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Modules
Basics

@ Recall: Modules, module homomorphisms, submodules,
quotients, isomorphism theorems.

Hom, (M, N) is an A-module.

aM C M the submodule generated by products.

(N : P) an ideal, (0: P) = Ann(P).

In general (N : P) = Ann(P/(N N P)) = Ann((N + P/N).
M is a faithful module if Ann(M) = 0.

Any A-module M is naturally a faithful A/Ann(M)-module.
x € M = Ax C M submodule.

M =>" Ax; = {x;} generates M.

direct sums, direct products of modules.

A=a; @ ®a,as amodule & A~T[A/b; (where
bj = Dixja;).
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Modules
Finite generation and ideals

M is finitely generated as module < M quotient of A".

Proposition

M finitely generated, a ideal, and ¢ € Enda(M) with $(M) € aM.
Then there is f € A[x], monic with all other coefficients in a, such
that f(¢) = 0.

Let x; generate M and ¢(x;) = ) ajjx;j (in essence lifting ¢ to A”).
The element f(t) = det(t/ — B) has f(B) = 0 so f(¢) = 0. See
sleek argument in the book which includes Cayley-Hamilton.

If M finitely generated and aM = M then there is x =1 mod a
such that xM = 0.

Taking ¢ = id get f(id) =1+ a; +--- with a; € a.
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Modules
Nakayama

Proposition

If M finitely generated, a C R(A), and aM = M, then M = 0.

We get xM = 0 where x =1 mod 9R(A). We have seen x € A*.
So M =0.

M finitely generated, N C M, a C R(A), and M = aM + N. Then
M=N.

Apply proposition to M/N: note that a(M/N) = (aM + N)/N.

Theorem (Nakayama)

M finitely generated, (A, m) local, x; generate M/mM. Then x;
generate M.

If N=> Ax; C M then M =mM+ N so N = M.
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Modules

Exact sequences

Recall:
@ complexes, exact sequences — M;_1 — M; — M1 —.
@ injective and surjective as exact sequences
@ Short exact sequences

@ Splitting an exact sequence into short exact sequences using
N; = Im(f;) = Ker(fi;1).
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Modules

Left exactness of Hom

o M — M — M" — 0 is exact if and only if for all N the
sequence 0 — Hom(M", N) — Hom(M, N) — Hom(M’, N)
exact.

@ 0+ N — N — N” is exact if and only if for all M the
sequence 0 — Hom(M, N') — Hom(M, N) — Hom(M, N")
exact.

For instance, if v surjective, f : M” — N and f o v = 0 then
Vmf(v(m)) =0 so Vm"f(m") =0so f =0 v* injective. In the
other direction take f : M”" — M" /v(M), so f ov =0so v*f =0
sof =0sov(M)=M". Alsoif g: M — N such that gou =0
then g = g o v for well-defined g so g € Im(v*). In the other
direction take g : M — M/u(M’) , so gou=0so g € Im(v*) so
g =govso u(M) D Ker(v) and equality follows.
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Modules
Snake lemma

Given commutative diagram of short exact sequences

0 M’ M m” 0
0 N’ N N 0

get long exact sequence
0 — Ker(f') — Ker(f) — Ker(f")%

Coker(f") — Coker(f) — Coker(f") — 0.
see
https://en.wikipedia.org/wiki/It’s_My_Turn_(film)
Homework: find a source on Ext and Tor and write a 4 page
summary of construction and main properties, with examples.
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Modules
Tensor products

@ M, N, P modules, one looks at A-blinear maps M x N — P.
@ The universal one is the tensor product M x N — M ®4 N.

@ One constructs this as the quotient of the free module
®nxnA(m, n) modulo the bilinear relations.

@ It suffices to use just generators of M, N.

@ The universal property gives associativity, commutativity,
distributivity, unit A®, M = M.

@ Tensor product is functorial.

@ Can do multilinear tensor of many modules.
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Modules
Finiteness of vanishing

Usually one does not use a particular construction. The following
is an example where the book does. I'd like to see a nice proof
avoiding this.

Ifxie M,y; € N and > xi @ yi=0€ M ®a N then there are
finitely generated submodules {x;} C My C M,{y;} C No C N,
such that ZX,‘ Ryi=0¢€ My ®a No

The element > (x;, yi) € ®rmxnA(m, n) lies in the submodule
generated by the various bilinear relations. In particular it is the
sum of finitely many such bilinear relations, involving finitely many
m; € M and nj € N. Let My be the submodule generated by
{xi,mj} and Np be the submodule generated by {y;, nj}. Then

Y (xiy i) € BmexngA(m, n) C ®pxnA(m, n) and it is a
combination of bilinear relations inside @, xn,A(m, n), as needed.
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Modules
Restriction and extension of scalars

If f: A— B aring homomorphism, and N a B-module, then it
inherits the structure of an A-module by (a, n) — f(a)n. Sometime
| denote this by aN. In particular B =4 B is an A-module.
Evidently we have

Proposition

if B is a finitely generated A-module and N a finitely generated B
module then AN is a finitely generated A-module.

Let M be an A-module. Then Mg := B®a M is an A-module, with
a compatible B-module structure by b(b' ® m) = bb’ ® m. (Think
of it in terms of multiplication B ®4 B — B). Evidently we have

Proposition

If M is a finitely generated A-module them Mg is a finitely
generated B-module.
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Modules
Fundamental isomorphism

@ By the universal property,
Hom (M @ N, P) = Bila(M x N, P) as A-modules.

@ On the other hand by definition of bilinear maps
Bila(M x N, P) = Hom (M, Hom,(N, P)) as A-modules.
@ So the functors ¢ ® N and Hom(N, e) are adjoint:
Hom (M ® N, P) = Hom,(M, Hom (N, P)).
e Counit: Hom(N, P) ® N — P; Unit: M — Hom(N, M ® N).

Hom(M ® N, Hom(N, P) ® N)

Hom,(M ® N, P) < > Hom 4 (M, Hom, (N, P))

N//’d)v

Hom,(Hom(N, M ® N), Hom(N, P))
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Modules
Exactness of tensor products

Proposition

IfM — M — M"” — 0 is exact and N an A-module then
MIN—->MN—-M'®N— 0 is exact.

This can be proven by adjunction: since M' - M — M" — 0 is
exact then for any P

0 — Hom(M"”,Hom(N, P)) — Hom(M, Hom(N, P)) — Hom(M’, Hom(N, P))
is exact, so for any P
0 — Hom(M" @ N, P) — Hom(M ® N, P) — Hom(M' ® N, P)

isexact,so QN - M N —- M"® N — 0 is exact, as needed.
(A left adjoint is right exact and a right adjoint is left exact)
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Modules
Flatness

In general @ N is not an exact functor. For instance ®77Z/27.
A module for which @ N is exact is called flat.

The notion was introduced as a technical tool in a magnificent
paper by Serre (1956). It took over like a wildfire.

Proposition

The following are equivalent: (1) N flat, (2) N @ e preserves short
exact sequences, (3) N ® e preserves injectivity, (4) N ®
preserves injectivity for M — M with M’, M finitely generated.

To prove (4) = (3), if f : M — M injective and ) m} ® n; such
that ) f(m!) ® nj = 0. Write M{ =" Am’, C M". There is a
finitely generated submodule My C M containing f(m’) such that
Y f(m)®@ni=0¢e My® N. Now fy : Mj — My still injective and
> fo(m!) ® nj =0, so by assumption > m! ® n; = 0, as needed
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