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Vojta's inequality implies Mordell
E.1 The theorem

C/K a curve over a number field of genus g > 1. It's Jacobian is
J, with symmetric divisor © with resulting Height pairing (x, y)
and norm he(x) = |x|> = (x,x). We embed C in J somehow, for
instance using a rational point (or ja defined below).

Theorem (Faltings)

C(K) is finite
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Vojta's inequality implies Mordell

E.1 Vojta's inequality

The heart of the proof presented is

Theorem (Vojta)

There exist 11, ko > 1 such that if z,w € C(K) with |z| > k1 and
|w| > kalz|, then

3
(2,w) < 3 2l|wl.

Proposition

Vojta’s inequality implies Faltings’s Theorem
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Vojta's inequality implies Mordell

E.1 Proof of implication

e It suffices to show that the image of C(K) in J(K)/torsion is
finite. Let r be the rank.

@ Suppose C(K) is infinite. So the norms |x| are unbounded.

o Inductively pick z; € C(K) so that |z;| > k1 and
|zi| > Ka|zi—1|, so that Vojta's inequality applies to all.

@ The inequality implies that the angle between z and z; is
> o := arccos(3/4).

@ In particular the spherical open balls B(u;, «/2) of angle /2
around u; = z;/|z;| are disjoint.

@ But vol S,_1 > vol [ [ B(uj,/2) = > vol B(uj, a/2) = 0,
since vol B(uj, «/2) = vol B(uj,a/2) > 0. [ )
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Vojta's inequality implies Mordell
E.2 Compatible divisors

@ Choose a divisor A on C such that deg- A =1 and
(2g —2)A ~ Kc.

@ Possibly after extending K the divisor A € Div(C/K).

e Get an embedding ja: C — J by x — (x) — A.

o Will chose ©4 = Y47 jaC.

o Write Py = sum*©4 — pi©4 — p3©4.

(1) ©4 is symmetric;
(2) ja©a ~ gA
(3) Ua xJa)"Pa~ —Ac+ piA+ p3A.
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Vojta's inequality implies Mordell

E.2 Compatible divisors - proof

(1)

The divisor @81 C Pic8~1(C) is characterized by
H°(O(D)) # 0, equivalently HY(O(D)) # 0 or

HO(Kc — D) # 0, so symmetric under x +— K¢ — x. Now
Oa=081_(g-DA=Kc—081—(g-1A=

(g —1)A— 081 =[-1]"O4.

(2) ja©a={p e Clh°(p+ (g —2)A) > 0}

(3)

= {p € C|h°(gA — p) > 0} ~ gA.

Restricting > ©4 to g x C we get
{peCli(p+q+(g—3)A)>0}={pec

C|h°((g + 1)A—qg—p) >0} ~ (g +1)A — q. The restriction
of pi©4 ~ 0 and of p3©4 ~ gA as before, so Py restricts to
A — g. On the right hand side the restriction of A¢ is g, the
restriction of pjA ~ 0 and of pJA ~ A, also giving in total

A — g. Symmetry and the seesaw principle give the result.
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E.2 Specific heights

@ Choose N so that NA is very ample (e.g. N =2g —1). Let
dna : C — P" be a fixed embedding.

@ This provides a height hc na(z) and he ¢na(z) := Ehe na(z) -
in particular hc ya(z) = Nhc a(z) - more to come.

@ We assume that ¢pna(C) does not meet the intersection
planes of hyperplanes.

