MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman])

Dan Abramovich

Brown University

January 29, 2016

Height on $\mathbb{P}^n(k)$

Let
$$P = (x_0, \ldots, x_n) \in \mathbb{P}^n(\mathbb{Q})$$
 with $x_i \in \mathbb{Z}, \gcd(x_0, \ldots, x_n) = 1$,

Definition (Height on $\mathbb{P}^n(\mathbb{Q})$)

 $H(P) = \max\{|x_0|,\ldots,|x_n|\}.$

This has the finiteness property:

For any B the set $\{P \in \mathbb{P}^n(\mathbb{Q}) | H(P) \le B\}$ is finite.

Definition (Height on $\mathbb{P}^n(k)$)

Let k be a number field, $x_i \in k$, and $P = (x_0, ..., x_n) \in \mathbb{P}^n(k)$. Define the relative multiplicative height $H_k(P) = \prod_{v \in M_k} \max\{||x_0||_v, ..., ||x_n||_v\}$ and the relative logarithmic height $h_k(P) = \log H_k(P) = \sum_{v \in M_k} -n_v \min\{v(x_0), ..., v(x_n)\}.$

э

Absolute height

Definition

- The absolute multiplicative height of $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$ is $H(P) = H_k(P)^{1/[k:\mathbb{Q}]}$.
- The absolute logarithmic height is $h(P) := \log H(P) = h_k(P)/[k : \mathbb{Q}].$
- The absolute height of $\alpha \in k$ is $H(\alpha) := H(1, \alpha)$.

Proposition (Basic height properties)

- $H_k(P)$ is independent of choice of coordinates in k.
- $H(P), H_k(P) \ge 1; h(P), h_k(P) \ge 0$ for all $k \in \mathbb{P}^n(\overline{\mathbb{Q}}).$
- H(P), h(P) are independent of choice of k or coordinates.

< 🗇 > < 🖃 >

Proof of basic height properties

Proof.

•
$$\prod_{v \in M_k} \max\{\|cx_0\|_v, \dots, \|cx_n\|_v\} = \\ \left(\prod_{v \in M_k} \|c\|_v\right) \prod_{v \in M_k} \max\{\|x_0\|_v, \dots, \|x_n\|_v\} = \\ \prod_{v \in M_k} \max\{\|x_0\|_v, \dots, \|x_n\|_v\}.$$

• If
$$x_i \neq 0$$
 then $H_k(x) = \prod_{v \in M_k} \max\{\|x_0/x_i\|_v, \dots, \|x_n/x_i\|_v\} \ge \prod_{v \in M_k} 1 = 1.$

• If
$$k'/k$$
 then $H_{k'}(P) = \prod_{v \in M_k} \prod_{w \mid v} \max\{\|x_0\|_w, \dots, \|x_n\|_w\}$
= $\prod_{v \in M_k} \prod_{w \mid v} \max\{|x_0|_v^{n_w}, \dots, |x_n|_v^{n_w}\}$

$$= \prod_{v \in M_k} \prod_{w \mid v} \max\{|x_0|_v^{n_v}, \dots, |x_n|_v^{n_v}\}^{[k'_w; k_v]}$$

$$= \prod_{v \in M_k} \prod_{w \mid v} \max\{\|x_0\|_v, \dots, \|x_n\|_v\}^{[k'_w:k_v]}$$

$$= \prod_{v \in M_k} \max\{\|x_0\|_v, \dots, \|x_n\|_v\}^{[k':k]} = H_k(P)^{[k':k]} \text{ as needed.}$$

Invariance

- The Galois group $G_{\mathbb{Q}}$ acts on $\mathbb{P}^n(\overline{\mathbb{Q}})$.
- It also permutes absolute values: if $\sigma : k \to k'$ is an isomorphism then we define $|\sigma(x)|_{\sigma(v)} = |x|_v$, namely $|y|_{\sigma(v)} = |\sigma^{-1}x|_v$.
- Similarly it sends completions to completions, with $n_v = n_{\sigma(v)}$, and globally $[k : \mathbb{Q}] = [\sigma(k) : \mathbb{Q}]$.

Proposition

H is invariant under $G_{\mathbb{Q}}$: we have $H_{\sigma(k)}(\sigma(x)) = H_k(x)$ and $H(\sigma(x) = H(x))$.

Proof.

Trace the definitions, taking the above into consideration.

The strong finiteness property

Theorem

Given B, D, the set $\{P \in \mathbb{P}^n(\overline{\mathbb{Q}}) | H(P) \leq B, [\mathbb{Q}(P) : \mathbb{Q}] \leq D\}$ is finite.

