MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich

Brown University

April 1, 2017

The Poincaré series of a graded module

Recall that an additive function $\lambda: A_0\text{-mod} \to \mathbb{Z}$ is a function such that $\lambda(M') + \lambda(M'') = \lambda(M)$ whenever $0 \to M' \to M \to M'' \to 0$ is exact.

The key case is $A_0 = k$ a field and $\lambda = \dim_k$, but the flexibility will be useful.

Say $A = \oplus A_n$ is a graded ring, $M = \oplus M_n$ a graded module. Then M_n is an A_0 module.

We assume A noetherian, generated by homogeneous x_1, \ldots, x_s of degrees k_1, \ldots, k_s over A_0 . The key case is $k_i = 1$. Assuming M is ginitely generated, then each M_n is a finitely generated A_0 -module.

Definition

The Poincaré series of M is $P_{\lambda}(M, t) := \sum \lambda(M_n)t^n$.

Rationality

Theorem

 $P_{\lambda}(M,t) = f(t)/\prod (1-t^{k_i})$, with $f(t) \in \mathbb{Z}[t]$, in particular it is a rational function.

Apply induction on the number of generators s of A over A_0 .

We have an exact sequence $0 \to K \to M \stackrel{\cdot x_{\xi}}{\to} M \to L \to 0$.

This breaks up as $0 \to K_n \to M_n \stackrel{\cdot x_s}{\to} M_{n+k_s} \to L_{n+k_s} \to 0$, giving $\lambda(K_n) - \lambda(M_n) + \lambda(M_{n+k_s}) - \lambda(L_{n+k_s}) = 0$.

Each of K and L are $A/(x_s)$ -modules, so induction applies.

To balance degrees we multiply by t^{k_s} and get

$$t^{k_s}P(K,s) - t^{k_s}P(M,s) + P(M,s) - P(L,t) = g(t) \in \mathbb{Q}[t].$$

Dimension, act one.

Define d(M) to be the order of pole of P(M, t) at t = 1.

Corollary

If each $k_i = 1$ we have that $\lambda(M_n)$ is eventually a polynomial $\in \mathbb{Q}[n]$ of degree d-1.

(Read the proof in the book. Relies on Taylor expansion of $1/(1-t)^d$.)

This is called the Hilbert polynomial. The actual function $\lambda(M_n)$ is the Hilbert function.

Proposition

If $x \in A_k$ not a zero divisor in M then d(M/xM) = d(M) - 1.

Follow the proof of the theorem! K = 0 and L = M/xM. If $A = k[x_1, ... x_s]$ and $\lambda = \dim \text{then } P(A, t) = 1/(1-t)^s$, so d = 0

"dimension".

 $P(A, t) = 1/(1-t)^{s}$, so $a = 1/(1-t)^{s}$

Hilbert-Samuel functions

 (A, \mathfrak{m}) noetherian local ring, \mathfrak{q} an \mathfrak{m} -primary having s generators, M finitely generated, (M_n) stable \mathfrak{q} -filtration.

Proposition

- (i) M/M_n of finite length.
- (ii) $\ell(M/M_n)$ is eventually a polynomial g(n), of degree $\leq s$.
- (ii) deg(g(t)) and the leading coefficient do not depend on the chosen filtration, only on M, \mathfrak{q} .

$$Gr(A) = \bigoplus \mathfrak{q}^n/\mathfrak{q}^{n+1}, Gr_0(A) = A/\mathfrak{q}$$
 Artin local,

$$Gr(M) = \bigoplus M_n/M_{n+1}$$
 finitely generated $Gr(A)$ -module.

$$Gr_n(M) = M_n/M_{n+1}$$
 noetherian A/\mathfrak{q} module, so finite length.

So
$$\ell(M/M_n) = \sum_{r=0}^{n-1} \ell(M_r/M_{r+1})$$
 is finite, giving (i).

Hilbert-Samuel functions - continued

- (i) M/M_n of finite length. \checkmark
- (ii) $\ell(M/M_n)$ is eventually a polynomial g(n), of degree $\leq s$.
- (ii) deg(g(n)) and the leading coefficient do not depend on the chosen filtration, only on M, \mathfrak{q} .

If x_1, \ldots, x_s generate \mathfrak{q} the ring Gr(A) is generated by $\bar{x}_1, \ldots, \bar{x}_s$. So $\ell(M_r/M_{r+1})$ is eventually a polynomial $f(n) \in \mathbb{Q}[n]$ of degree $\leq s-1$.

As $\ell_{n+1} - \ell_n = f(n)$ we have ℓ_n is eventually a polynomial g(n), of degree $\leq s$, giving (ii).

Two stable filtrations $(M_n), (M_n^{\dagger})$ are of bounded difference so $g(n+n_0) \geq g^{\dagger}(n), g^{\dagger}(n+n_0) \geq g(n)$.

