MA 252 notes - infinite Galois theory

Dan Abramovich

Brown University

March 23, 2017

Abramovich (Brown)

MA 252 notes - infinite Galois theory

March 23, 2017 1 / 10

3

Projective limits

Recall:

- Given a poset I (or more generally a small category), consider a diagram in a category C is a functor $I \to C$, namely objects $A_{\alpha}, \alpha \in I$ and arrows $\phi_{\alpha,\beta} : A_{\alpha} \to A_{\beta}$ whenever $\alpha \to \beta$.
- A projective limit is a system of arrows $\phi_{\alpha}: A \to A_{\alpha}$ making the diagram commutative, and we write $A = \lim (A_{\alpha}, \phi_{\alpha,\beta})$.
- Projective limits exist in Sets they are subsets of the product. This induces projective limits in Groups, Rings, Topological Spaces, Topological Groups.
- If the partial order is trivial get the usual product.
- Get $\mathbb{Z}_p = \lim_{n \to \infty} \mathbb{Z}/p^n \mathbb{N}$ (with $I = \mathbb{N}^{op}$), $\hat{\mathbb{Z}} = \lim_{n \to \infty} \mathbb{Z}/n\mathbb{Z}$ (Natural numbers ordered by reversed division).

- 4 週 ト - 4 三 ト - 4 三 ト

Galois extensions

Definition

A finite extension K/F is Galois if $|\operatorname{Aut}(K/F)| = [K : F]$. In this case we denote $\operatorname{Gal}(K/F) := \operatorname{Aut}(K/F)$ and call it the Galois group of K/F.

Definition

An extension K/F is Galois if it is algebraic, normal and separable.

過 ト イヨ ト イヨト

The Fundamental Theorem of Galois Theory: finite case

(1) Given finite Galois K/F with Galois group G there is a bijection {intermediate fields E} $\leftrightarrow \{H < G\}$

$$E \mapsto G_E := \operatorname{Aut}(K/E)$$
$$K^H \leftrightarrow H$$

- (2) This is order reversing: $E_1 \subset E_2 \Leftrightarrow G_{E_1} > G_{E_2}$.
- (3) K/E is always Galois, with Galois group G_E .
- (4) We have $[K : E] = |G_E|$ and $[E : F] = [G : G_E]$.
- (5) If $E_i \leftrightarrow H_i$ then $E_1 E_2 \leftrightarrow H_1 \cap H_2$.
- (6) If $E_i \leftrightarrow H_i$ then $E_1 \cap E_2 \leftrightarrow \langle H_1 H_2 \rangle$.
- (7) For $\tau \in G$ the field $\tau(E)$ corresponds to $\tau G_E \tau^{-1}$.
- (8) E/F is Galois if and only if $G_E \triangleleft G$, in which case $Gal(E/F) = G/G_E$.

Infinite Galois extensions

- Let K/F be Galois, and $F \subset E \subset K$ such that E/F is finite Galois. Since every automorphism of E lifts to an automorphism of K, we have an epimorphism $\phi_E : Gal(K/F) \to G_E := Gal(E/F)$.
- If $F \subset E_1 \subset E_2 \subset K$ and $\phi_{E_2,E_1} : G_{E_2} \to G_{E_1}$ the restriction, then clearly $\phi_{E_1} = \phi_{E_1,E_2} \circ \phi_{E_2}$.
- Given an element $\sigma \in Gal(K/F)$ we obtain a compatible system $\phi(\sigma) = (\sigma_E)_{E/K \text{ Galois intermediate}}$. This is a homomorphism.
- Given a compatible system (σ_E) we define ψ(σ_E) = σ with σ(α) = σ_E(α) for a Galois extension containing α. It is a well-defined homomorphism.

Theorem

$$Gal(K/F) \rightarrow \varprojlim(G_E, \phi_{E_1, E_2})$$
 is an isomorphism.

• Indeed the two homomorphisms are inverse to each other.

