MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman])

Dan Abramovich

Brown University

March 20, 2016

E.1 The theorem

C/K a curve over a number field of genus g>1. It's Jacobian is J, with symmetric divisor Θ with resulting Height pairing $\langle x,y\rangle$ and norm $\hat{h}_{\Theta}(x)=|x|^2=\langle x,x\rangle$. We embed C in J somehow, for instance using a rational point (or j_A defined below).

Theorem (Faltings)

C(K) is finite

E.1 Vojta's inequality

The heart of the proof presented is

Theorem (Vojta)

There exist $\kappa_1, \kappa_2 > 1$ such that if $z, w \in C(\bar{K})$ with $|z| > \kappa_1$ and $|w| > \kappa_2 |z|$, then

$$\langle z, w \rangle \leq \frac{3}{4} |z| |w|.$$

Proposition

Vojta's inequality implies Faltings's Theorem

E.1 Proof of implication

- It suffices to show that the image of C(K) in J(K)/torsion is finite. Let r be the rank.
- Suppose C(K) is infinite. So the norms |x| are unbounded.
- Inductively pick $z_i \in C(K)$ so that $|z_1| > \kappa_1$ and $|z_i| > \kappa_2 |z_{i-1}|$, so that Vojta's inequality applies to all.
- The inequality implies that the angle between z_i and z_j is $\geq \alpha := \arccos(3/4)$.
- In particular the spherical open balls $B(u_i, \alpha/2)$ of angle $\alpha/2$ around $u_i = z_i/|z_i|$ are disjoint.
- But vol $S_{r-1} \ge \text{vol} \coprod B(u_i, \alpha/2) = \sum \text{vol} B(u_i, \alpha/2) = \infty$, since vol $B(u_i, \alpha/2) = \text{vol} B(u_i, \alpha/2) > 0$.

E.2 Compatible divisors

- Choose a divisor A on C such that $\deg_C A = 1$ and $(2g-2)A \sim K_C$.
- Possibly after extending K the divisor $A \in Div(C/K)$.
- Get an embedding $j_A: C \to J$ by $x \to (x) A$.
- Will chose $\Theta_A = \sum_{i=1}^{g-1} j_A C$.
- Write $\mathcal{P}_A = sum^*\Theta_A p_1^*\Theta_A p_2^*\Theta_A$.

Lemma

- (1) Θ_A is symmetric;
- (2) $j_A^*\Theta_A \sim gA$
- (3) $(j_A \times j_A)^* \mathcal{P}_A \sim -\Delta_C + p_1^* A + p_2^* A$.

E.2 Compatible divisors - proof

- (1) The divisor $\Theta^{g-1} \subset Pic^{g-1}(C)$ is characterized by $H^0(O(D)) \neq 0$, equivalently $H^1(O(D)) \neq 0$ or $H^0(K_C D) \neq 0$, so symmetric under $x \mapsto K_C x$. Now $\Theta_A = \Theta^{g-1} (g-1)A = K_C \Theta^{g-1} (g-1)A = (g-1)A \Theta^{g-1} = [-1]^*\Theta_A$.
- (2) $j_A^*\Theta_A = \{p \in C | h^0(p + (g 2)A) \ge 0\}$ = $\{p \in C | h^0(gA - p) \ge 0\} \sim gA$.
- (3) Restricting $\sum^* \Theta_A$ to $q \times C$ we get $\{p \in C | h^0(p+q+(g-3)A) \geq 0\} = \{p \in C | h^0((g+1)A-q-p) \geq 0\} \sim (g+1)A-q$. The restriction of $p_1^*\Theta_A \sim 0$ and of $p_2^*\Theta_A \sim gA$ as before, so \mathcal{P}_A restricts to A-q. On the right hand side the restriction of Δ_C is q, the restriction of $p_1^*A \sim 0$ and of $p_2^*A \sim A$, also giving in total A-q. Symmetry and the seesaw principle give the result.

