MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich

Brown University

March 28, 2017

Recall: a topological group G is a group in the category Top: product, inverse and unit $\{1\} \rightarrow G$ are continuous maps. They form a category.

Since translation by a is continuous the topology is determined by neighborhoods of 1.

Lemma

The intersection H of neighborhoods of 1 is a closed subgroup, the closure of 1. The quotient G/H is Haussdorff, the maximal (initial) Hausdorff quotient.

Completion and inverse limit

We work with abelian groups, additively. We suppose 0 has a countable fundamental system of neighborhoods. We can therefore form the completion $G \rightarrow \hat{G}$ using Cauchy sequences, a continuous hmomorphism with kernel H as above. Its formation is a functor *TopGroups* \rightarrow *TopGroups*.

Assume now 0 has a countable descending system of (normal) open subgroups, say $G = G_0 \supset G_1 \supset \cdots$. We have seen they are automatically closed. Then

Theorem

 $G \to \varprojlim G/G_n$ extends to continuous $\hat{G} \to \varprojlim G/G_n$. If the system of subgroups is fundamental then $\hat{G} \simeq \varprojlim G/G_n$.

An inverse system is a projective system parametrized by $\mathbb N$ with reverse ordering. There is a category of these, and we can talk about exact sequences.

Proposition

If $0 \to (A_n) \to (B_n) \to (C_n) \to 0$ is an exact sequence of inverse systems then $0 \to \varprojlim(A_n) \to \varprojlim(B_n) \to \varprojlim(C_n)$ is exact, and if the structure maps $A_i \to A_{i-1}$ are surjective then $0 \to \varprojlim(A_n) \to \varprojlim(B_n) \to \varprojlim(C_n) \to 0$ is exact.

In essence, one shows that $\lim_{n \to \infty} (A_n) = 0$, represented as a quotient of the product. A more general condition than surjectivity is the Mittag-Leffler condition (find and read).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Exactness of completions

Corollary

Let $0 \to G' \to G \to G'' \to 0$ be an exact sequence of groups, $G = G_0 \supset G_1 \supset \cdots$ sequence of subgroups, $G'_n = i^{-1}G_n$ and $G''_n = j(G_n)$. Then $0 \to \hat{G}' \to \hat{G} \to \hat{G}'' \to 0$ is exact

Corollary

$$\hat{G}_n
ightarrow \hat{G}$$
 injective, $\hat{G}/\hat{G}_n \simeq G/G_n$ discrete.

Proposition

 $\hat{\hat{G}} = \hat{G}.$

We say that \hat{G} is complete.

5/29

Topological rings and a-adic completions

We apply the considerations to a ring A additively abelian group, and ideals \mathfrak{a}^n a descending sequence of subgroups, giving rise to a topological ring $\hat{A} = \varprojlim A/\mathfrak{a}^n$, with $\ker(A \to \hat{A}) = \mathfrak{a}^\infty := \cap \mathfrak{a}^n$. Same for modules $M \supset \mathfrak{a}^n M$, so $\hat{M} = \varprojlim M/\mathfrak{a}^n M$. These are functors $Rings \to TopRings$, and A-mod $\to \hat{A}$ -mod. Distant goal: A noetherian implies \hat{A} noetherian. Other sequences of ideals or submodules may give the same topology.

Definition

A filtration on M is a chain $M = M_0 \supset M_1 \dots$ A filtration is an \mathfrak{a} -filtration if $\mathfrak{a}M_n \subset M_{n+1}$. A filtration is a stable \mathfrak{a} -filtration if for some n_0 and all $n > n_0$ we have $\mathfrak{a}M_n = M_{n+1}$.

For instance $M_n = \mathfrak{a}^n M$ is stable.

Filtrations and completions

Lemma

Given $(M_n), (M'_n)$ stable \mathfrak{a} -filtrations, they define the same topology and isomorphic completions. Moreover they have bounded difference: there is n_0 such that $M_{m+n_0} \subset M'_m$ and $M'_{m+n_0} \subset M_m$ for all m.

We might as well assume $M'_n = \mathfrak{a}^n M$. The \mathfrak{a} -filtration assumption gives indictively $\mathfrak{a}^n M \subset M_n$. Stability gives $M_{n_0+n} = \mathfrak{a}^n M_{n_0} \subset \mathfrak{a}^n M$.

