

Theorem: $\dim W + \dim W^{\perp} = n$

Theorem: $(W^{\perp})^{\perp} = W$.

Key examples:

$$\mathbf{Row} \ (A)^{\perp} = \mathbf{Null} \ (A).$$

$$\mathbf{Col} \ (A)^{\perp} = \mathbf{Null} \ (A^T)$$

 $\{\mathbf{u}_1,\dots,\mathbf{u}_k\}$ is an **orthogonal set** if $\mathbf{u}_i\perp\mathbf{u}_j$ whenever $i\neq j$.

Theorem. If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal set and \mathbf{u}_i are non-zero, then they are linearly independent.

An orthogonal set of non-zero vectors is a basis for its span.

Definition: An **orthogonal basis** of W is a basis which is an orthogonal set.

←just a change of perspective

Theorem. If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis for W and we want to decompose a vector $\mathbf{y} \in W$ as

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_k \mathbf{u}_k$$

then

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}.$$

 \leftarrow examples!!

Things get better if we normalize: $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an **orthonormal set** if it is an orthogonal set of **unit** vectors.

 $examples \rightarrow$

Theorem. A matrix U has orthonormal columns if and only if

$$U^T U = I$$
.

Theorem. If U has orthonormal columns then

$$(U\mathbf{x})\cdot(U\mathbf{y}) = \mathbf{x}\cdot\mathbf{y}$$

Corollary If U has orthonormal columns then

- $\bullet \|U\mathbf{x}\| = \|\mathbf{x}\|$
- $\bullet \mathbf{x} \perp \mathbf{y} \Longleftrightarrow U\mathbf{x} \perp U\mathbf{y}$

If U is a square matrix with orthonormal columns then it is called an orthogonal matrix.

Note: $U^TU = I$, and U a square matrix means $UU^T = I$.

meaning the rows are also orthonormal!

Suppose $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is an orthogonal basis for W but $\mathbf{y} \notin W$. What can we do?

Theorem. There is a unique expression

$$\mathbf{y} = \mathbf{y}_W + \mathbf{y}_{W^{\perp}}$$

where $\mathbf{y}_W \in W$ and $\mathbf{y}_{W^{\perp}} \in W^{\perp}$. In fact

$$\mathbf{y}_W = c_1 \mathbf{u}_1 + \dots + c_k \mathbf{u}_k$$

where

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}.$$

 \leftarrow examples!!

If $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is orthonormal, the formula gets simpler:

$$\mathbf{y}_W = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{y} \cdot \mathbf{u}_k)\mathbf{u}_k$$

Writing $U = [\mathbf{u}_1 \dots \mathbf{u}_k]$ this gives

$$\mathbf{y}_W = UU^T\mathbf{y}$$

We call \mathbf{y}_W the perpendicular projection of y on W.

Notation:

$$\mathbf{y}_W = \operatorname{proj}_W \mathbf{y}$$

So

$$\mathbf{y} = \operatorname{proj}_W \mathbf{y} + \operatorname{proj}_{W^{\perp}} \mathbf{y}.$$

Then \mathbf{y}_W is the vector in W closest to W.

Gram-Schmidt Algorithm. Say $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is a basis for W. Think about $W_i = \mathbf{Span} \{\mathbf{x}_1, \mathbf{x}_i\}$ We construct inductively \mathbf{v}_i as follows:

examples-

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \operatorname{Proj}_{W_1^{\perp}} \mathbf{x}_2 = \mathbf{x}_2 - \operatorname{Proj}_{W_1} \mathbf{x}_2$$

$$= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

:

$$\mathbf{v}_k = \operatorname{Proj}_{W_{k-1}^{\perp}} \mathbf{x}_k$$

$$= \mathbf{x}_k - \left(\frac{\mathbf{x}_k \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \dots + \frac{\mathbf{x}_k \cdot \mathbf{v}_{k-1}}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}} \mathbf{v}_{k-1}\right)$$

We can normalize: $\mathbf{u}_i = \frac{1}{\|\mathbf{v}_i\|} \mathbf{v}_i$.

QR factorization

Matrix interpretation of Gram-Schmidt: say A has linearly independent columns

$$A = [\mathbf{x}_1 \cdots \mathbf{x}_n]$$

and say $Q = [\mathbf{u}_1 \cdots \mathbf{u}_n]$.
Since **Span** $(\mathbf{u}_1, \dots, \mathbf{u}_i) =$ **Span** $(\mathbf{x}_1, \dots, \mathbf{x}_i)$
we have

$$\mathbf{x}_{i} = r_{1i}\mathbf{u}_{1} + \cdots + r_{ii}\mathbf{u}_{i}$$

$$\text{meaning } \mathbf{x}_{i} = Q\begin{bmatrix} r_{1i} \\ \vdots \\ r_{ii} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\text{So } A = [\mathbf{x}_{1} \cdots \mathbf{x}_{n}] = Q[\mathbf{r}_{1} \cdots \mathbf{r}_{n}].$$

In other words A = QR, where Q has orthonormal columns, and R is invertible upper triangular.

Note: $R = Q^T A$

Least squares approximation.

Say Col A does not span b.

You still want to approximate

 $A\mathbf{x} \approx \mathbf{b}$.

We'll calculate $\hat{\mathbf{x}}$ such that

$$||A\hat{\mathbf{x}} - \mathbf{b}||$$

is minimized. Then we'll apply.

Gram-Schmidt?

The closest an element $A\hat{\mathbf{x}}$ of the column space gets to \mathbf{b} is

$$\hat{\mathbf{b}} = \operatorname{proj}_{\mathbf{Col}} A \mathbf{b}.$$

Now $\hat{\mathbf{b}} \in \mathbf{Col} A$, so we can solve

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}}.$$

This seems hard. But...

$$A\hat{\mathbf{x}} = \hat{\mathbf{b}} = \operatorname{proj}_{\mathbf{Col} A} \mathbf{b}.$$
 \iff

$$(\mathbf{b} - \hat{\mathbf{b}}) \perp \mathbf{Col} A$$

$$= \mathbf{Row} A^{T}$$
 \iff

$$A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = 0$$

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$$

Linear regression

Theoretically a system behaves like

$$y = \beta_0 + \beta_1 x,$$

and you want to find β_i .

You run experiments which give data points (x_i, y_i) . They will not actually lie of a line.

You get the approximate equations

$$\beta_0 + x_1\beta_1 \approx y_1$$

$$\beta_0 + x_2\beta_1 \approx y_2$$

$$\vdots \qquad \vdots$$

$$\beta_0 + x_n\beta_n \approx y_n$$

In matrix notation:

or
$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \approx \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
or

To solve it we take

$$X^T X \boldsymbol{\beta} = X^T \mathbf{y}$$

We can solve directly, or expand:

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$