@ We assume further that any three of the basis sections define
a birational map C — P2,

@ Choose M large so that B = (M +1)p;A+ (M +1)p;A— Ac
is very ample. This gives an embedding ¢ : C x C — P,
providing for a height hcyc g(z, w). We extend to
hexc,ae(z, w) = dhexc,g(z, w).
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Vojta's inequality implies Mordell

E.2 Specific heights - continued

@ For all 41,02 > 0 consider Dy, 5, = d1p7 A+ dop5A. We fix
hcxc,s, 4,(2, W) = 61hc 5,4(2) + 62hc 5,a(W).
e For di, d>, d define the Vojta divisor
Q(dla d27 d) = (dl - d)pikA + (d2 - d)p;A + dAC7

where we assume gd? < did» < g?d?. It is deliberately going
to be somewhat lopsided: d; > d > db.
e We require N|di, do, d and fix 6; = (di + Md)/N. Then

Q(dl, dg, d) = D51N752N — dB.

o We use the corresponding height hcy ¢ o(d;,d»,d) (2, W) =
d1hc na(z) + dahe na(w) — dhex e g(z, w).
@ We require d to be large enough that

H°(C x C,0(B))®? — H(C x C,0(dB))

is surjective.
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Vojta's inequality implies Mordell

E.4 Mumford's estimate

Proposition

There is a constant c¢; so that for all di,d>,d and all z,w € C(R)
we have

d>

d-
ha(dy,do,a) (2, W) < El|2|2 + E|W|2 —2d(z,w) + (di + d2 + d)c1.

Taking di = d» = d = 1 gives Mumford's gap principle:
cosL(z,w) < (lzl/|w|+|wl/|z])/2e + c/|z|lw].

Proof: Since Q(d1, da, d) = Dg, .4, — d(D1,1 — Ac), the height
machine gives

ho(dy,db,d) (2, W) =dihc a(z) + dahc a(w)
—dhcxc,—ncipy, (2, w) + O(di + da + d).
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Vojta's inequality implies Mordell

E.4 Mumford's estimate - concluded

Recall j304 ~ gA, so
L o
hC7A(u) = —|u| -+ O(l)
g
Recall (ja % ja)*Pa ~ —Ac + pfA+ p3A, so
hcxc,—ac+pi, (2, W)

= hyea(z+w) = hje,(2) = hye,(w)+ O(1)
=|z+w]® = |z” = [w]* + O(1) = 2(z,w) + O(1).

Combining, the result follows. '
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Vojta's inequality implies Mordell
E.5 Sections interpreted

Recall that Q(d1, do, d) = Ds,n 5,8 — dB. We have a bilinear
HO(Q(dl, d>, d)) X HO(C/B) — HO(D(;IN’52N).

Having required d, 1,02 to be larger than what's required for
Serre’s theorem, we have surjective Sym? H%(B) — H°(dB) and
Sym? HO(C, NA) ® Sym?2HO(C, NA) — H°(Ds,n.s,n)- Let

yi € H%(B) and x; € H°(C, NA) be the section providing the
embedding and heights.

Lemma
We have a bijection

H°(Q(dy, da, d))

= {(F,'(X,X,) S k[X,X/]51,52//C><C)

Fi(x, x")y{lcxc }
:Fj(xaxl)yl‘d‘CxC ’
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E.6 Sections interpreted and counted

d
L . . i _ Pi(X7XI)
Writing the rational functions vd T Qi(xxX)

represent HO(Q(d1, d2, d)) by collections (Fi(x, x") € k[x,x]s,.5,)
satisfying

we can further

(P;Q)Fi(x,X) | cxc = (PiQ) Fi(x, x)|cxc-

We will use Siegel's Lemma to find small sections. First we need
the dimensions.

(1) K(Q(dl, do, d)) > didy — gd2 — (g — 1)(d1 + dz).
(2) E(D51N752N) = (N51 — g+ 1)(N52 — g+ 1).
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Vojta's inequality implies Mordell
E.6 Intersection numbers

Part (2) follows since ¢(p;E1 + p3Ez) = ¢(E1)¢(E2). Since N was
chosen large, Riemann-Roch for curves says ¢(0;NA) = §;N — g + 1.
For Part (1) we need Riemann-Roch:

Theorem (Surface Riemann-Roch)

X(0s(D)) = 2LEHK5) 1y (05).