Graded rings

Definition

A graded ring A is a direct sum $A = \bigoplus_{n=0}^{\infty} A_n$ of abelian subgroups A_n such that $A_n A_m \subset A_{n+m}$.

These form a category. Note that $\bullet A_n$ is a subring of A, $\bullet A$ is an A_0 -algebra, and $\bullet A_n$ is an A_0 -module. Key example: $k[x_1, \ldots, x_n]$, with A_n the spaces of homogeneous polynomials of degree n.

Definition

If A a graded ring, then a graded A-module is a module which is a direct sum $M = \bigoplus_{n=0}^{\infty} M_n$ such that $A_n M_m \subset M_{n+m}$.

In particular M_n are A_0 -modules. These form a category grA-mod. An element $x \in M_n$ is said to be homogeneous. Every element $y \in M$ has a unique decomposition $y = \sum y_n$ as finite sum of its homogeneous components $y_n \in M_n$.

Definition

 $A_+ := \bigoplus_{n=1}^{\infty} A_n$, an ideal.

Note that $A_+ = \ker(A \rightarrow A_0)$.

- 4 同 2 4 日 2 4 日 2 4

Noetherian graded rings

Proposition

A graded ring A is noetherian if and only if A_0 is noetherian and A a finitely generated A_0 -algebra.

- If A₀ is noetherian and A a finitely generated A₀-algebra then A noetherian by Hilbert's basis theorem.
- Assume A is noetherian. Then $A_0 \simeq A/A_+$ so A_0 noetherian.
- Let (x_1, \ldots, x_n) be generators of A_+ .
- Replacing them by all their homogeneous components, we may assume x_i ∈ A_{ki} homogeneous.
- Let A' be the subalgebra generated by A_0 and x_1, \ldots, x_n .
- We claim $A' \supset A_m$ so A' = A.
- We use induction, m = 0 holds by assumption.
- Indeed if $y \in A_m$, m > 0 then $y = \sum a_i x_i$ with $a_i \in A_{m-k_i} \subset A'$, as needed.

Rees algebras

Definition

Let A be a ring, \mathfrak{a} and ideal. The Rees algebra of \mathfrak{a} is the graded algebra $A^* = \bigoplus_{n=0}^{\infty} \mathfrak{a}^n$, where we agree $\mathfrak{a}^0 := A$.

Definition

Let M be a module, abd M_n an \mathfrak{a} -filtration on M. Write $M^* = \bigoplus_n M_n$, an A^* -module.

Note: if A is Noetherian then $I = (x_1, ..., x_n)$ is finitely generated and then $A[x_1, ..., x_n] \rightarrow A^*$ surjective, so A^* noetherian.

Filtrations and noetherian modules

Lemma

Assume A noetherian, M finitely generated module, (M_n) an α -filtration. Then M^* is a finitely generated A^* module if and only if (M_n) is α -stable.

- We have M_n finitely generated so $Q_n = \bigoplus_{r=0}^n M_r$ finitely generated.
- Write $M_n^* = M_0 \oplus \ldots \oplus M_n \oplus \mathfrak{a} M_n \oplus \mathfrak{a}^2 M_n \oplus \cdots$, an A^* -module generated by Q_n , so finitely generated.
- M_n^* an ascending chain with union M^* , so M^* is finitely generated if and only if the chain stabilizes at some $M^* = M_{n_0}^*$ if and only if $M_{n_0+r}^* = \mathfrak{a}^r M_{n_0}^*$ for all rif and only if the filtration is stable.

Artin-Rees: filtrations and submodules

Assumptions: A noetherian, a ideal, M finitely generated module, (M_n) stable a-filtration, $M' \subset M$ submodule.

Proposition (Artin-Rees 1)

The filtration $(M' \cap M_n) \subset M'$ is a stable \mathfrak{a} -filtration.

- Note that $\mathfrak{a}(M' \cap M_n) \subset \mathfrak{a}M' \cap \mathfrak{a}M_n \subset M' \cap M_{n+1}$ giving at a-filtration.
- So $(M')^* \subset M^*$ sum A^* -module.
- Finitely generated as A* noetherian.
- By Lemma $(M' \cap M_n)$ stable \mathfrak{a} -filtration.

Corollary (Artin-Rees 2)

There is k such that $\mathfrak{a}^{n+k}M \cap M' = \mathfrak{a}^n(\mathfrak{a}^kM \cap M')$.

