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Heights on Pn

Height on Pn(k)

Let P = (x0, . . . , xn) ∈ Pn(Q) with xi ∈ Z, gcd(x0, . . . , xn) = 1,

Definition (Height on Pn(Q))

H(P) = max{|x0|, . . . , |xn|}.

This has the finiteness property:

For any B the set {P ∈ Pn(Q)|H(P) ≤ B} is finite.

Definition (Height on Pn(k))

Let k be a number field, xi ∈ k , and P = (x0, . . . , xn) ∈ Pn(k).
Define the relative multiplicative height
Hk(P) =

∏
v∈Mk

max{‖x0‖v , . . . , ‖xn‖v}
and the relative logarithmic height
hk(P) = logHk(P) =

∑
v∈Mk

−nv min{v(x0), . . . v(xn)}.
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Absolute height

Definition

The absolute multiplicative height of P ∈ Pn(Q̄) is
H(P) = Hk(P)1/[k:Q].

The absolute logarithmic height is
h(P) := logH(P) = hk(P)/[k : Q].

The absolute height of α ∈ k is H(α) := H(1, α).

Proposition (Basic height properties)

Hk(P) is independent of choice of coordinates in k .

H(P),Hk(P) ≥ 1; h(P), hk(P) ≥ 0 for all k ∈ Pn(Q̄).

H(P), h(P) are independent of choice of k or coordinates.
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Proof of basic height properties

Proof.∏
v∈Mk

max{‖cx0‖v , . . . , ‖cxn‖v} =(∏
v∈Mk

‖c‖v
)∏

v∈Mk
max{‖x0‖v , . . . , ‖xn‖v} =∏

v∈Mk
max{‖x0‖v , . . . , ‖xn‖v}.

If xi 6= 0 then Hk(x) =∏
v∈Mk

max{‖x0/xi‖v , . . . , ‖xn/xi‖v} ≥
∏

v∈Mk
1 = 1.

If k ′/k then Hk ′(P) =
∏

v∈Mk

∏
w |v max{‖x0‖w , . . . , ‖xn‖w}

=
∏

v∈Mk

∏
w |v max{|x0|nwv , . . . , |xn|nwv }

=
∏

v∈Mk

∏
w |v max{|x0|nvv , . . . , |xn|nvv }[k

′
w :kv ]

=
∏

v∈Mk

∏
w |v max{‖x0‖v , . . . , ‖xn‖v}[k

′
w :kv ]

=
∏

v∈Mk
max{‖x0‖v , . . . , ‖xn‖v}[k

′:k] = Hk(P)[k
′:k] as

needed.

♠
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Invariance

The Galois group GQ acts on Pn(Q̄).

It also permutes absolute values: if σ : k → k ′ is an
isomorphism then we define |σ(x)|σ(v) = |x |v , namely
|y |σ(v) = |σ−1x |v .
Similarly it sends completions to completions, with
nv = nσ(v), and globally [k : Q] = [σ(k) : Q].

Proposition

H is invariant under GQ: we have Hσ(k)(σ(x)) = Hk(x) and
H(σ(x) = H(x).

Proof.

Trace the definitions, taking the above into consideration. ♠
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The strong finiteness property

Theorem

Given B,D, the set {P ∈ Pn(Q̄)|H(P) ≤ B, [Q(P) : Q] ≤ D} is
finite.

Lemma

Given B, d , the set {x ∈ Q̄)|H(x) ≤ B, [Q(x) : Q] = d} is finite.

Proof of Theorem given Lemma.

Given P = (x0, . . . , xn) with xj 6= 0 we may assume by
rescaling that xj = 1.

Then max{‖x0‖v , . . . , ‖xn‖v} ≥ max{‖xi‖v , 1} for each i , so
H(P) ≥ H(xi ). Also Q(P) ⊃ Q(xi ).

There are finitely many possible choices for j , d ≤ D and, by
the lemma, for xi , hence for P.

♠
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The strong finiteness property - continued

Sublemma

Suppose the minimal polynomial of x ∈ Q̄ is
X d − s1(x)X d−1 ± · · ·+ (−1)dsd(x). Then
H(1, s1(x), . . . , sd(x)) ≤ 2dH(x)d

2
.

Proof of Lemma given Sublemma.

We have seen that {s ∈ Pd(Q) : H(s) < C} is finite. Applying this
to C = 2dBd2

we find that the number of minimal polynomials of
{x ∈ Q̄)|H(x) ≤ B, [Q(x) : Q] = d} is finite. Since there are d
roots per polynomial, this set itself is finite. ♠

We write εv (r) :=

{
r v archimedean

1 otherwise

so that |
∑r

i=1 xi |v ≤ εv (r) maxi |xi |v .
Note r =

∏
v εv (r)nv/[k:Q].
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The strong finiteness property - continued

Proof of Sublemma.

If xi are the d conjugates of x , and v a valuation of the
splitting field k ′, then
|sr (x)|v = |

∑
xi1 · · · xir |v

≤ εv (2d) max |xi1 · · · xir |v ≤ εv (2d) maxi |xi |rv .