E.2 Specific heights

- Choose N so that NA is very ample (e.g. N=2g-1). Let $\phi_{NA}: C \to \mathbb{P}^n$ be a fixed embedding.
- This provides a height $h_{C,NA}(z)$ and $h_{C,\xi NA}(z) := \xi h_{C,NA}(z)$ in particular $h_{C,NA}(z) = Nh_{C,A}(z)$ more to come.
- We assume that $\phi_{NA}(C)$ does not meet the intersection planes of hyperplanes.
- We assume further that any three of the basis sections define a birational map $C \to \mathbb{P}^2$.
- Choose M large so that $B=(M+1)p_1^*A+(M+1)p_2^*A-\Delta_C$ is very ample. This gives an embedding $\phi_B:C\times C\to \mathbb{P}^m$, providing for a height $h_{C\times C,B}(z,w)$. We extend to $h_{C\times C,dB}(z,w)=dh_{C\times C,B}(z,w)$.

E.2 Specific heights - continued

- For all $\delta_1, \delta_2 > 0$ consider $D_{\delta_1, \delta_2} = \delta_1 p_1^* A + \delta_2 p_2^* A$. We fix $h_{C \times C, D_{\delta_1, \delta_2}}(z, w) = \delta_1 h_{C, \delta_1 A}(z) + \delta_2 h_{C, \delta_2 A}(w)$.
- For d_1, d_2, d define the Vojta divisor

$$\Omega(d_1, d_2, d) = (d_1 - d)p_1^*A + (d_2 - d)p_2^*A + d\Delta_C,$$

where we assume $gd^2 < d_1d_2 < g^2d^2$. It is deliberately going to be somewhat lopsided: $d_1 > d > d_2$.

• We require $N|d_1, d_2, d$ and fix $\delta_i = (d_i + Md)/N$. Then

$$\Omega(d_1,d_2,d)=D_{\delta_1N,\delta_2N}-dB.$$

- We use the corresponding height $h_{C \times C,\Omega(d_1,d_2,d)}(z,w) = \delta_1 h_{C,NA}(z) + \delta_2 h_{C,NA}(w) dh_{C \times C,B}(z,w)$.
- We require d to be large enough that

$$H^0(C \times C, O(B))^{\otimes d} \to H^0(C \times C, O(dB))$$

is surjective.

E.4 Mumford's estimate

Proposition

There is a constant c_1 so that for all d_1, d_2, d and all $z, w \in C(\overline{K})$ we have

$$h_{\Omega(d_1,d_2,d)}(z,w) \leq \frac{d_1}{g}|z|^2 + \frac{d_2}{g}|w|^2 - 2d\langle z,w\rangle + (d_1+d_2+d)c_1.$$

Taking $d_1 = d_2 = d = 1$ gives Mumford's gap principle:

$$\cos \angle(z, w) \le (|z|/|w| + |w|/|z|)/2g + c'/|z||w|.$$

Proof: Since $\Omega(d_1, d_2, d) = D_{d_1, d_2} - d(D_{1,1} - \Delta_C)$, the height machine gives

$$h_{\Omega(d_1,d_2,d)}(z,w) = d_1 h_{C,A}(z) + d_2 h_{C,A}(w)$$

- $dh_{C \times C,-\Delta_C + D_{1,1}}(z,w) + O(d_1 + d_2 + d).$

E.4 Mumford's estimate - concluded

Recall $j_A^*\Theta_A \sim gA$, so

$$h_{C,A}(u) = \frac{1}{g}|u|^2 + O(1).$$

Recall $(j_A \times j_A)^* \mathcal{P}_A \sim -\Delta_C + p_1^* A + p_2^* A$, so

$$egin{aligned} h_{C imes C, -\Delta_C + D_{1,1}}(z, w) \ &= \hat{h}_{J, \Theta_A}(z + w) - \hat{h}_{J, \Theta_A}(z) - \hat{h}_{J, \Theta_A}(w) + O(1) \ &= |z + w|^2 - |z|^2 - |w|^2 + O(1) = 2\langle z, w \rangle + O(1). \end{aligned}$$

Combining, the result follows.

E.5 Sections interpreted (Also E.6)

Recall that $\Omega(d_1, d_2, d) = D_{\delta_1 N, \delta_2 N} - dB$. We have a bilinear $H^0(\Omega(d_1, d_2, d)) \otimes H^0(dB) \to H^0(D_{\delta_1 N, \delta_2 N})$.

