MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman], [Manin], [Serre])

Dan Abramovich

Brown University

Janoary 27, 2016

The Mordell-Weil theorem

Mordell Weil and Weak Mordell-Weil

Theorem (The Mordell-Weil theorem)

Let A/k be an abelian variety over a number field. Then A(k) is finitely generated.

We deduce this from

Theorem (The weak Mordell-Weil theorem)

Let A/k be as above and $m \ge 2$. Then A(k)/mA(k) is finite.

Mordell-Weil follows from Weak Mordell-Weil

The reduction comes from the following.

Lemma (Infinite Descent Lemma)

Let G be an abelian group, $q: G \to \mathbb{R}$ a quadratic form. Assume

(i) for all
$$C \in \mathbb{R}$$
 the set $\{x \in G | q(x) \le C\}$ is finite, and

(ii) there is $m \ge 2$ such that G/mG is finite.

Then G is finitely generated. In fact if $\{g_i\}$ are representatives for G/mG and $C_0 = \max\{q(g_i)\}$ then the finite set $S := \{x \in G | q(x) \le C_0\}$ generates G.

indeed the canonical Néron-Tate height \hat{h}_D on A(k) associated to an ample symmetric D gives a quadratic form satisfying (i), and (ii) follows from Weak Mordell-Weil. The Mordell-Weil theorem follows. The Mordell-Weil theorem

Proof of the Infinite Descent Lemma for $m \geq 3$

- $q(x) \ge 0$ otherwise the elements $\{nx\}$ would violate (i).
- Write $|x| = \sqrt{q(x)}$, $c_0 = \max\{|g_i|\}$,

$$S_{\sqrt{m}^k c_0} = \{x \in G : |x| \leq \sqrt{m}^k c_0\}.$$

- Clearly $G = \cup S_{\sqrt{m}^k c_0}$, so enough to show $S_{\sqrt{m}^k c_0} \subset \langle S \rangle$ for all k.
- We use induction on $k \ge 0$. Clearly $S_{c_0} = S \subset \langle S \rangle$.
- Assume $S_{\sqrt{m}^k c_0} \subset \langle S \rangle$ and let $x \in S_{\sqrt{m}^{k+1} c_0} \smallsetminus S_{\sqrt{m}^k c_0}$.
- $x \in g_i + mG$ for some *i* so there is x_1 such that $mx_1 = x g_i$. So

$$|x_1| = \frac{|x - g_i|}{m} \leq \frac{|x| + |g_i|}{m} \leq \frac{\sqrt{m}^{k+1} + 1}{m} c_0 \leq \sqrt{m}^k c_0$$

since $m \geq 3$.

Proof of Weak Mordell-Weil - Finite Kernel Lemma

Lemma (Finite Kernel Lemma)

Fix a finite k'/k. Then Ker $(A(k)/mA(k) \rightarrow A(k')/mA(k'))$ is finite.

Proof of lemma

- Note this kernel is $B_{k'/k} := (A(k) \cap mA(k'))/mA(k)$.
- Since for a further extension k''/k' we have $B_{k'/k} \subset B_{k''/k}$, we may replace k' by a further extension.
- In particular we may assume k'/k Galois, with Galois group G. The lemma now follows from the following, since G and $A_m(\bar{k})$ are finite:

Sublemma

There is an injective function $B_{k'/k} \to Maps(G, A_m(\bar{k}))$.

Proof of Weak Mordell-Weil - reduction - sublemma

Proof of sublemma

- For $x \in B_{k'/k}$ fix $y \in A(k')$ such that [m]y represents x.
- Consider the function $f_x : G \to A(k')$ where $f(\sigma) = y^{\sigma} y$.
- Note $[m]f_x(\sigma) = [m](y^{\sigma} y) = [my]^{\sigma} [m]y = x^{\sigma} x = 0.$
- This defines $B_{k'/k} \to Maps(G, A_m(\bar{k}))$.
- We claim it is injective.
- Assume $f_x = f_{x'}$, and let y, y' be the chosen points in A(k').
- So $y'^{\sigma} y' = y^{\sigma} y$, hence $(y' y)^{\sigma} = y' y$ for all σ .
- So $y' y \in A(k)$ and $[m](y' y) \in mA(k)$.
- Hence x x' = 0 in $B_{k'/k}$, as needed.

伺 ト く ヨ ト く ヨ ト

Theorem (Chevalley-Weil+Hermite for [*m*])

Fix an abelian variety A/k and an integer m. There is a finite extension k'/k such that if $x \in A(k)$ then there is $y \in A(k')$ such that [m]y = x.

