MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich
Brown University
February 4, 2017

Rings of fractions

- Let $S \subset(A, \times)$ be a submonoid (multiplicative subset of A).
- Say $(a, s) \sim(b, t) \in(A \times S)$ if $\exists u \in S: u(a t-b s)=0$.
- S submonoid \Rightarrow equivalence relation.
- Define a set $S^{-1} A=A\left[S^{-1}\right]=(A \times S) / \sim$.
- The class of (a, s) is denoted a / s.
- Define $a / s b / t=(a b) /(s t), a / s+b / t=(a t+b s) /(s t)$.
- This defines an A-algebra via $a \mapsto a / 1$ sending S to $A\left[S^{-1}\right]^{\times}$.

Theorem

If $f: A \rightarrow B$ such that $F(S) \subset B^{\times}$there is a unique h making $A \longrightarrow A\left[S^{-1}\right]$ commutative .

Facts on rings of fractions

- $A\left[S^{-1}\right]=0 \Leftrightarrow 0 \in S$.
- $A \rightarrow A\left[S^{-1}\right]$ injective $\Leftrightarrow S$ contains no zero divisors.
- $A\left[S^{-1}\right]=A\left[\left(A^{\times} S\right)^{-1}\right]$.
- $\mathfrak{p} \subset A$ prime $\Leftrightarrow S=A \backslash \mathfrak{p}$ a multiplicative subset.
- If $\mathfrak{p} \subset A$ prime, one writes $A_{\mathfrak{p}}:=A\left[S^{-1}\right]$.
- If $A=k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathfrak{p}=\left(x_{1}, \ldots, x_{n}\right)$ then $A_{\mathfrak{p}}$ is the ring of rational functions which are well-defined near the origin. Thus "localization".
- If $A=k\left[x_{1}, \ldots, x_{n}\right]$ and $\mathfrak{p} \subset A$ prime then $A_{\mathfrak{p}}$ is the ring of rational functions which can be restricted as rational functions to $Z(\mathfrak{p})$.
- For $f \in A$ write $S=\left\{f^{i}: i \geq 0\right\}$, and $A\left[S^{-1}\right]=A\left[f^{-1}\right]=A[x] /(f x-1)$.
- I'll never write A_{f} (just thing of $p \in \mathbb{Z}$).

Modules of fractions

- Let M and A-module, $S \subset A$ multiplicative subset.
- Say $(m, s) \sim(n, t) \in(N \times S)$ if $\exists u \in S: u(m t-n s)=0$.
- S submonoid \Rightarrow equivalence relation.
- Define a set $S^{-1} M=M\left[S^{-1}\right]=(M \times S) / \sim$.
- The class of (m, s) is denoted m / s.
- Define $a / s m / t=(a m) /(s t), m / s+n / t=(m t+n s) /(s t)$.
- This defines an $A\left[S^{-1}\right]$-module $M\left[S^{-1}\right]$.
- Functor: $M \rightarrow N \rightsquigarrow M\left[S^{-1}\right] \rightarrow N\left[S^{-1}\right]$ compatible with compositions. Additive (compatible with direct sums).

Exactness of fractions

Proposition

$M \mapsto M\left[S^{-1}\right]$ an exact functor.
By functoriality since $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ a complex (factors through $0)$ then $M^{\prime}\left[S^{-1}\right] \rightarrow M\left[S^{-1}\right] \rightarrow M^{\prime \prime}\left[S^{-1}\right]$ a complex. If $g(m / s)=0$ then there is $u \in S$ with $u g(m)=g(u m)=0$, so $u m=f\left(m^{\prime}\right)$, so $m / s=f\left(m^{\prime} / u s\right)$.

Corollary

$M \mapsto M\left[S^{-1}\right]$ preserves sums of submodules, intersections of submodules, quotients.
(Look at the kernel and image of the difference map $N \oplus P \rightarrow M$.)

Flatness of $A\left[S^{-1}\right]$

- Define $A\left[S^{-1}\right] \times M \rightarrow M\left[S^{-1}\right]$ by $(a / s, m) \mapsto a m / s$.
- It is well-defined, surjective and A-bilinear,
- giving $A\left[S^{-1}\right] \otimes_{A} M \rightarrow M\left[S^{-1}\right]$, an $A\left[S^{-1}\right]$-module homomorphism.
- Taking common denominators, every element of $A\left[S^{-1}\right] \otimes_{A} M$ is of the form $1 / s \otimes m$.
- If its image $m / s=0$ then $u m=0$, so

$$
1 / s \otimes m=1 /(s u) \otimes u m=0, \text { giving }
$$

Proposition

$$
A\left[S^{-1}\right] \otimes_{A} M \simeq M\left[S^{-1}\right]
$$

Theorem

$A\left[S^{-1}\right]$ is a flat A-module.

