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The Mordell-Weil theorem

Mordell Weil and Weak Mordell-Weil

Theorem (The Mordell-Weil theorem)

Let A/k be an abelian variety over a number field. Then A(k) is
finitely generated.

We deduce this from
Theorem (The weak Mordell-Weil theorem)

Let A/k be as above and m > 2. Then A(k)/mA(k) is finite.
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The Mordell-Weil theorem

Mordell-Weil follows from Weak Mordell-Weil

The reduction comes from the following.

Lemma (Infinite Descent Lemma)

Let G be an abelian group, q : G — R a quadratic form. Assume
(i) for all C € R the set {x € G|q(x) < C} is finite, and

(ii) there is m > 2 such that G/mG is finite.

Then G is finitely generated. In fact if {g;} are representatives for
G/mG and Cy = max{q(g;)} then the finite set

S:={x € Glq(x) < G} generates G.

indeed the canonical Néron-Tate height hp on A(k) associated to
an ample symmetric D gives a quadratic form satisfying (i), and
(i) follows from Weak Mordell-Weil. The Mordell-Weil theorem

follows.

)
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The Mordell-Weil theorem

Proof of the Infinite Descent Lemma for m > 3

q(x) > 0 otherwise the elements {nx} would violate (i).

Write |x| = \/q(x), co = max{|gi|},

S e, =X €6 |x < vm*co}.

° Elearly G = Usﬁch, so enough to show Sﬁkq} C (S) for all
@ We use induction on k > 0. Clearly So, = S C (S).

Assume S\/EkCO C (S) and let x € Sﬁ“lco N Sﬁch.

x € gi + mG for some i so there is x; such that
mx; = x — gi. So

k+1
— o . / 1

m - m m
sincem>3. &
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The Mordell-Weil theorem

Proof of Weak Mordell-Weil - Finite Kernel Lemma

Lemma (Finite Kernel Lemma)

Fix a finite k'/k. Then Ker (A(k)/mA(k) — A(k")/mA(K"))
is finite.
Proof of lemma

o Note this kernel is By, := (A(k) N mA(k"))/mA(k).

@ Since for a further extension k" /k" we have By C By /., we
may replace k’ by a further extension.

@ In particular we may assume k’/k Galois, with Galois group
G. The lemma now follows from the following, since G and
Am(k) are finite:

There is an injective function By /. — Maps(G, Am(k)).

N
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The Mordell-Weil theorem

Proof of Weak Mordell-Weil - reduction - sublemma

Proof of sublemma

o For x € By fix y € A(k') such that [m]y represents x.

o Consider the function £, : G — A(k’) where f(o) = y7 — y.
Note [m]fi(c) = [m](y” — y) = [my]” — [m]ly = x7 —x =0.
This defines By /x — Maps(G, Am(k)).

°
o We claim it is injective.
°

Assume f, = f,7, and let y,y’ be the chosen points in A(k’).
@ Soy” —y =y? —y, hence (y —y)? =y’ —y forall 0.
e Soy' —y € A(k) and [m](y’ — y) € mA(k).
@ Hence x — x" =0 in By, as needed. (Y
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The Mordell-Weil theorem

Theorem (Chevalley-Weil+-Hermite for [m])

Fix an abelian variety A/k and an integer m. There is a finite
extension k' /k such that if x € A(k) then there is y € A(k") such
that [m]y = x.

4

Proof of Weak Mordell-Weil assuming Chevalley-Weil+Hermite

Let k" be as in Chevalley-Weil+Hermite for [m]. Then the map
A(k)/mA(k) — A(k")/mA(K’) is zero, hence by the Finite Kernel
Lemma A(k)/mA(k) is finite. [ )

v

We will present two proofs of Chevalley-Weil4+Hermite: one quick
and dirty using Scheme Theory. One going through with rings and
differentials explicitly.
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The Mordell-Weil theorem

Hermite's theorem(s)

The following classical theorem appears in a first course:

Theorem (Hermite 1)

For any real B there are only finitely many number fields k with
|dk| < B. ®

This one might not be as visible:

Theorem (Hermite 2)

For any integer n and finite set of primes S there are only finitely
many number fields k unramified outside S with [k : Q] < n.

Hermite 2 follows from Hermite 1 given the following:

Proposition (Discriminant bound (Serre), not proven here)

Write [k : Q] = n and N =[] 4, p- Then |di| < (N - n)".
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The Mordell-Weil theorem

Why number-theorists want to understand schemes

What | stated as “Chevalley-Weil4+Hermite” is a consequence of

Proposition (Spreading out)

Let ¢ : Y — X be a finite unramified morphism of projective
varieties, all over k. Then there is a finite set of primes S,
projective schemes X — Spec Oy s, Y — Spec O s and a finite
unramified morphism ¢ : ) — X, whose restriction to Spec k is
o:Y — X.

s = o R
Gl = %, Soeile
S5 /10 F&Ok,s S
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The Mordell-Weil theorem

Spreading out: Picture with point




The Mordell-Weil theorem
Spreading out implies Chevalley-Weil

The reduction works as follows:
@ In our case take X = Y = A and ¢ = [m].

