
Math 52 0 - Linear algebra, Spring Semester 2012-2013
Dan Abramovich

The diagonalization of symmetric matrices.

This is the story of the eigenvectors and eigenvalues of a
symmetric matrix A, meaning A = AT .

It is a beautiful story which carries the beautiful name
the spectral theorem:

Theorem 1 (The spectral theorem). If A is an n×n sym-
metric matrix then

(1) All eigenvalues of A are real.
(2) A is orthogonally diagonalizable: A = PDP T where

P is an orthogonal matrix and D is real diagonal.

There are immediate important consequences:

Corollary 2. If A is an n× n symmetric matrix then

(1) A has an orthogonal basis of eigenvectors ui.
(2) (spectral decomposition)

A = λ1u1u
T
1 + · · ·+ λnunu

T
n .

(3) The dimension of the λ eigenspace is the multiplicity
of λ as a root of det(A− λI).

(4) Different eigenspaces are orthgonal to each other

In fact a matrix A is orthogonally diagonalizable if and
only if it is symmetric.

(The name the spectral theorem is inspired by another
story of the inter-relationship of math and physics.)
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The first part is directly proved:

Proposition 3. The eigenvalues of a symmetric matrix are
real.

Proof. Suppose Av = λv. We dot this with v̄, the complex
conjugate:

v̄ · Av = v̄ · λv
The right hand side is λ(|v1|2 + · · ·+ |vn|2), where vi are the
complex entries of v. Then λ is real if and only if the right
hand side is real, if and only if v̄ · Av = v̄ · Av. Now

v̄ · Av = v̄TAv = vT · AT v̄ = v̄ · ATv = v̄ · Av
which is what we needed. ♣

Here are key geometric facts:

Proposition 4. If A is symmetric and B = {u1 . . . ,un} is
an orthonormal basis then [A]B is symmetric.

Proof. We know that

[A]B = P−1B APB = P T
BAPB.

Its transpose is

([A]B)
T = P T

BA
T (P T

B )T = P T
BAPB = [A]B.

♣

Proposition 5. If P and Q are orthogonal matrices then
PQ is also orthogonal.

Proof.

(PQ)T (PQ) = (QTP T )(PQ) = QT (P TP )Q = QTQ = I.

♣
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Proof of the spectral theorem (Theorem 1). We argue by in-
duction. The case n = 1 is trivial. Assume n > 1 and the
result known for n− 1.

Suppose λ1 is an eigenvalue and u1 is a corresponding
eigenvector. By Proposition 3 the eigenvalue λ is real. Nor-
malizing, we may assume ‖u1‖ = 1.

By the orthogonalization procedure (Gram-Schmidt) we
may complete this to an orthonormal basis B = {u1 . . . ,un}.
Then [A]B is symmetric. Since Au1 = λ1u1 we get

[A]B =


λ1 ∗ ∗ ∗
0
... A1

0

 .
By Proposition 4 this is symmetric, so A1 is symmetric and

[A]B =


λ1 0 0 0
0
... A1

0

 .
By induction A1 = P1D1P1

T withP1 orthogonal and D1 real
diagonal. Writing

Q1 =


1 0 0 0
0
... P1

0

 and D =


1 0 0 0
0
... D1

0


we have [A]B = Q1DQ

T
1 , and Q1 is orthogonal

So A = PB[A]BP
T
B = PBQ1DQ

T
1 P

T
B = PBQ1D(PBQ1)

T .
By Proposition 5 the matrix P = PBQ1 is orthogonal, so
A = PDP T is as required. ♣
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Proof of Corollary 2. (1) The columns of P are a basis
of eigenvectors, which is orthonormal since P is an
orthogonal matrix.

(2) This follows by writing out P = [u1 · · ·un]. Note
uiu

T
i = projui

, so this makes sense geometrically.
(3) This follows since it is true for D.
(4) If Av1 = λ1v1 and Av2 = λ2v2 then

(Av1) · v2 = vT
2A

Tv1 = (Av1)
Tv2 = vT

1Av2 = v1 · (Av2)

so λ1v1 · v2 = λ2v2 · v2.
Since λ1 6= λ2 we get v1 · v2 = 0.

The last statement: assume A = PDP T with P orthog-
onal. Then

AT = (P T )TDTP T = PDP T = A.

♣
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The singular value decompo-
sition

geometric discussion:

If A is symmetric then, in some or-
thogonal basis we get [A]B diagonal.

Consider the n-sphere

Sn = {x : ‖x‖ = 1}.
Then it is clear what A does to the
sphere: it makes it into an ellipsoid.

←draw

Possibly crushed ellipsoid, if A is
not invertible, but let’s assume it is.
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Written in diagonal form, if

x = c1u1 + · · · + cnun

is on the sphere then

c2
1 + · · · + c2

n = 1,

and

Ax = λ1c1u1 + · · · + λncnun
= y1u1 + · · · + ynun.

So the image is defined by

y2
1

λ2
1

+ · · · + y2
n

λ2
n

= 1.

The directions of ui are the axis
directions or principal directions of
the ellipsoid, and |λi| are the lengths
of the semi-axes. So the axes, or
diameters, are of lengths 2|λi|.
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It is also easy to see that for any A,
even rectangular, the image A(Sn) is
an ellipsoid. Try

A =

[
1 1
0 1

]
.

It is not as easy to see what the axes
are! ←do it, draw

The most important are the max-
imal and minimal semi-axes, since
they say how much a vector can be
stretched or shrunk.



8

Key observation:

‖Av‖2 = vT (ATA)v,

and the matrix ATA is symmetric!

If vi are unit eigenvectors of ATA
with eigenvalue λi, then

‖Avi‖2 = λi‖vi‖2 = λi,

so λi ≥ 0 and

‖Avi‖ =
√
λi.

The numbers σi =
√
λi are called

the singular values of A.

They are the lengths of Avi
These give axes of the ellipsoid!

do the example→
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Theorem 6. Suppose

λ1 . . . λr 6= 0

and the others (if any)

λr+1 = · · · = 0.

Then

Av1, . . . , Avr

is an orthogonal basis for Col A.
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Write Σ =


σ1 0 0

. . . ...
0 σr 0
0 · · · 0 0


Theorem 7 (Singular value decom-
position). There is an m × m or-
thogonal U , and an n × n orthog-
onal V , such that

geometric

interpretation→

A = UΣV T .
algorithmic→

Proof. The matrix V is simply [v1 . . .vn].
from before→

The matrix Σ is as indicated.
signular values→

For the matrix U take normaliza-
tions

ui =
1

σi
Avi

for i = 1, . . . , r and complete to an
orthonormal basis.

Then check that AV = UΣ. ♣
do the example→
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Interpretations:

(1)A =
∑r
i=1 σiuiv

T
i

(2) the matrix ofA in the bases {vi}
for source Rn and ui for target
Rm is the diagonal matrix Σ.

(3)A is a rotation followed by di-
agonal stretching followed by an-
other rotation.