Having required d, δ_1, δ_2 to be larger than what's required for Serre's theorem, we have surjective $\operatorname{Sym}^d H^0(B) \to H^0(dB)$ and $\operatorname{Sym}^{\delta_1} H^0(C, NA) \otimes \operatorname{Sym}^{\delta_2} H^0(C, NA) \to H^0(D_{\delta_1 N, \delta_2 N})$. Let $y_i \in H^0(B)$ and $x_i \in H^0(C, NA)$ be the section providing the embedding and heights.

Lemma

We have a bijection

$$H^{0}(\Omega(d_{1}, d_{2}, d)) = \left\{ (F_{i}(x, x') \in k[x, x']_{\delta_{1}, \delta_{2}} / I_{C \times C}) \middle| F_{i}(x, x') y_{j}^{d} |_{C \times C} \\ = F_{j}(x, x') y_{i}^{d} |_{C \times C} \right\}.$$

E.6 Sections interpreted and counted

Writing the rational functions $\frac{y_i^d}{y_0^d} = \frac{P_i(x,x')}{Q_i(x,x')}$ we can further represent $H^0(\Omega(d_1,d_2,d))$ by collections $(F_i(x,x') \in k[x,x']_{\delta_1,\delta_2})$ satisfying

$$(P_jQ_i)^dF_i(x,x')|_{C\times C}=(P_iQ_j)^dF_j(x,x')|_{C\times C}.$$

We will use Siegel's Lemma to find small sections. First we need the dimensions.

Lemma

- (1) $\ell(\Omega(d_1,d_2,d)) \geq d_1d_2 gd^2 (g-1)(d_1+d_2).$
- (2) $\ell(D_{\delta_1 N, \delta_2 N}) = (N\delta_1 g + 1)(N\delta_2 g + 1).$

E.6 Intersection numbers

Part (2) follows since $\ell(p_1^*E_1 + p_2^*E_2) = \ell(E_1)\ell(E_2)$. Since N was chosen large, Riemann-Roch for curves says $\ell(\delta_i NA) = \delta_i N - g + 1$. For Part (1) we need Riemann-Roch:

Theorem (Surface Riemann-Roch)

$$\chi(\mathcal{O}_S(D)) = \frac{D \cdot (D - K_S)}{2} + \chi(\mathcal{O}_S).$$

We have $\chi(\mathcal{O}_{C\times C}) = (\chi(\mathcal{O}_C))^2 = (g-1)^2$ and intersection table

	p_1^*A	p_2^*A	Δ_C
p_1^*A	0	1	1
p_2^*A	0	1	1
Δ_{C}	1	1	2 - 2g

E.6 Proof of dimension estimate

- We now compute $\chi(\Omega(d_1,d_2,d)) = rac{2d_1d_2 2gd^2 (2g-2)(d_1+d_2)}{2} + (g-1)^2$,
- ullet so $\ell(\Omega(d_1,d_2,d)) \geq d_1d_2 gd^2 (g-1)(d_1+d_2) + \ell(\mathcal{K}_{\mathcal{C} imes\mathcal{C}} \Omega(d_1,d_2,d)).$
- Since the intersection number $K-\Omega$ with the moving divisor A_1 is $(2g-2)-d_2$ and d_2 is large, $\ell(K-\Omega)=0$, so our crude estimate holds.

E.7 summary: Ω has a small section

Proposition

There is $c_1(C/K, A, B) > 0$ such that the following holds. Fix $\gamma > 0$ and assume $d_1d_2 - gd^2 \ge \gamma d_1d_2$. Then there is $s \in \Gamma(C \times C, O(\Omega(d_1, d_2, d)))$ corresponding to (F_i) such that

$$h((F_i)) \leq c_1 \frac{d_1 + d_2}{\gamma} + o(d_1 + d_2).$$

This is proven by an incredibly technical application of Sigel's Lemma. We'll come back to it.

