Projective limits

Recall:

- Given a poset I (or more generally a small category), consider a diagram in a category C is a functor $I \to C$, namely objects $A_\alpha, \alpha \in I$ and arrows $\phi_{\alpha,\beta} : A_\alpha \to A_\beta$ whenever $\alpha \to \beta$.

- A **projective limit** is a system of arrows $\phi_\alpha : A \to A_\alpha$ making the diagram commutative, and we write $A = \varprojlim(A_\alpha, \phi_{\alpha,\beta})$.

- Projective limits exist in Sets - they are subsets of the product. This induces projective limits in Groups, Rings, Topological Spaces, Topological Groups.

- If the partial order is trivial get the usual product.

- Get $\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n\mathbb{N}$ (with $I = \mathbb{N}^{op}$), $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$ (Natural numbers ordered by reversed division).
Galois extensions

Definition
A finite extension K/F is Galois if $|\text{Aut}(K/F)| = [K : F]$. In this case we denote $\text{Gal}(K/F) := \text{Aut}(K/F)$ and call it the Galois group of K/F.

Definition
An extension K/F is Galois if it is algebraic, normal and separable.
The Fundamental Theorem of Galois Theory: finite case

(1) Given finite Galois K/F with Galois group G there is a bijection
{intermediate fields E} ↔ {$H < G$}

E ↔ $G_E := \text{Aut}(K/E)$

K^H ↔ H

(2) This is order reversing: $E_1 \subset E_2 \iff G_{E_1} > G_{E_2}$.

(3) K/E is always Galois, with Galois group G_E.

(5) If $E_i \leftrightarrow H_i$ then $E_1 E_2 \leftrightarrow H_1 \cap H_2$.

(6) If $E_i \leftrightarrow H_i$ then $E_1 \cap E_2 \leftrightarrow \langle H_1 H_2 \rangle$.

(7) For $\tau \in G$ the field $\tau(E)$ corresponds to $\tau G_E \tau^{-1}$.

(8) E/F is Galois if and only if $G_E \triangleleft G$, in which case $\text{Gal}(E/F) = G/G_E$.
Infinite Galois extensions

- Let K/F be Galois, and $F \subset E \subset K$ such that E/F is finite Galois. Since every automorphism of E lifts to an automorphism of K, we have an epimorphism $\phi_E : \text{Gal}(K/F) \to G_E := \text{Gal}(E/F)$.

- If $F \subset E_1 \subset E_2 \subset K$ and $\phi_{E_2,E_1} : G_{E_2} \to G_{E_1}$ the restriction, then clearly $\phi_{E_1} = \phi_{E_1,E_2} \circ \phi_{E_2}$.

- Given an element $\sigma \in \text{Gal}(K/F)$ we obtain a compatible system $\phi(\sigma) = (\sigma_E)_{E/K}$ Galois intermediate. This is a homomorphism.

- Given a compatible system (σ_E) we define $\psi(\sigma_E) = \sigma$ with $\sigma(\alpha) = \sigma_E(\alpha)$ for a Galois extension containing α. It is a well-defined homomorphism.

Theorem

$$\text{Gal}(K/F) \to \varprojlim(G_E, \phi_{E_1,E_2})$$ is an isomorphism.

- Indeed the two homomorphisms are inverse to each other.
Examples

- \(\text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) = \mathbb{Z}/n\mathbb{Z} \), the system ordered by divisibility, so \(\text{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) = \varprojlim (\mathbb{Z}/n\mathbb{Z}) = \hat{\mathbb{Z}} \).

- \(\text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^\times \), the system ordered by divisibility, so \(\text{Gal}(\mathbb{Q}(\mu)/\mathbb{Q}) = \varprojlim ((\mathbb{Z}/n\mathbb{Z})^\times) = \hat{\mathbb{Z}}^\times \). By Kronecker-Weber this is \(\text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \).

- \(\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) = \hat{\mathbb{Q}}_p^\times = \hat{\mathbb{Z}} \times \mathbb{Z}_p^\times \), where \(\hat{\mathbb{Q}}_p^\times \) stands for the pro-finite completion. This is part of local class field theory, the best proof of which is in a magnificent paper of Lubin and Tate.

- **Global** class field theory says that, for a number field \(K \), we have \(\text{Gal}(K^{ab}/K) = \hat{\mathbb{C}}_K \), where \(\mathbb{C}_K \) is the idele class group \(\mathbb{A}_K^\times/K^\times \) of \(K \).
Topologies

- The group $G = \text{Gal}(K/F)$ is a pro-finite group. Finite sets are compact Hausdorff discrete topologies. So automatically G is a compact Hausdorff topological group.

- We have a group homomorphism $ev : G \to K^K$ sending σ to the map $(\alpha \mapsto \sigma(\alpha))$. K^K has the product topology of Zariski topologies.

Lemma

ev is a homeomorphism onto the image, namely the profinite topology is the induced topology.

- Clearly $ev^{-1}F_{\alpha,\beta} = ev_{\alpha}^{-1}(\beta)$ is closed, since it is the inverse image of the same in $E_{\alpha,\beta}$.

- If α_i generate E then the cylinder defined by $\bar{\sigma} \in GE$ is the intersection of $ev^{-1}F_{\alpha_i,\bar{\sigma}(\alpha_i)} = ev_{\alpha_i}^{-1}(\bar{\sigma}(\alpha_i))$.
Correspondence

Proposition

For any intermediate $E \subset L \subset K$ we have $Gal(K/L) \subset G$ closed. The induced topology is its profinite topology.

Indeed it is the intersection of $ev^{-1}F_{\alpha,\alpha} = ev_{\alpha}^{-1}(\alpha)$ over $\alpha \in L$. The induced topology is induced either way from K^K.

Proposition

$L^{Gal(K/L)} = L$.

Let $\alpha \in K^{Gal(K/L)}$ and let $L \subset E \subset K$ be intermediate Galois containing α. Then $\alpha \in E^{Gal(E/L)} = L$.

Proposition

$Gal(K/K^H) = \hat{H}$.

$L := K^H = K^{\hat{H}}$. Let E/L finite Galois intermediate. Then $\hat{H} \rightarrow Gal(E/L)$ has image \hat{H}, where $E^{\hat{H}} \subset K^{\hat{H}} = L$, so \hat{H} is dense hence $\hat{H} = Gal(K/L)$.
Fundamental theorem: infinite case

(1) Given finite Galois K/F with Galois group G there is a bijection
\[
\{\text{intermediate fields } E\} \leftrightarrow \{H \leq G \text{ closed}\}
\]
\[
E \mapsto G_E := \text{Aut}(K/E)
\]
\[
K^H \leftrightarrow H
\]

(2-8) as before.

(9) E/F finite $\Leftrightarrow H < G$ open.

For (9) we use:

Lemma

An open subgroup $H < G$ in a topological group is closed. A closed subgroup in a profinite group is open if and only if it is of finite index.

If H open then each coset $Hx \subset G$ is open so $H = G \setminus \bigcup_{x \not\in H} Hx$ is closed. In the profinite case the open covering $G = \bigcup_{x \in G} Hx$ has a finite covering so H is of finite index.
Examples

- The quotient $Gal(\mathbb{Q}^{ab}/\mathbb{Q}) \to \mathbb{Z}_p^\times$ corresponds to $\mathbb{Q}(\mu_p^\infty)$.
- The quotients $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \to \hat{\mathbb{Z}}$ corresponds to the maximal unramified extension, whose residue field is $\overline{\mathbb{F}}_p$.
- The other quotient corresponds to purely wild extensions, related to Eisenstein polynomials, where Lubin-Tate take over.