MA 254 notes: Diophantine Geometry (Distilled from [Hindry-Silverman])

Dan Abramovich

Brown University

January 27, 2016

- The Mordell-Weil Theorem
- Roth's Theorem
- Maybe Siegel's Theorem
- Faltings's theorem

We follow the outline of Hindry-Silverman Part E, page 369, but skipping part A:

- Part B, 1-5 and maybe 7,
- Part C, 1-2
- Part D, 1-7 and maybe 9,
- Part E.

Theorem (Mordell-Weil)

Let k be a number field and A/k an abelian variety. Then the group of rational points A(k) is a finitely generated abelian group.

Theorem (Roth)

Let $\alpha \in \overline{\mathbb{Q}}$ and $\epsilon > 0$. There are only finitely many rationals p/q with $\left|\frac{p}{q} - \alpha\right| \leq \frac{1}{q^{2+\epsilon}}$.

Theorem (Siegel)

Let k be a number field and S a finite set of primes. Let C be a model over $\mathcal{O}_{k,S}$ of a smooth affine curve C/k of genus > 0. Then the set of integral points $\mathcal{C}(\mathcal{O}_{k,S})$ is finite.

Theorem (Faltings)

Let k be a number field C/k a smooth curve of genus > 1. Then the set of rational points C(k) is finite.

Absolute values

Definition (Absolute value)

An absolute value on a filed k is a function $|\cdot|: k \to [0,\infty)$ such that

- $|x| = 0 \Leftrightarrow x = 0$
- |x||y| = |xy|
- $|x + y| \le |x| + |y|$.

It is nonarchimedean if

• $|x+y| \le \max\{|x|, |y|\}.$

Some absolute values on $k = \mathbb{Q}$ are $|x|_{\infty} = \max\{x, -x\}$, and $|x|_p = p^{-ord_p(x)}$. The set of these is denoted $M_{\mathbb{Q}}$. By Ostrovsky's theorem these represent all up to topological equivalence.

Standard absolute values

- An absolute value on a number field k is standard if it restricts to an element of $M_{\mathbb{Q}}$.
- We denote these by M_k . We write $v(x) = -\log |x|_v$, with $v(0) = \infty$ (this way v is a valuation).
- The archimedean ones are denoted M_k^{∞} , and the other alernatively $M_k^0, M_k^{fin}, M_k^{na}, M_k^{<\infty}$.
- For k'/k finite and $v \in M_k$, $w \in M_{k'}$ we say w|v if $w|_k = v$.
- We have $\prod_{v \in M_{\mathbb{Q}}} |x|_{v} = 1$, equivalently $\sum_{v \in M_{\mathbb{Q}}} v(x) = 0$ for all nonzero $x \in \mathbb{Q}$. We want to generalize this to M_{k} .

Product formula

We use the following:

Proposition (Degree formula)

 $\sum_{w|v} [k'_w : k_v] = [k' : k]$

Working over \mathbb{Q} it is natural to define the local degree $n_v = [k_v : \mathbb{Q}_v]$ for $v \text{ im } M_k$, and the normalized absolute value $||x||_v = |x|_v^{n_v}$. It is normalized for norms rather than restrictions: for $v_0 \in M_{\mathbb{Q}}$ we have $\prod_{v|v_0} ||x||_v = |N_{k/\mathbb{Q}}(x)|_{v_0}$ (Lang).

Proposition (Product formula)

Let k be a number field and $x \in k^*$. Then $\prod_{v \in M_k} \|x\|_v = 1$.

Proof. $\prod_{\nu} \|x\|_{\nu} = \prod_{\nu_0} \prod_{\nu|\nu_0} \|x\|_{\nu} = \prod_{\nu_0} |N_{k/\mathbb{Q}}(x)|_{\nu_0} = 1.$

valuations, embeddings and multiplicities

- Archimedean valuations correspond to real embeddings $\sigma: k \to \mathbb{R}$ and conjugate-pairs of complex embeddings $\sigma, \bar{\sigma}: k \to \mathbb{C}$.
- Nonarchimedean valuations correspond to prime ideals in the ring of integers, denoted R_k or \mathcal{O}_k .
- For each prime p with uniformizer π_p one defines the order by setting ord_p(π_p) = 1, equivalently for each x ∈ k^{*} we have that the fractional ideal xO_k = ∏ p^{ord_p(x)}.
- If $\mathfrak{p}|p$ denote the ramification index over \mathbb{Q} by $e_{\mathfrak{p}} := \operatorname{ord}_{\mathfrak{p}}(p)$.
- Then writing $|x|_{\mathfrak{p}} = p^{-\operatorname{ord}_{\mathfrak{p}}(x)/e_{\mathfrak{p}}}$ (normalized so that $|p|_{\mathfrak{p}} = |p|_{\rho}$) we have the absolute value associated to \mathfrak{p} , with valuation denoted $v_{\mathfrak{p}}$,

• so
$$\|x\|_{\mathfrak{p}} = \left(\mathsf{N}_{k/\mathbb{Q}}\mathfrak{p}\right)^{-\operatorname{ord}_{\mathfrak{p}}(x)}$$
 and $v_{\mathfrak{p}}(x) = -\log|x|_{\mathfrak{p}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Rings of integers and S-integers

- We have the ring of integers $R_k = \mathcal{O}_k = \{x \in k \mid v(x) \ge 0 \quad \forall v \in M_k^0\}.$
- More generally, for a finite set of absolute values $S \supset M_k^{\infty}$ we define the ring of S-integers $R_S = \mathcal{O}_{k,S} := \{x \in k \mid v(x) \ge 0 \quad \forall v \in M_k, v \notin S\}.$ This generalizes: $R_k = R_{M_k^{\infty}}.$