@ Since X — Spec Oy s pojective, a point x € X(k) extends to
a morphism X : Spec O s — &X.

Write Vi = Spec O s xx V.
Since Y — X is unramified we have Qy,/y = 0.
Qy, SpecOy s IS the pullback of this to Yy, so also 0.

If [m]y = x then y C )y and its closure ¥ is unramified over X.

e 6 6 o o

This means that O(y) is finite unramified over Oy s, so
k(y)/k unramified away from S.

@ By Hermite 2 there are only finitely many such k(S). Let k’
be the Galois closure of their compositum.

@ soy € A(K). [
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The Mordell-Weil theorem

Exorcising schemes: Spreading Out explained

STEP 1: COORDINATES

Say Y € P™ and X € P". We may replace Y C P by the
graph of ¢.

We now have Y C P™ x P", and ¢ is the restriction of the
natural projection P™ x P" — P".

For each coordinate X; of P” we have U; = X \ Z(X;) affine,
with coordinate ring A; = Kk[xo, ..., % .., %) /(fi, - - -, fri)-
“¢ finite" means: preimage of affine is affine, corresponding
to a finite ring extension.

So V; = ¢~ 1U; affine, with ring B; finite over A;. Let
{y1i»- -+, yki} be module generators and gj; the module
relations and Yj; Yj; = hjjr; the ring relations, with gj;, hj;
A;i-linear in Yy;,..., Yii:

Bi = AilYi, -, Yiil/({&i}, {YiYiri — hipi})-
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The Mordell-Weil theorem

Exorcising schemes: Spreading Out explained

STEP 2: SHRINKING TO DEFINE RINGS AND MAINTAIN
FINITENESS

There are finitely many nonzero coefficients {a,} in

;i &ji» hjjri, giving a subring O s, := Ok[{aa, a5 }] of k in
which a, are units. Here Sy is the set of places appearing in
the factorizations of the a,.

Let A; = Ok75[Xo, N O ,X,,]/(fl,', e fr,.,') and

Bi = AilYai, - .., Yiil /({gi}, {Yii Yyi — hijri})-

We clearly have A; = Aj; X0, 5 k and B; = 5; ®Ok,5 k.

By construction A;(Yji) — B is a surjective module
homomorphism.

So B; is a finite A;-algebra.
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The Mordell-Weil theorem

Exorcising schemes: Spreading Out explained

STEP 3: SHRINKING TO EVADE RAMIFICATION

The statement “Y — X unramified” is equivalent to
“V; — U; unramified”.

This is equivalent to “Qg, /4, = 0".
Consider the finitely generated B;-module Q) 4;-
We have Qg /4, ®0, s k = p,ja, = 0.

So Anno, (825,/.4;) # 0. In other words there is nonzero
¢ € Ok,s such that cQg, /4, = 0.

Replacing Ok s by Ok s[c™!] C k we may assume Q.4 =0,

hence B; is an unramified A;-algebra.

In the language of spreading out, ) := USpec B; and
X :=USpec A;. & (Spreading Out)
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The Mordell-Weil theorem

Exorcising schemes: Chevalley-Weil explained

Proposition

Let x € X(k) and ¢(y) = x. Then k(y)/k is unramified outside S.

Fix a nonzero prime p C Oy s. We show k(y)/k is unramified
at p.

Let x = (ap,...,an) € X. Since Oy is principal we can take
aj € Oy relatively prime.

Without loss of generality the uniformizer 7, fog.

Replacing a; by «j/ag we may assume o = 1.

Consider the epimorphism Ay — k given by the maximal ideal
(x1 — a1y ..y Xn — Qp).

It gives (Ao)p =t Ok,p (the image is no bigger).

Abramovich MA 254 notes: Diophantine Geometry

15/16



The Mordell-Weil theorem

Exorcising schemes: Chevalley-Weil explained

Proof of the proposition

o Consider C := By ® .4, Ok p.
@ Since Ay — By is finite and unramified, also Oy s — C is
finite and unramified.

@ Consider the commutative diagram

f

Ao — Oy Bo— = k(y)
\x 1\
Ao K

@ The universal property of tensor gives an arrow C — k(y).

o lts image is a subring R, , C k(y) finite unramified over Oy,
which must be Oy - [
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