Abramovich (Brown)

イロト 不得下 イヨト イヨト

Examples

- $Gal(\mathbb{F}_{q^n}/\mathbb{F}_q) = \mathbb{Z}/n\mathbb{Z}$, the system ordered by divisibility, so $Gal(\overline{\mathbb{F}}_q/\mathbb{F}_q) = \varprojlim(\mathbb{Z}/n\mathbb{Z}) = \hat{\mathbb{Z}}.$
- $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^{\times}$, the system ordered by divisibility, so $Gal(\mathbb{Q}(\mu)/\mathbb{Q}) = \varprojlim((\mathbb{Z}/n\mathbb{Z})^{\times}) = \hat{\mathbb{Z}}^{\times}$. By Kronecker-Weber this is $Gal(\mathbb{Q}^{ab}/\mathbb{Q})$.
- Gal(Q

 Q p) = Q
 Q p = 2 × Z
 p, where Q
 p stands for the pro-finite completion. This is part of local class field theory, the best proof of which is in a magnificent paper of Lubin and Tate.
- Global class field theory says that, for a number field K, we have $Gal(K^{ab}/K) = \widehat{C_K}$, where C_K is the idele class group $\mathbb{A}_K^{\times}/K^{\times}$ of K.

Topologies

- The group G = Gal(K/F) is a pro-finite group. Finite sets are compact Hausdorff discrete topologies. So automatically G is a compact Hausdorff topological group.
- We have a group homomorphism $ev : G \to K^K$ sending σ to the map $(\alpha \mapsto \sigma(\alpha))$. K^K has the product topology of Zariski topologies.

Lemma

ev is a homeomorphism onto the image, namely the profinite topology is the induced topology.

- Clearly ev⁻¹F_{α,β} = ev_α⁻¹(β) is closed, since it is the inverse image of the same in E_{α,β}.
- If α_i generate E then the cylinder defined by σ
 ∈ G_E is the intersection of ev⁻¹F<sub>α_i, σ
 (α_i) = ev⁻¹_{α_i}(σ
 (α_i)).

 </sub>

イロト 不得 トイヨト イヨト 二日

Correspondence

Proposition

For any intermediate $E \subset L \subset K$ we have $Gal(K/L) \subset G$ closed. The induced topology is its profinite topology.

Indeed it is the intersection of $ev^{-1}F_{\alpha,\alpha} = ev_{\alpha}^{-1}(\alpha)$ over $\alpha \in L$. The induced topology is induced either way from $K^{\mathcal{K}}$.

Proposition

 $K^{Gal(K/L)} = L.$

Let $\alpha \in K^{Gal(K/L)}$ and let $L \subset E \subset K$ be intermediate Galois containing α . Then $\alpha \in E^{Gal(E/L)} = L$.

Proposition

 $Gal(K/K^H) = \overline{H}.$

 $L := K^H = K^{\bar{H}}$. Let E/L finite Galois intermediate. Then $\bar{H} \to Gal(E/L)$ has image \hat{H} , where $E^{\hat{H}} \subset K^{\bar{H}} = L$, so \hat{H} is dense hence $\bar{H} = Gal(K/L)_{\text{constraint}}$

Fundamental theorem: infinite case

- (1) Given finite Galois K/F with Galois group G there is a bijection {intermediate fields E} \leftrightarrow {H < G closed } $E \mapsto G_E := Aut(K/E)$ $K^H \leftrightarrow H$
- (2-8) as before.
 - (9) E/F finite $\Leftrightarrow H < G$ open.

For (9) we use:

Lemma

An open subgroup H < G in a topological group is closed. A closed subgroup in a profinite group is open if and only if it is of finite index.

If *H* open then each coset $Hx \subset G$ is open so $H = G \setminus \bigcup_{x \notin H} Hx$ is closed. In the profinite case the open covering $G = \bigcup_{x \in G} Hx$ has a finite covering so *H* is of finite index.

Examples

- The quotient $Gal(\mathbb{Q}^{ab}/\mathbb{Q}) \to \mathbb{Z}_p^{\times}$ corresponds to $\mathbb{Q}(\mu_{p^{\infty}})$.
- The quotients Gal(Q
 _p/Q_p) → 2 corresponds to the maximal unramified extension, whose residue field is F
 _p.
- The other quotient corresponds to purely wild extensions, related to Eisenstein polynomials, where Lubin-Tate take over.