So $\lim(g(n)/g^{\dagger}(n)) = 1$, so they have the same degree and leading term, giving (iii).

Dimension, Act 2

Notation: $\chi_{\mathfrak{q}}^{M}(n) := \ell(M/\mathfrak{q}^{n}M)$ for large n. $\chi_{\mathfrak{q}}(n) := \chi_{\mathfrak{q}}^{A}(n)$. Reformulate:

Corollary

 $\ell(A/\mathfrak{q}^n)$ is a polynimial $\chi_{\mathfrak{q}}(n)$ for large n, of degree $\leq s$.

Proposition

 $\deg \chi_{\mathfrak{q}}(n) = \deg \chi_{\mathfrak{m}}(n)$, in particular independent on \mathfrak{q} .

 $\mathfrak{m} \supset \mathfrak{q} \supset \mathfrak{m}^r$ so $\mathfrak{m}^n \supset \mathfrak{q}^n \supset \mathfrak{m}^{rn}$ so $\chi_{\mathfrak{m}}(n) \leq \chi_{\mathfrak{q}}(n) \leq \chi_{\mathfrak{m}}(nr)$ for large n, so the degrees agree.

Notation $d(A) := \deg \chi_{\mathfrak{q}}(n)$.

Note: d(A) = d(Gr(A)).

Inequalities

For (A, \mathfrak{m}) noetherian local define $\delta(A) = \min \max$ number of generators of a \mathfrak{m} -primary ideal. Since $s \geq d(A)$ we have

Proposition

 $\delta(A) \geq d(A)$.

Proposition

If $x \in A$ is not a zero divisor for elements of M and M' = M/xM then $\deg \chi_{\mathfrak{q}}^{M'} < \deg \chi_{\mathfrak{q}}^{M}$.

In particular if x is not a zero divisor then $d(A/(x)) \le d(A) - 1$.

Writing N=xM we have $N\simeq M$. Writing $N_n=N\cap\mathfrak{q}^nM$ we have exact sequence $0\to N/N_n\to M/\mathfrak{q}^nM\to M'/\mathfrak{q}^nM'\to 0$. So $\ell(N/N_n)-\chi_\mathfrak{q}^M(n)+\chi_\mathfrak{q}^{M'}(n)=0$ for large n. Now (N_n) is a stable \mathfrak{q} -filtration by Artin-Rees, so $\ell(N/N_n)$ is eventually a polynomial with the same leading term as $\chi_\mathfrak{q}^M(n)$, so $\chi_\mathfrak{q}^{M'}(n)$ has lower degree.

Inequalities - continued

Keeping (A, \mathfrak{m}) noetherian local, we have

Proposition

$$d(A) \ge \dim A$$
.

We apply induction on d=d(A). If d=0 then $\ell(A/\mathfrak{m}^n)$ is eventually constant so $\mathfrak{m}^n=\mathfrak{m}^{n+1}$. By Nakayama $\mathfrak{m}^n=0$ so A Artinian and dim A=0.

If d>0 consider a chain $\mathfrak{p}_0\subsetneq\cdots\subsetneq\mathfrak{p}_r$ a chain of primes. Pick $x_1\in\mathfrak{p}_1$ but $x_1\not\in\mathfrak{p}_0$, and set $A'=A/\mathfrak{p}_0$, an integral domain, with $x'\neq 0$ the image of x. We therefore have d(A'/(x'))< d(A'). Also we have $A/\mathfrak{m}^n\to A'/\mathfrak{m}'^n$ so $\ell(A/\mathfrak{m}^n)\geq \ell(A'/\mathfrak{m}'^n)$ so

$$d(A) \geq d(A')$$
.

So $d(A'/(x')) \le d(A) - 1 = d - 1$. We have the primes $\mathfrak{p}_1/(\mathfrak{p}_0, x) \subsetneq \cdots \subsetneq \mathfrak{p}_r/(\mathfrak{p}_0, x)$, so by induction $r - 1 \le \dim A'/(x') \le d(A'/(x')) \le d - 1$, hence $r \le d$.

Height of a prime

Corollary

If A noetherian local then dim A finite.

Moreover, define the height $ht(\mathfrak{p})$ of \mathfrak{p} to be the length of chain $\mathfrak{p} = \mathfrak{p}_r \supsetneq \cdots \supsetneq \mathfrak{p}_0$.

Corollary

Let A be noetherian. Then $ht(\mathfrak{p})$ is finite. In particular primes in A satisfy the descending chain condition.

Indeed we can pass to the noetherian local ring $A_{\mathfrak{p}}$. (The depth of a prime ideal is not necessarily finite.)

Dimension, Act 3

Proposition

Let (A, \mathfrak{m}) be noetherian local. There is an \mathfrak{m} -primary \mathfrak{q} generated by dim A elements.