Proof of Weak Mordell-Weil assuming Chevalley-Weil+Hermite

Let k' be as in Chevalley-Weil+Hermite for [m]. Then the map $A(k)/mA(k) \rightarrow A(k')/mA(k')$ is zero, hence by the Finite Kernel Lemma A(k)/mA(k) is finite.

We will present two proofs of Chevalley-Weil+Hermite: one quick and dirty using Scheme Theory. One going through with rings and differentials explicitly.

Hermite's theorem(s)

The following classical theorem appears in a first course:

Theorem (Hermite 1)

For any real B there are only finitely many number fields k with $|d_k| \leq B$.

This one might not be as visible:

Theorem (Hermite 2)

For any integer n and finite set of primes S there are only finitely many number fields k unramified outside S with $[k : \mathbb{Q}] \leq n$.

Hermite 2 follows from Hermite 1 given the following:

Proposition (Discriminant bound (Serre), not proven here) Write $[k : \mathbb{Q}] = n$ and $N = \prod_{p|d_k} p$. Then $|d_k| \le (N \cdot n)^n$.

- 4 同 6 4 日 6 4 日 6

Why number-theorists want to understand schemes

What I stated as "Chevalley-Weil+Hermite" is a consequence of

Proposition (Spreading out)

Let $\phi : Y \to X$ be a finite unramified morphism of projective varieties, all over k. Then there is a finite set of primes S, projective schemes $\mathcal{X} \to \operatorname{Spec} \mathcal{O}_{k,S}$, $\mathcal{Y} \to \operatorname{Spec} \mathcal{O}_{k,S}$ and a finite unramified morphism $\varphi : \mathcal{Y} \to \mathcal{X}$, whose restriction to $\operatorname{Spec} k$ is $\phi : Y \to X$.

The Mordell-Weil theorem

Spreading out: Picture with point

Spreading out implies Chevalley-Weil

The reduction works as follows:

- In our case take X = Y = A and $\phi = [m]$.
- Since X → Spec O_{k,S} pojective, a point x ∈ X(k) extends to a morphism x̃ : Spec O_{k,S} → X.

• Write
$$\mathcal{Y}_{x} = \operatorname{Spec} \mathcal{O}_{k,S} \times_{\mathcal{X}} \mathcal{Y}.$$

- Since $\mathcal{Y} \to \mathcal{X}$ is unramified we have $\Omega_{\mathcal{Y}/\mathcal{X}} = 0$.
- $\Omega_{\mathcal{Y}_x/\operatorname{Spec}\mathcal{O}_{k,S}}$ is the pullback of this to \mathcal{Y}_x , so also 0.
- If [m]y = x then $y \subset \mathcal{Y}_x$ and its closure \tilde{y} is unramified over \tilde{x} .
- This means that $\mathcal{O}(\tilde{y})$ is finite unramified over $\mathcal{O}_{k,S}$, so k(y)/k unramified away from S.
- By Hermite 2 there are only finitely many such k(S). Let k' be the Galois closure of their compositum.

• so
$$y \in A(k')$$
.

/□ ▶ < □ ▶ < □

Exorcising schemes: Spreading Out explained

Step 1: coordinates

- Say $Y \in \mathbb{P}^m$ and $X \in \mathbb{P}^n$. We may replace $Y \subset \mathbb{P}^m$ by the graph of ϕ .
- We now have $Y \subset \mathbb{P}^m \times \mathbb{P}^n$, and ϕ is the restriction of the natural projection $\mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^n$.
- For each coordinate X_i of \mathbb{P}^n we have $U_i = X \setminus Z(X_i)$ affine, with coordinate ring $A_i = k[x_0, \ldots, \varkappa, \ldots, x_n]/(f_{1i}, \ldots, f_{r_ii})$.
- "\$\phi\$ finite" means: preimage of affine is affine, corresponding to a finite ring extension.
- So $V_i = \phi^{-1}U_i$ affine, with ring B_i finite over A_i . Let $\{y_{1i}, \ldots, y_{k_i i}\}$ be module generators and g_{ji} the module relations and $Y_{ji}Y_{j'i} = h_{jj'i}$ the ring relations, with $g_{ji}, h_{jj'i}$ A_i -linear in $Y_{1i}, \ldots, Y_{k_i i}$:

$$B_i = A_i[Y_{1i}, \ldots, Y_{k_i i}]/(\{g_{ji}\}, \{Y_{ji}Y_{j'i} - h_{jj'i}\}).$$

