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Heights on varieties

Height defined by a morphism

Let V be projective and ¢ : V — P" a morphism. Define

hs(P) = h((P)).

Theorem (Linear equivalence propoerty)

If i : V — P" and ¢; Hpn; are linearly equivalent, then
h¢1(P) = h¢2(P) + O(1).
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Height defined by a morphism

Proof of Linear Equivalence property

@ suffices to consider p1 = A : V — PN associated to a
complete linear series, ¢1 = ¢. So there is a projection
7 : PN — P" which is regular on A(V) such that ¢ = o A
e By functoriality theorem h(7w(Q)) = h(Q) + O(1) for
Q € AM(V)(Q).
@ Substituting Q = A\(P) we get
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Theorem (Weil height machine)

There is a way to associate to a variety V' over a number field k
and a divisor D € Div(V) a function hy p : V(k) — R so that:

(a) (Normalization) hpn 1(P) = h(P) + O(1)

(b) (Functoriality) hy ¢+p(P) = hw,p(P)+ O(1)

(c) (Additivity) hv,p4+e(P) = hv,p(P) + hv,e(P) + O(1)

(d) (Linear equivalence) D ~ji, E = hy p(P) = hy g(P) + O(1)
(e) (Positivity) hy p(P) > O(1) for P € (V ~ Bs|D|)(k).

(f) (Algebraic equivalence) D ample, E ~; 0 then

hv,Dl(ig%wZZ:EEg -

(g) (Finiteness) D ample, [k': k] < o0, B € R
= the set {P € V(k)|hy p(P) < B} is finite.

(h) (Uniqueness) hy p determined up to O(1) by Normalization,
Functoriality for projective embeddings, and additivity.
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Theorem (Quick restatement in terms of line bundles)

To a variety V over a number field k there is a unique

homomorphism hy : Pic(V) — {f“bncfj;%r;sd?uvngﬁ)ozm such that if
L € Pic(V) very ample with ¢, : V — P", then hy = ho ¢r.

These have the additional properties:
(b) (Functoriality) h\/@*c = hW,ﬁ o ¢
(e) (Positivity) hy (P) > O(1) on (V ~ Bs|L|)(k).

(f) (Algebraic equivalence) £ ample, M ~,; 0 then

hv.m(P)
VMP) _0

lim Ay ol
hV’E(P)%OO v.C

(g) (Finiteness) £ ample, [k' : k] < 00, B € R, hy 1 a
representative of hy o
= the set {P € V(k)|hy £(P) < B} is finite.
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Construction of hy p

o If |D| is base point free with morphism ¢|p| : V — P", define
hv,p(P) = hy, (P).

this is independent of choice of ¢p

by the linear equivalence property of h¢\o|'

@ In general write D = D; — Dy with D; base point free, and
write h\/7D(P) = h\/7D1(P) — h\/7D2(P).

@ need to show ths is a well defined function modulo O(1), but
patience!
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Additivity: base point free case

Assume |D|, |E| base point free of dimensions n, m. Then
D+ E ~ (Spmo (dp] x ¢jg))" H
Hence
hv,0+€ = hs, no(o)p xee) T O(1)
= h¢\D| + h¢\E| +0(1) = hv.p + hv e + O(1). &
Height is well defined - general case
Assume D = Dy — Dy, = E; — E>. Then

hv.p, + hv.g, = hv p,+E, + O(1)
= hy py+5 + O(1) = hy p, + hv g + O(1).

Hence

hv p, —hvp, =hveg —hve +0(1). &
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(a) Normalization

follows since hpn yy = by = hig.n = h.

(b) Functoriality

follows in general since if D = Dy — D with |D;| base point free,
then |¢*D;| are base point free, so

hv,g*p = hv,g+D; — hv, gD, + O(1) = higsp,| — hig=py) + O(1)
=hwpod—hwp,od+O0(1)=hypoo+O(1). &

(c) Additivity: general case
Write D = Dy — D, and E = E; — E; with |D;l, |E;| base point
free, hence |D; + E;| base point free.

hv.p+e = hv.p,+£ — hv,p,+E + O(1)
= hy,p, + hv.e, — hv.p, + hv g, + O(1)
=hyp+hye+O(1) &
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(h) Uniqueness

By (a).(b), for D ample hy p = ho ¢p| + O(1) is uniquely
determined. By (c) for D = D; — D, with D; ample we have
hy p = hv p, — hv p, + O(1) uniquely determined.

)

(d) Linear equivalence
Assume D = D; — Dy ~ E; — E; = E as before. Then

h¢D1+E2 = h¢D2+El + 0(1),
hence
hv.p, + hv e, = hv.p,+6 + O(1)
= hv p,+g + O(1) = hy p, + hv g, + O(1).
So

hv.p, —hvp, =hve —hve +0(1). &
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(e) Positivity
We first show that if D; > D, are base point free then
hy p, > hy p, + O(1) for points not in D = D; — D».