Lemma

Given B, d, the set $\{x \in \overline{\mathbb{Q}}) | H(x) \le B, [\mathbb{Q}(x) : \mathbb{Q}] = d\}$ is finite.

Proof of Theorem given Lemma.

- Given P = (x₀,...,x_n) with x_j ≠ 0 we may assume by rescaling that x_j = 1.
- Then $\max\{\|x_0\|_v, \ldots, \|x_n\|_v\} \ge \max\{\|x_i\|_v, 1\}$ for each *i*, so $H(P) \ge H(x_i)$. Also $\mathbb{Q}(P) \supset \mathbb{Q}(x_i)$.
- There are finitely many possible choices for j, d ≤ D and, by the lemma, for x_i, hence for P.

6/14

The strong finiteness property - continued

Sublemma

Suppose the minimal polynomial of $x \in \overline{\mathbb{Q}}$ is $X^d - s_1(x)X^{d-1} \pm \cdots + (-1)^d s_d(x)$. Then $H(1, s_1(x), \ldots, s_d(x)) \leq 2^d H(x)^{d^2}$.

Proof of Lemma given Sublemma.

We have seen that $\{s \in \mathbb{P}^d(\mathbb{Q}) : H(s) < C\}$ is finite. Applying this to $C = 2^d B^{d^2}$ we find that the number of minimal polynomials of $\{x \in \overline{\mathbb{Q}}) | H(x) \leq B, [\mathbb{Q}(x) : \mathbb{Q}] = d\}$ is finite. Since there are d roots per polynomial, this set itself is finite.

We write
$$\varepsilon_v(r) := \begin{cases} r & v \text{ archimedean} \\ 1 & \text{otherwise} \end{cases}$$

so that $|\sum_{i=1}^r x_i|_v \leq \varepsilon_v(r) \max_i |x_i|_v$.
Note $r = \prod_v \varepsilon_v(r)^{n_v/[k:\mathbb{Q}]}$.

The strong finiteness property - continued

Proof of Sublemma.

- If x_i are the d conjugates of x, and v a valuation of the splitting field k', then
 |s_r(x)|_v = |∑x_{i1} ··· x_{ir}|_v
 ≤ ε_v(2^d) max |x_{i1} ··· x_{ir}|_v ≤ ε_v(2^d) max_i |x_i|_v^r.
 Taking maximum we obtain
 max{1, |s₁(x)|_v, ..., |s_d(x)|_v} ≤ ε_v(2^d) ∏_i max{|x_i|_v, 1}^d.
 taking products and [k': ℚ]-th root, we have
 H(1, s₁(x), ..., s_d(x)) ≤ 2^d ∏_i H(x_i)^d
 - $=2^d \prod_i H(x)^d = 2^d H(x)^{d^2}$ as needed.

Points of Height 1

Corollary (Kronecker's theorem)

Say
$$P = (x_0, ..., x_n) \in \mathbb{P}^n(\overline{\mathbb{Q}})$$
 and $x_i \neq 0$. Then
 $H(P) = 1 \iff x_j/x_i \in \mu(\overline{\mathbb{Q}}) \cup \{0\}$ for all j .

Proof.

- Without loss of generality i = 0 and $x_0 = 1$.
- If $x_j \in \mu$ then $|x_j|_v = 1$ for all v so H(P) = 1.
- Assume H(P) = 1 and consider the sequence of points
 P^r := (x₀^r,...x_n^r). Then you check H(P^r) = H(P)^r = 1, in particular bounded by 1, and by the theorem {P^r} is a finite set.
- So there are $r \neq s$ such that $P^r = P^s$, so $x_j^r = x_j^s$, so $x_j \in \mu \cup \{0\}$ as needed.

Segre and Veronese embeddings

Let $S_{n,m} : \mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{nm+n+m}$ be the Segre embedding and $V_{n,d} : \mathbb{P}^n \hookrightarrow \mathbb{P}^{\binom{n+d}{n}-1}$ the *d*-th Veronese.

Proposition

$$h(S_{n,m}(x,y)) = h(x) + h(y)$$
 and $h(V_{n,d}(x)) = dh(x)$.

Proof.