- (日) - (日) - (日) - 日

Exorcising schemes: Spreading Out explained

STEP 2: SHRINKING TO DEFINE RINGS AND MAINTAIN FINITENESS

- There are finitely many nonzero coefficients $\{a_{\alpha}\}$ in $f_{j,i}, g_{ji}, h_{jj'i}$, giving a subring $\mathcal{O}_{k,S_0} := \mathcal{O}_k[\{a_{\alpha}, a_{\alpha}^{-1}\}]$ of k in which a_{α} are units. Here S_0 is the set of places appearing in the factorizations of the a_{α} .
- Let $\mathcal{A}_i = \mathcal{O}_{k,S}[x_0, \dots, \mathcal{K}, \dots, x_n]/(f_{1i}, \dots, f_{r_ii})$ and $\mathcal{B}_i = \mathcal{A}_i[Y_{1i}, \dots, Y_{k_ii}]/(\{g_{ji}\}, \{Y_{ji}Y_{j'i} h_{jj'i}\}).$
- We clearly have $A_i = A_i \otimes_{\mathcal{O}_{k,S}} k$ and $B_i = B_i \otimes_{\mathcal{O}_{k,S}} k$.
- By construction $\mathcal{A}_i \langle Y_{ji} \rangle \to \mathcal{B}_i$ is a surjective module homomorphism.
- So \mathcal{B}_i is a finite \mathcal{A}_i -algebra.

Exorcising schemes: Spreading Out explained

STEP 3: SHRINKING TO EVADE RAMIFICATION

- The statement " $Y \rightarrow X$ unramified" is equivalent to " $V_i \rightarrow U_i$ unramified".
- This is equivalent to " $\Omega_{B_i/A_i} = 0$ ".
- Consider the finitely generated \mathcal{B}_i -module $\Omega_{\mathcal{B}_i/\mathcal{A}_i}$.
- We have $\Omega_{\mathcal{B}_i/\mathcal{A}_i}\otimes_{\mathcal{O}_{k,S}}k=\Omega_{B_i/A_i}=0.$
- So $Ann_{\mathcal{O}_{k,S}}(\Omega_{\mathcal{B}_i/\mathcal{A}_i}) \neq 0$. In other words there is nonzero $c \in \mathcal{O}_{k,S}$ such that $c\Omega_{\mathcal{B}_i/\mathcal{A}_i} = 0$.
- Replacing $\mathcal{O}_{k,S}$ by $\mathcal{O}_{k,S}[c^{-1}] \subset k$ we may assume $\Omega_{\mathcal{B}_i/\mathcal{A}_i} = 0$,
- hence \mathcal{B}_i is an unramified \mathcal{A}_i -algebra.

In the language of spreading out, $\mathcal{Y} := \cup \operatorname{Spec} \mathcal{B}_i$ and $\mathcal{X} := \cup \operatorname{Spec} \mathcal{A}_i$. $(\operatorname{Spreading Out})$

伺 と く ヨ と く ヨ と

Exorcising schemes: Chevalley-Weil explained

Proposition

Let $x \in X(k)$ and $\phi(y) = x$. Then k(y)/k is unramified outside S.

- Fix a nonzero prime p ⊂ O_{k,S}. We show k(y)/k is unramified at p.
- Let x = (α₀,..., α_n) ∈ X. Since O_{k,p} is principal we can take α_i ∈ O_{k,p} relatively prime.
- Without loss of generality the uniformizer $\pi_{\mathfrak{p}} \not| \alpha_{0}$.
- Replacing α_i by α_i/α_0 we may assume $\alpha_0 = 1$.
- Consider the epimorphism $A_0 \rightarrow k$ given by the maximal ideal $(x_1 \alpha_1, \ldots, x_n \alpha_n)$.
- It gives $(\mathcal{A}_0)_{\mathfrak{p}} \xrightarrow{\tilde{x}} \mathcal{O}_{k,\mathfrak{p}}$ (the image is no bigger).

伺 と く ヨ と く ヨ と

Exorcising schemes: Chevalley-Weil explained

Proof of the proposition

- Consider $\mathcal{C} := \mathcal{B}_0 \otimes_{\mathcal{A}_0} \mathcal{O}_{k,\mathfrak{p}}$.
- Since $\mathcal{A}_0 \to \mathcal{B}_0$ is finite and unramified, also $\mathcal{O}_{k,S} \to \mathcal{C}$ is finite and unramified.
- Consider the commutative diagram

- The universal property of tensor gives an arrow $\mathcal{C} o k(y)$.
- Its image is a subring R_{y,p} ⊂ k(y) finite unramified over O_{k,p}, which must be O_{k(y),p}.