E.8 Lower bound on $h_{\Omega}(z, w)$: the index

We will fix $(z, w) \in C \times C$, align d_1, d_2, d to (z, w), and then choose a section $s \in \Gamma(\Omega)$. We need to consider the index of s at (z, w), with respect to weights (δ_1, δ_2) For this we choose coordinates at z, w and take derivatives with respect to parameters ζ, ζ' :

$$\mathsf{Ind}(s) := \mathsf{min}\left\{\frac{\mathit{i}_1}{\delta_1} + \frac{\mathit{i}_2}{\delta_2} \middle| \mathit{i}_1, \mathit{i}_2 \geq 0, \partial_{\mathit{i}_1} \partial_{\mathit{i}_2}' f(z,w) \neq 0\right\}.$$

We say (i_1^*, i_2^*) is admissible if $Ind(s) = \frac{i_1^*}{\delta_1} + \frac{i_2^*}{\delta_2}$ and $\partial_{i_1^*} \partial'_{i_2^*} f(z, w) \neq 0$.

Lemma

If (i_1^*, i_2^*) is admissible and if $g(z, w) \neq 0$ then $\partial_{i_1^*} \partial_{i_2^*}' f(z, w) = \frac{\partial_{i_1^*} \partial_{i_2^*}' (f(z, w) g(z, w))}{g(z, w)}$.

E.8 Implicit lower bound on $h_{\Omega}(z, w)$

Proposition

$$s \in \Gamma(\Omega)$$
 given by (F_i) , (i_1^*, i_2^*) is admissible at (z, w) , then

$$\begin{split} h_{\Omega}(z,w) &\geq -h((F_i)) - (i_1^* + i_2^* + 2\delta_1 + 2\delta_2 + 2n) \\ &- \sum_{v} \max_{i_1 + \dots + i_{\delta_1} = i_1^*} \sum_{k=1}^{\delta_1} \max_{0 \leq \ell \leq n} \min_{j} \log \left| \left(\partial_{i_k} \frac{x_{\ell}}{x_j} \right)(z) \right|_{v} \\ &- \sum_{v} \max_{i_1' + \dots + i_{\delta_2}' = i_2^*} \sum_{k=1}^{\delta_2} \max_{0 \leq \ell \leq n} \min_{j'} \log \left| \left(\partial_{i_k'} \frac{x_{\ell}'}{x_{j'}'} \right)(z) \right|_{v} \end{split}$$

The key is to unwind $h_{\Omega}(z, w) = \delta_1 h_{NA}(z) + \delta_2 h_{NA}(w) - dh_B(z, w).$

We'll get back to this.

E.9 Derivative bounds

We need to bound $\left|\left(\partial_{i_k}\frac{x_\ell}{x_j}\right)(z)\right|_v$ and $\left|\left(\partial_{i'_k}\frac{x'_\ell}{x'_{j'}}\right)(z)\right|_v$. A rational function $\xi(\zeta)=x_\ell/x_j(\zeta)$ satisfies an equation $p(\xi,\zeta)=0$ of degree bounded by the degree D of C. We wish to estimate the derivatives of ξ at the point (a,0) corresponding to z. Also write

$$|x|_{v}^{\mathsf{arch}} := egin{cases} |v|_{v} & v \text{ archimedean} \\ 1 & \mathsf{otherwise}. \end{cases}$$

Proposition

$$|\partial_i \xi(0)|_{\nu} \leq (|2D|_{\nu}^{arch})^{11i} \left(\frac{|p|_{\nu}}{\partial p/\partial \xi(a,0)|_{\nu}}\right)^{2i-1} \max\{1,|a|_{\nu}\}^{2iD}.$$

E.10 More explicit lower bound on $h_{\Omega}(z, w)$

Proposition

 $s \in \Gamma(\Omega)$ given by (F_i) , then there is a finite set $\mathcal{Z} \subset C$ such that for $z, w \notin \mathcal{Z}$ and (i_1^*, i_2^*) is admissible at (z, w),

$$h_{\Omega}(z,w) \geq -h((F_i)) - c_{18}(i_1^*|z|^2 + i_2^*|w|^2) - c_{19}(i_1^* + i_2^* + \delta_1 + \delta_2 + 1).$$

(Here we fall back to |z| being the canonical height in the jacobian.)