This implies

Theorem (The dimension theorem)

If A noetherian local, then dim $A = \delta(A) = d(A)$.

Existence of good primary ideal - proof

Let (A, \mathfrak{m}) be noetherian local. There is an \mathfrak{m} -primary \mathfrak{q} generated by $d=\dim A$ elements.

One constructe (x_1, \ldots, x_d) inductively so that if $\mathfrak{p} \supset (x_1, \ldots, x_i)$ then $ht(\mathfrak{p}) \geq i$.

Take \mathfrak{p}_j the minimal primes containing (x_1, \ldots, x_i) , having height i-1.

We have $i-1 < \dim A = ht(\mathfrak{m})$. So $\mathfrak{m} \neq \mathfrak{p}_j$ and so $\mathfrak{m} \neq \cup \mathfrak{p}_j$.

Take $x_i \in \mathfrak{m} \setminus \cup \mathfrak{p}_j$. If \mathfrak{q} contains (x_1, \ldots, x_i) , it contains a minimal prime \mathfrak{p} of (x_1, \ldots, x_i) .

If $\mathfrak{p} = \mathfrak{p}_i$ then $\mathfrak{q} \supseteq \mathfrak{p}$ since $x_i \notin \mathfrak{p}$. So $ht(\mathfrak{q}) \geq i$.

If \mathfrak{p} is another, then $ht(\mathfrak{p}) \geq i$ so $ht(\mathfrak{q}) \geq i$ anyway.

It follows that any prime containing (x_1, \ldots, x_d) as height at least d, but since $ht(\mathfrak{m}) = d$ we have that (x_1, \ldots, x_d) is \mathfrak{m} -primary.

Consequences

One gets immediately that $\dim(k[x_1,\ldots,x_m])_{(x_1,\ldots,x_m)}=m$.

Corollary

Let (A, \mathfrak{m}) be noetherian local. Then $\dim A \leq \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.

Corollary

Let A be noetherian. Every prime containing $(x_1, ..., x_r)$ has height $\leq r$.

Indeed, the ideal (x_1, \ldots, x_r) becomes \mathfrak{m} -primary in $A_{\mathfrak{p}}$.

Krull's theorem

Theorem (Krulls Hauptidealsatz)

A noetherian, $x \in A$ not a unit and not a zero divisor. Every minimal prime of (x) has height 1.

The height is ≤ 1 by a previous result.

Every element of a prime of height 0 is a zero divisor by a result on primary decompositions.

So the height is 1.

Corollary

If A noetherian local and $x \in \mathfrak{m}$ not a zero divisor, then $\dim A/(x) = \dim A - 1$.

We have seen that $d' := \dim A/(x) \le \dim A - 1$. If $(\bar{x}_1, \dots, \bar{x}_{d'})$ is an \mathfrak{m}' primary ideal then $(x_1, \dots, x_{d'}, x)$ is \mathfrak{m} primary, giving $d' + 1 \ge \dim A$.

More consequences

Corollary

Let \hat{A} be the completion of (A, \mathfrak{m}) . Then $\dim A = \dim \hat{A}$.

Indeed $A/\mathfrak{m}^n \simeq \hat{A}/\hat{\mathfrak{m}}^n$ so $\chi_{\mathfrak{m}}(A) = \chi_{\hat{\mathfrak{m}}}(\hat{A})$.

We say $(x_1, ... x_d)$ a system of parameters if they generate a primary ideal with $d = \dim A$.

Proposition

Assume $(x_1, \ldots x_d)$ a system of parameters with primary \mathfrak{q} . Assume $f(t_1, \ldots, t_d) \in A[t_1, \ldots, t_d]_s$, and $f(x_1, \ldots, x_d) \in \mathfrak{q}^{s+1}$. Then $f \in \mathfrak{m}[t_1, \ldots, t_d]$.

First consider $\alpha: A/\mathfrak{q}[t_1,\ldots,t_d] \to Gr_\mathfrak{q}(A)$ sending $t_i \mapsto x_i + \mathfrak{q}$. This is surjective since t_i generate \mathfrak{q} .

It follows that $f \mod \mathfrak{q}$ is in Ker α .

(...continued)

Parameters continued

Assume (x_1, \ldots, x_d) a system of parameters with primary \mathfrak{q} . Assume $f(t_1, \ldots, t_d) \in A[t_1, \ldots, t_d]_{\mathfrak{s}}$, and $f(x_1, \ldots, x_d) \in \mathfrak{q}^{\mathfrak{s}+1}$. Then $f \in \mathfrak{m}[t_1, \ldots, t_d]$.