• The point $z = S_{n,m}(x, y)$ has coordinates $(\ldots, x_i y_j, \ldots)$. For any v we have $\max_{ij} |x_i y_j|_v = (\max_i |x_i|_v)(\max_j |y_j|_v)$. So $h(z) = \log \prod_v \max_{ij} |x_i y_j|_v^{n_v/[k:\mathbb{Q}]} =$ $\log \left(\prod_v \max_i |x_i|_v^{n_v/[k:\mathbb{Q}]} \prod_v \max_j |y_j|_v^{n_v/[k:\mathbb{Q}]}\right) = h(x) + h(y)$. • $w = V_{n,d}(x)$ has coordinates the monomials $M_I(x)$ of degree d. We have $|M_I(x)|_v \le \max_i |x_i|_v^d$ so $\max_I |M_I(x)|_v = \max_i |x_i|_v^d$, and proceed as before.

Functoriality of heights on projective spaces

An m + 1-tuple (f_0, \ldots, f_m) of homomgeneous forms of degree d in n + 1 variables defines a rational map $\phi : \mathbb{P}^n \dashrightarrow \mathbb{P}^m$, which is a morphism away from the base locus $Z = V(f_0, \ldots, f_m)$.

Theorem (Functoriality of heights on projective spaces)

•
$$h(\phi(P)) \leq dh(P) + O(1)$$
 for all $P \in \mathbb{P}^n(\overline{\mathbb{Q}})) \setminus Z$.

• If
$$X \subset \mathbb{P}^n$$
 closed, $X \cap Z = \emptyset$, then
 $h(\phi(P)) = dh(P) + O(1)$ for all $P \in X(\overline{\mathbb{Q}})$.

It is convenient to take absolute values of P, f_j and height of ϕ . Represent $P = (x_0, \ldots, x_n)$ and in monomial notation $f_j = \sum_{|I|=d} a_{j,I} x^I$. We write $|P|_v = \max_i \{|x_i|_v\}, \quad |f_j|_v = \max_I \{|a_{j,I}|_v\}$ and $H(\phi) = H((a_{j,I})_{j,I}) = \prod_v \max_j \{|f_j|_v\}^{n_v/[k:\mathbb{Q}]}.$

伺 と く ヨ と く ヨ と

We write $N_d = \binom{n+d}{d}$.

Proof of functoriality, first part.

۲

$$\begin{aligned} |f_j(P)|_{\nu} &= |\sum_{I} a_{j,I} x^{I}|_{\nu} \leq \varepsilon_{\nu} (N_d) (\max_{I} |a_{j,I}|_{\nu}) (\max_{I} |x^{I}|_{\nu}) \\ &\leq \varepsilon_{\nu} (N_d) |f_j|_{\nu} (\max_{i} |x_i|_{\nu}^d) \\ &= \varepsilon_{\nu} (N_d) |f_j|_{\nu} |P|_{\nu}^d. \end{aligned}$$

• We get

$$\prod_{v} \max_{j} |f_{j}(P)|_{v}^{n_{v}/[k:\mathbb{Q}]} \leq N_{d} \cdot (\prod_{v} \max_{j} |f_{j}|_{v}^{n_{v}/[k:\mathbb{Q}]}) H(P)^{d}$$
$$= N_{d} \cdot H(\phi) H(P)^{d}.$$

• so $h(\phi(P)) \leq dh(P) + h(\phi) + \log N_d$.

Proof of functoriality, second part, beginning

Let I_X = (p₁,..., p_r). By Hilbert's Nullstellensatz, after a finite extension of k we have

$$\sqrt{(p_1,\ldots,p_r,f_0,\ldots,f_m)}=(X_0,\ldots,X_n).$$

- In other words, there is $t \ge d$, forms g_{kj} of degree t d and forms q_{lj} such that for all j $g_{0j}f_0 + \cdots + g_{mj}f_m + q_{1j}p_1 + \cdots + q_{rj}p_r = X_i^t$.
- Plugging in $P = (x_0, \ldots, x_n) \in X$ we get $g_{0j}(P)f_0(P) + \cdots + g_{mj}(P)f_m(P) = x_j^t$.

Proof of functoriality, second part, concluded.

۲

$$|P|_{v}^{t} = \max_{j} |x_{j}^{t}|_{v} = \max_{j} |g_{0j}(P)f_{0}(P) + \dots + g_{mj}(P)f_{m}(P)|_{v}$$

$$\leq \varepsilon_{v}(m+1) \left(\max_{i,j} |g_{ij}(x)|_{v}\right) \left(\max_{i} |f_{i}(x)|_{v}\right)$$

$$\leq (\varepsilon_{v}(m+1) N_{t-d}|(g_{ij})|_{v}) |P|_{v}^{t-d} |\phi(P)|_{v}.$$

- So as before $H(P)^t \leq c \cdot H(P)^{t-d} H(\phi(P))$.
- Hence $dh(P) \leq h(\phi(P)) + O(1)$ as required.