@ Note that |Ds| + D C |D1|, hence there is a linear projection
7 P" — P such that ¢|p,| = 7o ¢|p,|, well defined away
from the base locus D of |Dy| + D.

@ By functoriality of heights for projective spaces we have
hy.p, = ho ¢|p,) = homo¢p,
< hog¢yp, + O(1) = hv,p, + O(1)
for points not on D.

Applying this to finitely many D whose intersection is Bs|D| we
get the result. [
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Existence of Picard schemes (or Nakai-Moishezon) and
semicontinuity implies:

Lemma

If D ample and E ~ g O then there is m > 0 such that for all n
we have mD + nE effective (even very ample).

(f) Algebraic Equivalence (to be revisited)

We have

mhy p(P) £ nhy g(P) = hy mp+ne(P) > O((l))> —¢(D, E, m, n)
m C h 0 P m C

for all P. In other words * + why 5 (P) > ht,Z(P) >-o_ S P)

Taking hy p(P) — oo we get

m . hv e(P) P hve(P) <  m

" = h\/|7ILr)T(1PS)u—F:oo hv.p(P) = hv!:)rFPI)n—f;oo hv.o(P) = n’

Taking n — oo we get  lim hv.e(P) _ [

hy,p(P)—so0 V.0 (F)
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(g) finiteness property

Since hy mp = mhy p + O(1) we may assume D very ample with
embedding ¢. This gives
hV’D = hV’(;S*H = hIF’”,H @) ¢+ O(].) =ho ¢ aF O(].) Thus

{Pevin|ie): <. ho(p) < 8}

c {P e P'(Q)|[k(P): Q] < d, h(P) < B + 0(1)}

which is finite by the strong finiteness property for projective
spaces. [

v

This finally completes the proof of the Weil Height Machine
Theorem. '
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Corollary: WEeil heights on abelian varieties

k number field, A/k abelian variety, D € Div(A).
(a) hap([m]P) = "5Mhy p(P) + "M hy p(—P) + O(1).
(b) If D symmetric

(b1) hap([mP) = m?hap(P)+ O(1)

and
(b2)

hA7D(P + Q) + hA7D(P — Q) = 2hA7D(P) + 2hA7D(Q) + O(].)

(c) If D antisymmetric
(Cl) hA’D([m]P) = mhAVD(P) + O(l)
and

(C2) hA7D(P + Q) = hAyp(P) + hA7D(Q) + O(].)
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Geometric input for the corollary

(1) (Mumford's formula)

2 2
* + B *
mD ~ = : Tpy ™ : M_1*D.

o So if D symmetric [m]*D ~ m?D,
e and if antisymmetric [m]*D ~ m D.

(2) (Consequence of the Theorem of the Square) If D symmetric
on A then on A x A we have

(sum)*D + (difference)*D ~ 2(niD + w5 D).

(3) (Consequence of the Seesaw Principle) If D antisymmetric
then on A x A we have

(sum)*D ~ 71D+ m3D.

Abramovich MA 254 notes: Diophantine Geometry 14 /16



Heights on varieties

Proof of the corollary on Weil heights on abelian varieties

o (a) as well as (b1),(b2) follow from Mumford's formula,
applying functoriality for [m] : A — A (in particular
ha[-1-p(P) = hap(—P)).

e (b2) follows from (2), applying functoriality to the sum,
difference, and projection morphisms.

o (b3) follows similarly from (3).
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Proposition (height proportionality on curves)
C/k a curve.

- . he(P) _ degE
(a) Let D,E € Div(C),deg D > 1. Then hD(l.'Lr)n—mohD(P) = GesD-

: h(g(P) _ d
(b) Letf,g € K(C),f ¢ k. Then h(f(!‘y)?—)oo h%éfrngg = i

Proof. (NB: see direct argument in book)

(a) Replacing E by a multiple, we may assume deg E/deg D =: m
an integer, in which case E ~ mD + E’ with E’ ~,;; 0. So by
the Algebraic Equivalence pri?pleprtyh Py o)

. he(P . m hp +hgr +0(1 deg E
hD(IIL‘r)n—mohgg'Dg B hD(IILSn—>oo : )hD(EP() : -me degD‘

(b) Write f*(x) = Dy and g*(x) = Ex, so f is a base-point-free
pencil in |Dy|, and g is a base-point-free pencil in |Ex|. So
h(F(P)) = hp,(P)+ O(1), h(g(P)) = he,(P) + O(1),
deg f = deg Dy, and deg g = deg E,. Now apply (a). [
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