 \bar{f} is in $\operatorname{Ker}(\alpha: A/\mathfrak{q}[t_1,\ldots,t_d] \to Gr_\mathfrak{q}(A))$. Assume by contradiction a coefficient of f is a unit. Then \bar{f} can't be a zero divisor by an old statement you did in homework.

$$\dim(Gr_{\mathfrak{q}}(A)) \leq \dim(A/\mathfrak{q}[t_1,\ldots,t_d]/(f)$$

$$= \dim(A/\mathfrak{q}[t_1,\ldots,t_d] - 1$$

$$= d - 1$$

But by the dimension theorem $\dim(Gr_{\mathfrak{q}}(A)) = d$.

Parameters with coefficient field

A coefficient field for (A, \mathfrak{m}) is a field $k \subset A$ such that $k \to A/\mathfrak{m}$ an isomorphism.

So k[[x]] has a coefficient field by \mathbb{Z}_p does not.

Corollary

Assume A has a coefficient field k and $(x_1, ... x_d)$ parameters. Then $x_1, ... x_d$ are algebraically independent.

Assume $f(x_1, \ldots, x_d) = 0$ where f has coefficients in k. Write $f = f_s + h.o.t$. with $f_s \neq 0$. The proposition applies of f_s , so it has its coefficients on \mathfrak{m} , and since the coefficients are in k they are 0, contradiction!

Regular local rings

$\mathsf{Theorem}$

Let (A, \mathfrak{m}) noetherial local, dim $A = d, k = A/\mathfrak{m}$. The following are equivalent:

- (i) $Gr_{\mathfrak{m}}(A) \simeq k[t_1, \ldots, t_d],$
- (ii) $\dim_k \mathfrak{m}/\mathfrak{m}^2 = d$
- (iii) m can be generated by d elements.
- (i) implies (ii) by definition of grading. Elements x_i generating $\mathfrak{m}/\mathfrak{m}^2$ generate \mathfrak{m} by Nakayama so (ii) implies (iii), and (iii) implies (i) since as in the proof of the proposition $k[t_1,\ldots,t_d]\to Gr_{\mathfrak{m}}(A)$ an isomorphism. Such rings are called regular local rings.
- For instance $k[x_1, \ldots, x_d]_{\mathfrak{m}_0}$ regular, since its gradation is $k[x_1, \ldots, x_d]$.

Domains, regular local rings and completions

Lemma

Let $\mathfrak{a} \subset A$ such that $\cap \mathfrak{a}^n = 0$, and assume $Gr_\mathfrak{a}A$ a domain. Then A is a domain.

This evidently implies that a regualr local ring is a domain. Assume $x, y \in A$ nonzero. Let r maximal so $x \in \mathfrak{a}^r$ and s maxial for $y \in \mathfrak{a}^s$. So $\bar{x} \in Gr_r(A)$ and $\bar{y} \in Gr_s(A)$ are nonzero, so $\bar{x}\bar{y} = \bar{(}xy) \in Gr_{r=s}(A)$ nonzero, so $xy \neq 0$.

Proposition

For A noetherian, (A, \mathfrak{m}) regular if and only if $(\hat{A}, \hat{\mathfrak{m}})$ regular.

Indeed \hat{A} noetherian of the same dimension and with isomorphic graded ring!

So $k[x_1, \ldots, x_d]$ is regular.

Dimensions of varieties

Assume k algebraically closed. The dimension dim V of an affine variety V with coordinate ring $A(V) = k[x_1, \ldots, x_n]/\mathfrak{p}$ is the transcendence degree of the fraction field k(V) of A(V).

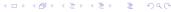
Theorem

For any V and $\mathfrak{m} \subset A(V)$ we have dim $V = \dim(A(V)_{\mathfrak{m}})$.

Lemma

Assume $B \subset A$ domains, B integrally closed, A integral over B. Let $\mathfrak{m} \subset A$ maximal and $\mathfrak{n} = B \cap \mathfrak{m}$. Then \mathfrak{n} maximal and $\dim A_\mathfrak{m} = \dim B_\mathfrak{n}$.

We have seen by going up that $\mathfrak n$ is maximal, and any chain of primes $\mathfrak m \supsetneq \mathfrak q_1 \cdots \supsetneq \mathfrak q_d$ in A restricts to distinct primes in B, giving $\dim A_\mathfrak m \le \dim B_\mathfrak n$. The opposite follows by going down.



Dimensions of varieties - conclusion

For any V and $\mathfrak{m} \subset A(V)$ we have dim $V = \dim(A(V)_{\mathfrak{m}})$.

By a previous corollary we have that dim $V \ge \dim(A(V)_{\mathfrak{m}})$, since a system of parameters is algebraically independent. By Noether normalization there is a polynomial ring and integral

extension $B = k[x_1, \ldots, x_d] \subset A(V)$, with $d = \dim V$. Since B integrally closed the lemma applies so we need to show $d = \dim B_n$. By weak nullstellensatz we may as well assume $\mathfrak n$ is the ideal of the origin, and the local ring has dimension d.