This follows from the proposition applied to the stable filtration $\mathfrak{a}^n M$.

Artin Rees: topologies

Theorem

A noetherian, α ideal, M finitely generated module, $M' \subset M$ submodule.

Then $\mathfrak{a}^n M'$ and $\mathfrak{a}^n M \cap M'$ have bounded difference.

In particular the \mathfrak{a} -adic topology on M' is induced from the \mathfrak{a} -adic topology on M.

By the proposition we have that $\mathfrak{a}^n M \cap M'$ is a stable \mathfrak{a} -filtration, so be a previous lemma the two topologies have bounded difference.

Completions and exactness

Proposition

Let A be noetherian, $\mathfrak{a} \subset A$, and $0 \to M' \to M \to M'' \to 0$ exact sequence of finitely generated modules. Then the sequence of \mathfrak{a} -adic completions $0 \to \hat{M}' \to \hat{M} \to \hat{M}'' \to 0$ is exact.

First note that $\mathfrak{a}^m M''$ is the image of $\mathfrak{a}^m M$. By the theorem, $\hat{M}' = \varprojlim M'/\mathfrak{a}^n M' = \varprojlim M'/(\mathfrak{a}^m M \cap M')$. An early exactness lemma implies the result.

Completion and tensor products

Note: we have an \hat{A} - homomorphism $\hat{A} \otimes_A M \to \hat{A} \otimes_A \hat{M} \to \hat{A} \otimes_{\hat{A}} \hat{M} = \hat{M}.$

Proposition

If M finitely generated then $\hat{A} \otimes_A M \to \hat{M}$ surjective. If M finitely generated and A noetherian then $\hat{A} \otimes_A M \to \hat{M}$ an isomorphism.

First, completion commutes with direct sums, in particular $\hat{A} \otimes_A A^n = \hat{A}^n$. If *M* finitely generated take a presentation $0 \to N \to F \to M \to 0$ with $F \simeq A^n$.

Completion and tensor products - continued

We get a commutative diagram of complexes

The top row is exact by right exactness of \otimes .

The map $\hat{F} \to \hat{M}$ is surjective since the topology of M is induced from F (and an old lemma on completions of groups).

Since ϕ an isomorphism we have μ surjective as well.

Now assuming A noetherian, we have that N finitely generated and the bottom row is also exact.

From the above ν is surjective. By the snake lemma $\hat{A} \otimes_A M \to \hat{M}$ an isomorphism.

Flatness of completion

Assume A noetherian. The proposition implies that the functor $M \mapsto \hat{A} \otimes_A M$ is exact on finitely generated modules. But we have seen that this suffices for flatness:

Theorem

Assume A noetherian, \hat{A} its α -adic completion. Then \hat{A} is a flat A-algebra.

In general the functor $M \mapsto \hat{M}$ is not exact.

Completion of noetherian rings - first properties

Let A be noetherian, a and ideal and \hat{A} the a-adic completion.

Proposition

(i) $\hat{\mathfrak{a}} = \mathfrak{a}\hat{A} \simeq \mathfrak{a} \otimes_A \hat{A}$. (ii) $\hat{\mathfrak{a}}^n = \hat{\mathfrak{a}^n}$. (iii) $\mathfrak{a}^n/\mathfrak{a}^{n+1} = \hat{\mathfrak{a}}^n/\hat{\mathfrak{a}}^{n+1}$. (iv) $\hat{\mathfrak{a}} \subset \mathfrak{R}\hat{A}$, the Jacobson radical.

Since A noetherian the homomorphism $\mathfrak{a} \otimes_A \hat{A} \to \hat{\mathfrak{a}}$ is an isomorphism. Its image is $\mathfrak{a}\hat{A}$, giving (i), in fact for any ideal. In particular $\hat{\mathfrak{a}^n} = \mathfrak{a}^n \hat{A} = (\mathfrak{a}\hat{A})^n = \hat{\mathfrak{a}}^n$, giving (ii). The topology on \mathfrak{a} is induced from A. By an old result on groups we have $A/\mathfrak{a}^{n+1} \simeq \hat{A}/\hat{\mathfrak{a}}^{n+1}$. Taking the kernel of the map to $A/\mathfrak{a}^n \simeq \hat{A}/\hat{\mathfrak{a}}^n$ one gets (iii). The above implies that \hat{A} is complete for teh \mathfrak{a} -adic topology, so for $x \in \hat{\mathfrak{a}}$ the series $(1-x)^{-1} = 1 + x + x^2 + \cdots$ is convergent in \hat{A} , so $\in \mathfrak{R}\hat{A}$.