Tensor of fractions

Given $f: A \rightarrow B$, we have $M_{B} \otimes_{B} N_{B}=\left(M \otimes_{A} N\right)_{B}$. Indeed the mapping $\left(b, m, b^{\prime}, n\right) \mapsto\left(b b^{\prime} \otimes(m \otimes m)\right.$ is A-multilinear and B-bilinear, and in the other direction
$(b, m, n) \mapsto(b \otimes m) \otimes(1 \otimes n)=(1 \otimes m) \otimes(b \otimes n)$.
Combining, we get
Proposition
$M\left[S^{-1}\right] \otimes_{A\left[S^{-1}\right]} N\left[S^{-1}\right]=\left(M \otimes_{A} N\right)\left[S^{-1}\right]$.

Local properties

A property \mathcal{P} of a ring/module/module homomorphism is local if $X \in \mathcal{P}$
 $X_{\mathfrak{p}} \in \mathcal{P} \forall \mathfrak{p} \in \operatorname{Spec} A$.

Proposition

- $M=0 \Leftrightarrow M_{\mathfrak{p}}=0 \forall \mathfrak{p} \Leftrightarrow M_{\mathfrak{m}}=0 \forall \mathfrak{m}$.
- $\phi: M \rightarrow N$ injective $\Leftrightarrow \phi_{\mathfrak{p}}$ injective $\forall \mathfrak{p} \Leftrightarrow \mathfrak{m}_{\mathfrak{m}}$ infective $\forall \mathfrak{m}$.
- M flat $\Leftrightarrow M_{\mathfrak{p}}$ flat $\forall \mathfrak{p} \Leftrightarrow M_{\mathfrak{m}}$ flat $\forall \mathfrak{m}$.

First, for $0 \neq x \in M$ we have $\mathfrak{a}=\operatorname{Ann}(x) \neq A$. Let $\mathfrak{m} \supset \mathfrak{a}$ maximal. Then $0=x / 1 \in M_{\mathfrak{m}}$, so $u x=0$ for some $u \in A \backslash \mathfrak{m} \subset A \backslash \mathfrak{a}$, contradiction.
Now $(\operatorname{Ker} \phi)_{\mathfrak{m}}=\operatorname{Ker}\left(\phi_{\mathfrak{m}}\right)$ by exactness, so the second statement follows.
Finally, $N \hookrightarrow P \Rightarrow N_{\mathfrak{m}} \hookrightarrow P_{\mathfrak{m}} \Rightarrow N_{\mathfrak{m}} \otimes M_{\mathfrak{m}} \hookrightarrow P_{\mathfrak{m}} \otimes M_{\mathfrak{m}}$
$\Rightarrow(N \otimes M)_{\mathfrak{m}} \hookrightarrow(P \otimes M)_{\mathfrak{m}} \Rightarrow N \otimes M \hookrightarrow P \otimes M$.

Extending and contracting ideals

Write $f: A \rightarrow A\left[S^{-1}\right]$ and $\mathfrak{a} \mapsto \mathfrak{a}^{e}=\mathfrak{a}\left[S^{-1}\right], \mathfrak{b}^{c}=f^{-1} \mathfrak{b}$, extended ideals $=E$, contracted ideals $=C$.

Proposition

- Every $\mathfrak{b} \in E$.
- $\mathfrak{a}^{e c}=U_{S}(\mathfrak{a}: s)$.
- $\mathfrak{a}^{e}=1 \Leftrightarrow \mathfrak{a} \cap S \neq \emptyset$.
- $1 \neq \mathfrak{a} \in C \Leftrightarrow$ no element of S is a zero divisor of A / a.
- Spec $A\left[S^{-1}\right] \leftrightarrow\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \cap S=\emptyset\}$,
- in particular $\operatorname{Spec} A_{\mathfrak{q}} \leftrightarrow\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \subset \mathfrak{q}\}$.
- $\mathfrak{N}\left(A\left[S^{-1}\right]\right)=(\mathfrak{N}(A))\left[S^{-1}\right]$.
- $\mathfrak{a} \mapsto \mathfrak{a}\left[S^{-1}\right]$ is compatible with finite sums, products, intersections, radicals.