E.11 Roth's lemma: two variable case

Proposition

Let $P \in \overline{\mathbb{Q}}[X_1, X_2]$ of bidegree at most (r_1, r_2) . Let $\beta_1, \beta_2 \in \overline{\mathbb{Q}}$. Let $1 \ge \omega > 0$ such that $r_1 \le \omega r_1$ and

$$h(P) + 4r_1 \le \omega \min\{r_1 h(\beta_1), r_2 h(\beta_2)\}.$$

Then there are $i_1, i_2 \geq 0$ such that $\frac{i_1}{\delta_1} + \frac{i_2}{\delta_2} \leq 4\sqrt{\omega}$ and $\partial_{i_1,i_2}P(\beta_1,\beta_2) \neq 0$.

E.11 Index bound

Proposition

Given C, A, B there is a constant c_{35} such that the following holds. Let ϵ , δ > 0 be small, and let d_1 , d_2 , d and (z, w) satisfy

$$\epsilon^2 d_2 \geq d_2, \ \min\{d_1|z|^2, d_2|w^2\} \geq c_{35} d_1/(\gamma \epsilon^2), \ d_2 d_2 - d^2 \geq \gamma d_1 d_2.$$

Let $s \in \Gamma(\Omega)$ be a small section of height $h((F_i)) = c_1 \frac{d_1 + d_2}{\gamma} + o(d_1 + d_2)$. Then there is (i_1^*, i_2^*) admissible at (z, w) with

$$\frac{i_1^*}{d_1} + \frac{i_2^*}{d_2} \le 12N\epsilon.$$

E.12: Vojta's inequality - first choices

- In a proposition from E.10 there was an "exceptional" finite set of points $\mathcal{Z}\subset C(\bar{K})$.
- We require $\kappa_1 > \max_{z \in \mathcal{Z}} h(z)$. There will be another lower bound required on κ_1 below.
- Take points $z, w \in C(\bar{K})$, where $|z| > \kappa_1$. We'll specify requirements on κ_2 later.
- Pick $1 \gg \epsilon, \nu > 0$ depending on C.
- We'll want $\kappa_1^2 > 1/\epsilon$, $\kappa_2/\sqrt{2} > 1/\epsilon$.
- We pick $D \gg 1$. This choice does depend on z, w: we need $D > |w|^2$, though we'll let it go to infinity.
- Set $d_1 = N \left\lfloor \sqrt{g + \nu} \frac{D}{|z|^2} \right\rfloor$, $d_2 = N \left\lfloor \sqrt{g + \nu} \frac{D}{|w|^2} \right\rfloor$, $d = N \left\lfloor \frac{D}{|z||w|} \right\rfloor$.

E.12: Vojta's inequality - lower height bounds

- We proved, for $z, w \notin \mathcal{Z}$ and admissible I_1^*, I_2^* , $h_{\Omega}(z, w)$ $\geq -h((F_i)) - c_{18}(i_1^*|z|^2 + i_2^*|w|^2) - c_{19}(i_1^* + i_2^* + \delta_1 + \delta_2 + 1).$
- Recall that δ_1, δ_2 are positive linear combinations of d_1, d_2, d . Also we may, and will, assume $|z|, |w| \gg 1$. So $h_{\Omega}(z, w) \geq -h((F_i)) c_{42}(i_1^*|z|^2 + i_2^*|w|^2) c_{43}(d_1 + d_2 + d)$.
- For the last term we have $d_1 + d_2 + d \leq \frac{c_{44}D}{\kappa_1^2} \leq c_{44}\epsilon D$, so $h_{\Omega}(z,w) \geq -h((F_i)) c_{42}(i_1^*|z|^2 + i_2^*|w|^2) c_{46}\epsilon D$.