Taking maximum we obtain
max{1, |s1(x)|v , . . . , |sd(x)|v} ≤ εv (2d)

∏
i max{|xi |v , 1}d .

taking products and [k ′ : Q]-th root, we have
H(1, s1(x), . . . , sd(x)) ≤ 2d

∏
i H(xi )

d

= 2d
∏

i H(x)d = 2dH(x)d
2

as needed.

♠
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Points of Height 1

Corollary (Kronecker’s theorem)

Say P = (x0, . . . , xn) ∈ Pn(Q̄) and xi 6= 0. Then
H(P) = 1 ⇐⇒ xj/xi ∈ µ(Q̄) ∪ {0} for all j .

Proof.

Without loss of generality i = 0 and x0 = 1.

If xj ∈ µ then |xj |v = 1 for all v so H(P) = 1.

Assume H(P) = 1 and consider the sequence of points
P r := (x r0 , . . . x

r
n). Then you check H(P r ) = H(P)r = 1, in

particular bounded by 1, and by the theorem {P r} is a finite
set.

So there are r 6= s such that P r = Ps , so x rj = x sj , so
xj ∈ µ ∪ {0} as needed.

♠
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Segre and Veronese embeddings

Let Sn,m : Pn × Pm ↪→ Pnm+n+m be the Segre embedding and

Vn,d : Pn ↪→ P(n+d
n )−1 the d-th Veronese.

Proposition

h(Sn,m(x , y)) = h(x) + h(y) and h(Vn,d(x)) = dh(x).

Proof.

The point z = Sn,m(x , y) has coordinates (. . . , xiyj , . . .).
For any v we have maxij |xiyj |v = (maxi |xi |v )(maxj |yj |v ). So

h(z) = log
∏

v maxij |xiyj |
nv/[k:Q]
v =

log
(∏

v maxi |xi |
nv/[k:Q]
v

∏
v maxj |yj |

nv/[k:Q]
v

)
= h(x) + h(y).

w = Vn,d(x) has coordinates the monomials MI (x) of degree
d . We have |MI (x)|v ≤ maxi |xi |dv so
maxI |MI (x)|v = maxi |xi |dv , and proceed as before.

♠
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Functoriality of heights on projective spaces

An m + 1-tuple (f0, . . . , fm) of homomgeneous forms of degree d in
n + 1 variables defines a rational map φ : Pn 99K Pm, which is a
morphism away from the base locus Z = V (f0, . . . , fm).

Theorem (Functoriality of heights on projective spaces)

h(φ(P)) ≤ dh(P) + O(1) for all P ∈ Pn(Q̄)) r Z .

If X ⊂ Pn closed, X ∩ Z = ∅, then
h(φ(P)) = dh(P) + O(1) for all P ∈ X (Q̄)).

It is convenient to take absolute values of P, fj and height of φ.
Represent P = (x0, . . . , xn) and in monomial notation
fj =

∑
|I |=d aj ,I x

I . We write
|P|v = maxi{|xi |v}, |fj |v = maxI{|aj ,I |v} and
H(φ) = H((aj ,I )j ,I ) =

∏
v maxj{|fj |v}nv/[k:Q].
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We write Nd =
(n+d

d

)
.

Proof of functoriality, first part.

|fj(P)|v = |
∑
I

aj ,I x
I |v ≤ εv (Nd)(max

I
|aj ,I |v )(max

I
|x I |v )

≤ εv (Nd)|fj |v (max
i
|xi |dv )

= εv (Nd)|fj |v |P|dv .

We get∏
v

max
j
|fj(P)|nv/[k:Q]

v ≤ Nd · (
∏
v

max
j
|fj |

nv/[k:Q]
v )H(P)d

= Nd · H(φ)H(P)d .

so h(φ(P)) ≤ dh(P) + h(φ) + logNd .

♠
Abramovich MA 254 notes: Diophantine Geometry 12 / 14



Heights on Pn

Proof of functoriality, second part, beginning

Let IX = (p1, . . . , pr ). By Hilbert’s Nullstellensatz, after a
finite extension of k we have√

(p1, . . . , pr , f0, . . . , fm) = (X0, . . . ,Xn).

In other words, there is t ≥ d , forms gkj of degree t − d and
forms qlj such that for all j
g0j f0 + · · ·+ gmj fm + q1jp1 + · · ·+ qrjpr = X t

j .

Plugging in P = (x0, . . . , xn) ∈ X we get
g0j(P)f0(P) + · · ·+ gmj(P)fm(P) = x tj .
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Proof of functoriality, second part, concluded.

|P|tv = max
j
|x tj |v = max

j
|g0j(P)f0(P) + · · ·+ gmj(P)fm(P)|v

≤ εv (m + 1) (max
i ,j
|gij(x)|v ) (max

i
|fi (x)|v )

≤ (εv (m + 1) Nt−d |(gij)|v ) |P|t−dv |φ(P)|v .

So as before H(P)t ≤ c · H(P)t−dH(φ(P)).

Hence dh(P) ≤ h(φ(P)) + O(1) as required.

♠
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