Extending and contracting: proofs

- Every $\mathfrak{b} \in E$: need $\mathfrak{b} \subset \mathfrak{b}^{c e}$. Let $y=x / s \in \mathfrak{b}$ then $x / 1 \in \mathfrak{b}$ so $x \in \mathfrak{b}^{c}$ so $x / s \in \mathfrak{b}^{c e}$.
- $\mathfrak{a}^{\text {ec }: ~} x \in \mathfrak{a}^{e c} \Leftrightarrow x / 1 \in \mathfrak{a}^{e} \Leftrightarrow x / 1=a / s \Leftrightarrow(x s-a) t=0 \Leftrightarrow$ $x s t \in \mathfrak{a} \Leftrightarrow x \in \cup_{S}(\mathfrak{a}: s)$.
- $\mathfrak{a}^{e}=1 \Leftrightarrow \mathfrak{a}^{e c}=1 \Leftrightarrow 1 \in(\mathfrak{a}: s) \Leftrightarrow 1 s \in \mathfrak{a}$.
- $\mathfrak{a} \in C \Leftrightarrow \mathfrak{a}^{e c} \subset \mathfrak{a} \Leftrightarrow(s x \in \mathfrak{a} \Rightarrow x \in \mathfrak{a}) \Leftrightarrow(\overline{s x}=0 \in A / \mathfrak{a} \Rightarrow$ $\bar{x}=0 \in A / \mathfrak{a}) \Leftrightarrow$ no element of S is a zero divisor of A / \mathfrak{a}.
- $\mathfrak{p} \in C \Leftrightarrow$ no element of S is a zero divisor of the domain $A / \mathfrak{p} \Leftrightarrow$ no element of S is a zero modulo $\mathfrak{p} \Leftrightarrow \mathfrak{p} \cap S=\emptyset$.
- sums, products work for extension in general, intersections have seen, radicals: if $x / t \in r\left(\mathfrak{a}\left[S^{-1}\right]\right)$ with $(x / t)^{n}-a / s$, then $(x s)^{n}=s^{n-1} a \in \mathfrak{a}$ so $x / t=(x s) /(t s) \in(r(\mathfrak{a}))\left[S^{-1}\right]$, the other direction works in general.

Fractions and finitely generated modules

Proposition

Let M be a finitely generated A-module, S multiplicative. Then $\operatorname{Ann}\left(M\left[S^{-1}\right]\right)=(\operatorname{Ann}(M))\left[S^{-1}\right]$.

Corollary

If $N, P \subset M$ and P finitely generated, then
$(N: P)\left[S^{-1}\right]=\left(N\left[S^{-1}\right]: P\left[S^{-1}\right]\right)$.
Proof of corollary.

$$
(N: P)=A n n((N+P) / N)
$$

Fractions and finitely generated modules - proof

- If $M=A x$ then $M \simeq A / A n n(M)$, so
$M\left[S^{-1}\right] \simeq A\left[S^{-1}\right] /(A n n(M))\left[S^{-1}\right]$, so
$\operatorname{Ann}\left(M\left[S^{-1}\right]\right)=(\operatorname{Ann}(M))\left[S^{-1}\right]$ as needed.
- If $M=\sum_{i=1}^{n} A x_{i}$ and $M^{\prime}=\sum_{i=1}^{n-1} A x_{i}, M^{\prime \prime}=A x_{n}$, we may assume by induction that the result holds for M^{\prime}. Now

$$
\begin{aligned}
(\operatorname{Ann}(M))\left[S^{-1}\right] & =\left(\operatorname{Ann}\left(M^{\prime}\right) \cap \operatorname{Ann}\left(M^{\prime \prime}\right)\right)\left[S^{-1}\right] \\
& =\left(\operatorname{Ann}\left(M^{\prime}\right)\right)\left[S^{-1}\right] \cap\left(\operatorname{Ann}\left(M^{\prime \prime}\right)\right)\left[S^{-1}\right] \\
& =\operatorname{Ann}\left(M^{\prime}\left[S^{-1}\right]\right) \cap \operatorname{Ann}\left(M^{\prime \prime}\left[S^{-1}\right]\right) \\
& =\operatorname{Ann}\left(M^{\prime \prime}\left[S^{-1}\right]+M^{\prime \prime}\left[S^{-1}\right]\right)=\operatorname{Ann}\left(M^{\prime}\left[S^{-1}\right]\right)
\end{aligned}
$$

Contracted prime ideals in general

Proposition

Let $f: A \rightarrow B, \mathfrak{p} \in \operatorname{Spec} A$.
Then $\mathfrak{p}=f^{-1} \mathfrak{q}$ with \mathfrak{q} prime $\Leftrightarrow \mathfrak{p}^{\text {ec }}=\mathfrak{p}$.

- If $\mathfrak{p}=\mathfrak{q}^{c}$ then indeed $\mathfrak{p}^{e c}=\mathfrak{p}$.
- On the other hand assume $\mathfrak{p}^{e c}=\mathfrak{p}$ and consider the subsets \mathfrak{p}^{e} and the multiplicative set $T=f(A \backslash \mathfrak{p})$.
- The assumption implies these are disjoint.
- So $\left(\mathfrak{p}^{e}\right)\left[T^{-1}\right] \subset B\left[T^{-1}\right]$ is a proper ideal.
- It lies in a maximal ideal $\mathfrak{m} \subset B\left[T^{-1}\right]$.
- If $g: B \rightarrow B\left[T^{-1}\right]$ let $\mathfrak{q}=g^{-1} \mathfrak{m}$, so \mathfrak{q} is prime.
- We have $\mathfrak{q} \supset g^{-1}\left(\mathfrak{p}^{e}\left[T^{-1}\right]\right) \supset \mathfrak{p}^{e}$ so $\mathfrak{q}^{c} \supset \mathfrak{p}$,
- and $\mathfrak{q} \cap T=\emptyset$ so $\mathfrak{q}^{c} \subset \mathfrak{p}$.
- So $\mathfrak{q}^{c}=\mathfrak{p}$.