We have X(OCXC) (x(Oc¢))? = (g — 1)? and intersection table
| piA| p3A| Ac |
piAl 0 | 1 1
Al 0 | 1 1
Acl 1|1 |2-2¢
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E.6 Proof of dimension estimate

@ We now compute
X(Qdy, do, d)) = 2hb=26La2)(Eth) 4 (g2,

@ so /(Q(dy1, da, d)) >
didr — gd2 — (g — 1)(d1 + d2) + g(KCXC — Q(dl, db, d))

@ Since the intersection number K — Q with the moving divisor
A1 is (2g —2) — dy and d> is large, /(K — Q) =0, so our
crude estimate holds. '
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E.7 summary: Q has a small section

Proposition

There is c1(C/K, A, B) > 0 such that the following holds. Fix
~ > 0 and assume didr — gd? > ~did>. Then there is
sel(C x C,0(Q(d1, da, d))) corresponding to (F;) such that

di + d»

h((F,)) < —+ O(dl + dz).

This is proven by an incredibly technical application of Sigel's
Lemma. We'll come back to it.
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E.8 Lower bound on hq(z, w): the index

We will fix (z,w) € C x C, align di, da, d to (z,w), and then
choose a section s € [(2). We need to consider the index of s at
(z, w), with respect to weights (d1,02) For this we choose
coordinates at z, w and take derivatives with respect to parameters

¢.¢"

Ind(s) —mln{(;l1 (; i1l >0, 8,182;((2’ W)#o}.

We say (if, i3) is admissible if Ind(s) = % + % and
05 0 f(z,w) # 0.

If (if, i3) is admissible and if g(z,w) # O then

a,'*a,{*(f(z’w)g(sz))
611*8,/; f(Z, W) = —2 g(z,w)
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E.8 Implicit lower bound on hq(z, w)

s € ['(Q) given by (F;), (if,i3) is admissible at (z, w), then

ha(z,w) > —h((F;)) — (if + i + 201 + 202 + 2n)
- X
_ Z i nlalgi_l z:lor&ag min log ‘ (8,,()9_) (2)
— Z max Z max mlnlog

I . =
o ity =i

The key is to unwind

/'IQ(Z7 W) = 51hNA(Z) + 52hNA(W) — th(Z, W).
We'll get back to this.
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E.9 Derivative bounds

We need to bound ‘(8,-/;—?) (z)‘ and ‘(8,-;?) (z)| . A rational
v 4 v

function £(¢) = x¢/x;(C) satisfies an equation p(&, () = 0 of degree
bounded by the degree D of C. We wish to estimate the
derivatives of ¢ at the point (a,0) corresponding to z. Also write

|x]arCh — |v|, v archimedean
Y 1 otherwise.

Proposition

2i—1
9:£(0)], < (j2DJ2rehyn (ap/af('on) max{(1, |al, }2°.
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E.10 More explicit lower bound on hq(z, w)

Proposition

s € [(Q) given by (F;), then there is a finite set Z C C such that
for z,w ¢ Z and (if, i) is admissible at (z, w),

ha(z,w) > —h((F;))— cs(iy|z* +i3|w|*) — cro(iy +i3 +81+52+1).

(Here we fall back to |z| being the canonical height in the
jacobian.)
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E.11 Roth's lemma: two variable case

Proposition

Let P € Q[X1, Xa] of bidegree at most (r1, r2). Let B1,2 € Q. Let
1> w >0 such that rp < wr and

h(P) +4r1 <wmin{rih(p1), nh(B2)}.

Then there are i1, iy > 0 such that § + £ < 4\/w and
0, P(B1, B2) # 0.
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E.11 Index bound

Proposition

Given C, A, B there is a constant css such that the following holds.
Let €,0 > 0 be small, and let dy, d»,d and (z, w) satisfy

620'2 Z d2, min{d1\2]2,d2\wz} Z C35d1/(’y€2), d2d2—d2 Z "ydldz.