E.12: Vojta's inequality - there is a small section

• we have seen in E_7 that if $d_1d_2 - gd^2 \ge \gamma d_1d_2$ there is a section s of $\Omega(d_1, d_2, d)$ corresponding to (F_i) such that

$$h((F_i)) \leq c_1 \frac{d_1 + d_2}{\gamma} + o(d_1 + d_2).$$

- $\lim_{D\to\infty} \frac{d_1d_2-gd^2}{d_1d_2}=1-\frac{g}{g+\nu}=\frac{\nu}{g+\nu} > \nu/(g+1)$. So $\gamma=\nu/3g$ will work for large D and any g.
- For such gamma we get a section with

$$h((F_i)) \leq c_{47} \frac{d_1 + d_2}{\gamma} \leq c_{48}(d_1 + d_2) \leq c_{49} \epsilon D.$$

• This gives $h_{\Omega}(z, w) \geq -c_{50}(i_1^*|z|^2 + i_2^*|w|^2) - c_{51}\epsilon D$.

E.12: Vojta's inequality - verifying index bound

To bound the index we needed in E.11

$$\epsilon^2 d_2 \geq d_2, \ \min\{d_1|z|^2, d_2|w^2\} \geq c_{35} d_1/(\gamma \epsilon^2), \ d_2 d_2 - d^2 \geq \gamma d_1 d_2.$$

• Note that $d_2/d_1 \sim_{D o \infty} |z|^2/|w|^2$. So for large D we have

$$\frac{d_1}{d_2} \le 2 \frac{|z|^2}{|w|^2} \le 2/\kappa_2^2 \le \epsilon^2.$$

- $d_1|z|^2$ and $d_2|w|^2$ are "balanced": $\frac{d_2|w|^2}{d_1|z|^2}\sim_{D\to\infty}1$. so for large D we have $1/2\leq \frac{d_2|w|^2}{d_1|z|^2}\leq 2$.
- Assuming further $\kappa_1 \geq 2c_{35}/(\gamma\epsilon^2)$ we get $\min\{d_1|z|^2,d_2|w^2\} \geq d_1|z|^2/2 \geq d_1\kappa_1^2/2 \geq c_{35}d_1/(\gamma\epsilon^2)$, as needed.

E.12: Vojta's inequality - Mumford

We now have the index bound

$$\frac{i_1^*}{d_1} + \frac{i_2^*}{d_2} \le 12N\epsilon.$$

- Combining we get $h_{\Omega}(z, w) \ge -c_{53}(d_1|z|^2 + d_2|w|^2) c_{54}\epsilon D$.
- The definitions of d_1, d_2 give $d_1|z|^2 \le c_{55}D$, $d_2|w|^2 \le c_{56}D$.
- So $h_{\Omega}(z, w) \geq -c_{57} \epsilon D$.
- Mumford gave in E.4 $h_{\Omega(d_1,d_2,d)}(z,w) \leq \frac{d_1}{g}|z|^2 + \frac{d_2}{g}|z_2|^2 2d\langle z,w\rangle + (d_1+d_2+d)c_1.$
- Since $d_1 + d_2 + d \le c_{44} \epsilon D$ we have

$$\frac{d_1}{g}|z|^2+\frac{d_2}{g}|z_2|^2-2d\langle z,w\rangle\geq -c_{60}\epsilon D.$$

E.12: Vojta's inequality - conclusion

• Plugging in we get $\left\lfloor \sqrt{g+\nu} \frac{D}{|z|^2} \right\rfloor \frac{|z|^2}{g} + \left\lfloor \sqrt{g+\nu} \frac{D}{|w|^2} \right\rfloor \frac{|w|^2}{g} - 2 \left\lfloor \frac{D}{|z||w|} \right\rfloor \langle z, w \rangle \ge -c_{60} \epsilon D.$

• For $D \to \infty$ we get

$$\langle z, w \rangle \leq \left(\frac{\sqrt{g+\nu}}{g} + \frac{c_{61}\epsilon}{2} \right) |z||w|.$$

Since $g \geq 2$ we have $\lim_{\nu,\epsilon \to 0} \left(\frac{\sqrt{g+\nu}}{g} + \frac{c_{61}\epsilon}{2} \right) = 1/\sqrt{g} < 3/4$, so for small ϵ, ν , not depending on z, w,

$$\langle z, w \rangle \leq \frac{3}{4} |z| |w|,$$

as required.