Completion at a maximal ideal

Proposition

Let A be noetherian, \mathfrak{m} maximal. Then the \mathfrak{m} -adic completion \hat{A} is a local ring with maximal ideal $\hat{\mathfrak{m}}$.

We have seen that $\hat{A}/\hat{\mathfrak{m}} = A/\mathfrak{m}$, which is a field, so $\hat{\mathfrak{m}}$ maximal. Since $\hat{\mathfrak{m}} \subset \mathfrak{R}\hat{A}$ and the latter is contained in all maximal ideals we have $\hat{\mathfrak{m}}$ unique, so \hat{A} local.

Krull's intersection theorem

Note that the kernel of $M \to \hat{M}$ is $E = \cap \mathfrak{a}^n M$.

Theorem (Krull)

A noetherian, a ideal, M finitely generated, \hat{M} the a-adic completion. Then $x \in E = \cap a^n M$ if and only if there is $a \in a$ such that (1 + a)x = 0.

Note that this is the kernel of $M \to M[(1 + \mathfrak{a})^{-1}]$. Taking M = A, we note $1 + \mathfrak{a}$ maps to \hat{A}^{\times} . In particular we have an injective homomorphism $A[(1 + \mathfrak{a})^{-1}] \to \hat{A}$.

Proof.

The topology on E is trivial, but it coincides with the \mathfrak{a} -adic topology, so $\mathfrak{a}E = E$. Since E finitely generated, Nakayama gives an $a \in \mathfrak{a}$ with (1 - a)E = 0 giving one inclusion. Conversely if $x = ax = a^2x = \cdots$ then $x \in \cap \mathfrak{a}^n M$. Completions

Implications of Krull on ideals and modules

Corollary

If A noetherian domain, $\mathfrak{a} \neq 1$, then $\cap \mathfrak{a}^n = 0$.

Indeed $1 + \mathfrak{a}$ contains no zero divisors.

Corollary

A noetherian $\mathfrak{a} \subset \mathfrak{R}A$ and M finitely generated, then $\cap \mathfrak{a}^n M = 0$.

Indeed $1 - \mathfrak{a} \subset A^{\times}$. This implies in particular:

Corollary

If (A, \mathfrak{m}) local noetherian, M finitely generated then the \mathfrak{m} -adic topology on M is Hausdorff.

The correspondence of p primaries in A and \mathfrak{m} -primaries in A_p gives

Corollary

If A noetherian, the intersection of \mathfrak{p} -primaries is $Ker(A \to A_{\mathfrak{p}})$.

Associated graded

- If A a ring at a an ideal define $Gr_{\mathfrak{a}}(A) = \bigoplus_{n=0}^{\infty} \mathfrak{a}^n / \mathfrak{a}^{n+1}$, naturally a graded ring.
- If (M_n) an a-filtration then $Gr_{(M_n)}(M) = \bigoplus_{n=0}^{\infty} M_n/M_{n+1}$, naturally $Gr_{\mathfrak{a}}(A)$ -module.

Proposition

A noetherian, then (1) $Gr_{\mathfrak{a}}(A)$ noetherian. (2) $Gr_{\mathfrak{a}}(A) \simeq Gr_{\hat{\mathfrak{a}}}(\hat{A})$. (3) if (M_n) stable then Gr(M) is a finitely generated Gr(A)-module.

(1) Let x_i generate \mathfrak{a} and \bar{x}_i the images in $\mathfrak{a}/\mathfrak{a}^2$ then $A/\mathfrak{a}[\bar{x}_1, \ldots, \bar{x}_n] \to Gr(A)$ surjective. Part (2) follows since $\mathfrak{a}^n/\mathfrak{a}^{n+1} \simeq \hat{\mathfrak{a}}^n/\hat{\mathfrak{a}}^{n+1}$. (3) Fix r so that $M_{r+n} = \mathfrak{a}^n M_r$. Then Gr(M) is generated by $\bigoplus_{k \leq r} (M_k/M_{k+1})$. Each term is noetherian over A/\mathfrak{a} , so finitely generated, and thus the same generators generate Gr(M).