Let s € T(Q2) be a small section of height
h((Fi)) = c1# + o(d1 + d2). Then there is (i, iy) admissible at

(z,w) with
B
- 4+ = < 12Ne.
di + d> — €
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E.12: Vojta's inequality - first choices

@ In a proposition from E.10 there was an "exceptional” finite
set of points Z C C(K).

e We require K1 > max,cz h(z). There will be another lower
bound required on x; below.

o Take points z,w € C(K), where |z| > k1. We'll specify
requirements on r, later.

@ Pick 1 > ¢,v > 0 depending on C.

o We'll want k2 > 1/e, rp/v/2 > 1/e.

@ We pick D > 1. This choice does depend on z, w: we need
D > |w|?, though we'll let it go to infinity.

o Setch=N|VEFvl|, do=N|VgFvls| d=
V| fa

|zl[wl | -

Abramovich MA 254 notes: Diophantine Geometry 22/27



Vojta's inequality implies Mordell

E.12: Vojta's inequality - lower height bounds

e We proved, for z, w ¢ Z and admissible /5, I3,
ha(z, w)
> —h((F)) — c1s(if|z|2 + i5|w|?) — cro(if + i3 + 61 + 62+ 1).
@ Recall that §1, 62 are positive linear combinations of dy, do, d.
Also we may, and will, assume |z|,|w| > 1. So
ha(z,w) = —h((F)) — caa(if |2|* + 5 |w|?) — caa(ch + d2 + d).
@ For the last term we have di + db +d < % < ca4€D, so
ha(z, w) > —h((F;)) — caz(if|z|> + i3 |w|?) — capeD.
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E.12: Vojta's inequality - there is a small section

@ we have seen in E7 that if didr — gd? > vdido there is a
section s of Q(d1, da, d) corresponding to (F;) such that

W(F)) < o 20

+ o(dy + do).

. didr — gd? g
°Di’noo dids g+v g+v >V/(g+ ) ©
v = v/3g will work for large D and any g.

@ For such gamma we get a section with

di + do

h((Fi)) < car < cg(dy + da) < cageD.
e This gives ho(z, w) > —cso(if|z]? + i3 |w|?) — cs1€D.
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E.12: Vojta's inequality - verifying index bound

@ To bound the index we needed in E.11
620'2 > dy, min{d1|z|2,d2\W2} > C35d1/(’y€2), d2d2—d2 > vdids.
o Note that da/d; ~p_.o0 |2|?/|W|?. So for large D we have

di 2|2
— <2—=<2/K <e
d2_ ’ ‘2 /2

“ w. dalw|?
o di1|z|? and da|w|? are “balanced”: % ~D—soo 1. so for

large D we have 1/2 < (3121‘|vzv||22 <2

o Assuming further k1 > 2c35/(v€?) we get
min{d1|z|?, da|w?} > d1|z|?/2 > d1k3/2 > c3sdi/(v€?), as
needed.
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E.12: Vojta's inequality - Mumford

@ We now have the index bound

iy

d1 L, 52 < 12Ne.
Combining we get hq(z, w) > —cs3(d1|z|? + do|w|?) — cs4eD.
The definitions of dy, d» give di|z|> < cs5D, da|w|? < cs6D.
So hq(z,w) > —cs7eD.
Mumford gave in E.4
ho(dh.nd) (2, W) < L|z2+ d2|22\2—2d<2a w)+(di+dr+d)c
Since di + da + d < cg4eD we have

d d
—1|z]2 + —2122]2 —2d(z,w) > —cpoeD.
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E.12: Vojta's inequality - conclusion

@ Plugging in we get

[VeF v ] 5+ [veFue] B 2| (2w 2

—C606D.

@ For D — oo we get

e < (VEEZ 1 8 .

Since g > 2 we have lim, o (Vg;V + %) =1/,/8 <3/4,
so for small ¢, v, not depending on z, w,

3
< —
(z,w) < Slelwl,
as required. ®
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