MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman])

Dan Abramovich

Brown University

March 20, 2016

The S-unit equation

Theorem (Siegel-Mahler)

Let K bye a number field, $S \subset M_K$ a finite set of places, $S \supset M_K^{\infty}$. The equation

$$U + V = 1$$

has finitely many solutions with $U, V \in \mathcal{O}_{K,S}^{\times}$.

Exercise

The same holds for aU + bV = c with $a, b, c \in K^{\times}$.

We will pass to an infinite subset of solutions by mapping the solutions to the finite set $(\mathcal{O}_{K,S}^{\times}/(\mathcal{O}_{K,S}^{\times})^m) \times S \times \mu_m$. We will choose the integer m > 2|S|.

Pigeon holes: units modulo *m*th powers

- For ease of notation we replace V by −V⁻¹ and consider the equation U − V⁻¹ = 1, U, V ∈ O[×]_{K,S}.
- We argue by contradiction and assume there are infinitely many (U, V) ∈ O[×]_{K,S} solving this.
- Note that O[×]_{K,S} ≃ Z^{|S|-1} × μ(K) is finitely generated, so the set O[×]_{K,S}/(O[×]_{K,S})^m is finite. Let Ω₁ ⊂ O[×]_{K,S} be a set of representatives.
- It follows that there is (a, b) ∈ Ω² such that for infinitely many solutions U, V we have aU, bV ∈ (O[×]_{K,S})^m.
- We therefore have infinitely many $X, Y \in \mathcal{O}_{K,S}^{\times}$ with $\frac{X^m}{a} \frac{b}{Y^M} = 1$, and writing Z = XY we have

$$Z^m - ab = aY^m$$

直 と く ヨ と く ヨ と

Pigeon holes: S

- For each $v \in S$ consider the values $||Y||_{v}$.
- Given a solution X, Y (or Y, Z) there is a $w \in S$ where $||Y||_v$ is minimal.
- Since $||Y||_{v'} = 1$ for $v' \notin S$ and since $\prod_{v \in M_k} ||Y||_v = 1$, this is in fact the minimum over all M_K , and $||Y||_w < 1$.
- Since there are infinitely many solutions and S is finite, there is w so that infinitely many solutions have { ||Y||_v} take its minimum at ||Y||_w.
- We consider that infinite subset of solutions of $Z^m ab = aY^m$.

The trick, and the final pigeon holes in μ_m

• Write $\alpha = (ab)^{1/m}$. The equation becomes

$$\prod_{i=0}^{m-1} (Z - \zeta_m^i \alpha) = a Y^m.$$
(1)

- There is $0 \le i \le m-1$ with an infinite subset of solutions so that $||Z \zeta_m^j \alpha||_w$ obtains its minimum at *i*. Renaming α to be this $\zeta_m^i \alpha$, we may assume i = 0.
- We will show that the Z in this sequence approximate α too well at w.
- Note that Z does not approximate $\zeta^j_m \alpha, j \neq 0$ at w: we have

$$|Z - \zeta^{j} \alpha|_{w} \ge (1/2)|\alpha - \zeta^{j} \alpha|_{w}$$
⁽²⁾

$$\geq (1/2)\min_{j} |\alpha - \zeta^{j}\alpha|_{w} = C > 0.$$
 (3)

Estimates

• Equation (1) and the bound (2) imply that

$$|Z - \alpha|_{w} \leq (C^{1-m}|a|_{w})|Y^{m}|_{w} := C'|Y^{m}|_{w}.$$

• Raising to the appropriate power we have

$$\|Z - \alpha\|_{w} \le C'' \|Y^{m}\|_{w}.$$
(4)

• Note $\|Y\|_{w} = \min\{\|Y\|_{v} : v \in S\} \leq \left(\prod_{v \in S} \min(\|Y\|_{v}, 1)\right)^{1/|S|} = \left(\prod_{M_{K}} \min(\|Y\|_{v}, 1)\right)^{1/|S|} = H_{K}(Y)^{-1/|S|}.$

Estimates, continued

- Recall that $H_{\mathcal{K}}(xy) \leq H_{\mathcal{K}}(x)H_{\mathcal{K}}(y)$. We also have as exercise $H_{\mathcal{K}}(x+y) \leq 2^{[K:\mathbb{Q}]}H_{\mathcal{K}}(x)H_{\mathcal{K}}(y)$.
- Now $H_K(Z)^m = H_K(Z^m) = H_K(aY^m ab) \le 2^{[K:\mathbb{Q}]} H_K(Y^m) H_K(a) H_K(ab) = DH_K(Y)^m$,
- in other words $H_{\mathcal{K}}(Z) \leq D'H_{\mathcal{K}}(Y)$.
- Writing $C''' = (C''/D^{1/|S|})^m$ we get

$$\begin{aligned} \|Z - \alpha\|_{w} &\leq C'' \|Y^{m}\|_{w} \leq C'' H_{K}(Y)^{-m/|S|} \\ &\leq C''' H_{K}(Z)^{-m/|S|} \end{aligned}$$

• If we take from the outset, as promised, $m \ge 2|S| + 1$ and write $\epsilon = 1/|S|$, we get infinitely many $Z \in K$ with

$$\|Z - \alpha\|_{w} \leq C''' / H_{\mathcal{K}}(Z)^{2+\epsilon},$$

contradicting Roth's theorem.