Completions and gradings

Say (A_n) a filtration of abelian group A, (B_n) a filtration of B, and $\phi : A \to B$ a homomorphism respecting filtrations: $\phi(A_n) \subset B_n$. Write $Gr(\phi) : Gr(A) \to Gr(B)$ and $\hat{\phi} : \hat{A} \to \hat{B}$.

Lemma

(i) If $Gr(\phi)$ is injective then $\hat{\phi}$ is injective. (ii) If $Gr(\phi)$ is surjective then $\hat{\phi}$ is surjective.

$$\begin{array}{ccc} 0 \rightarrow A_n/A_{n+1} \rightarrow A/A_{n+1} \rightarrow A/A_n \rightarrow 0 & \text{commutative.} \\ & & & & \\ & & & \\ & & & \\ Gr_n(\phi) \downarrow & \phi_{n+1} \downarrow & \phi_n \downarrow \\ 0 \rightarrow B_n/B_{n+1} \rightarrow B/B_{n+1} \rightarrow B/B_n \rightarrow 0 \\ \text{By the snake lemma, } Gr_n(\phi) \text{ *jective and } \phi_n \text{ *jective then } \phi_{n+1} \\ & & \text{*jective.} & \text{Moreover } Gr_n(\phi) \text{ surjective implies (Ker}\phi_n) \text{ is also a} \\ \text{surjective inverse system.} \\ \text{Note } \phi_0 : 0 \rightarrow 0 \text{ is bijective, so } Gr(\phi) \text{ *jective implies } \hat{\phi} \text{ *jective by} \\ \text{the exactness properties of ljm.} \end{array}$$

Finite generation of modules over complete rings

Assume (*) A is complete for a-adic topology, M a module with a-filtration (M_n) . We assume the topology is Hausdorff, namely $\cap M_n = 0$.

Proposition

If Gr(M) is a finitely generated Gr(A)-module then M is a finitely generated A-module.

Let $\xi_i \in Gr_{n(i)}(M)$ be finitely many homogeneous generators of Gr(M), the images of $\xi_i \in M_{n(i)}$. We make the map $x_i : A \to M$ a filtered map by giving A = F(-n(i)) the filtration $F_k(-n(i)) = \mathfrak{a}^{k-n(i)}$. Write $F = \oplus F(-n(i))$ and $\phi : F \to M$ the filtered map given by x_i . By design $Gr(\phi)$ surjective, so $\hat{\phi}$ surjective.

伺 ト く ヨ ト く ヨ ト

Finite generation of modules - continued

If Gr(M) is a finitely generated Gr(A)-module then M is a finitely generated A-module.

We obtained $\hat{\phi}$ surjective. $F \xrightarrow{\phi} M$

$$\begin{array}{cccc}
 & & & & & \\
 & \alpha & & & & & \\
 & \hat{F} \xrightarrow{\hat{\phi}} \hat{M}.
\end{array}$$

Now F being free, and $\hat{A} = A$, we have α an isomorphism. So $F \rightarrow \hat{M}$ surjective.

M being Hausdorff we have β injective. It follows that ϕ surjective (and β an isomorphism). In particular *M* finitely generated by the x_i .

Noetherian modules over complete rings

Keep assumption (\star) .

Corollary

If Gr(M) is a noetherian Gr(A)-module then M is a noetherian A-module.

Let $M' \subset M$ and $M'_n = M' \cap M_n$. The embedding $i : M' \to M$ is a filtered map, with $Gr_n(i) : M'_n/M'_{n+1} \to M_n/M_{n+1}$ injective by design, namely Gr(i) injective. Since Gr(M) noetherian Gr(M') finitely generated. It is Hausdorff since $\cap M'_n \subset \cap M_n = 0$. So the proposition applies and M' finitely generated.

Completion of noetherian rings

Theorem

If A noetherian, then its \mathfrak{a} -adic completion \hat{A} is noetherian.

We have seen that Gr(A) is noetherian and $Gr(A) = Gr(\hat{A})$. Since $\hat{A} \rightarrow \hat{A}$ an isomorphism \hat{A} Hausdorff. We may apply the result to $M = \hat{A}$.

Corollary

If A noetherian then $A[[x_1, \ldots, x_n]]$ is noetherian.