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Fractions

Rings of fractions

Let S ⊂ (A,×) be a submonoid (multiplicative subset of A).

Say (a, s) ∼ (b, t) ∈ (A× S) if ∃u ∈ S : u(at − bs) = 0.

S submonoid ⇒ equivalence relation.

Define a set S−1A = A[S−1] = (A× S)/ ∼.

The class of (a, s) is denoted a/s.

Define a/s b/t = (ab)/(st), a/s + b/t = (at + bs)/(st).

This defines an A-algebra via a 7→ a/1 sending S to A[S−1]×.

Theorem

If f : A→ B such that F (S) ⊂ B× there is a unique h making

A

""

// A[S−1]

h
��
B

commutative.
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Fractions

Facts on rings of fractions

A[S−1] = 0⇔ 0 ∈ S .

A→ A[S−1] injective ⇔ S contains no zero divisors.

A[S−1] = A[(A×S)−1].

p ⊂ A prime ⇔ S = Ar p a multiplicative subset.

If p ⊂ A prime, one writes Ap := A[S−1].

If A = k[x1, . . . , xn] and p = (x1, . . . , xn) then Ap is the ring of
rational functions which are well-defined near the origin. Thus
”localization”.

If A = k[x1, . . . , xn] and p ⊂ A prime then Ap is the ring of
rational functions which can be restricted as rational functions
to Z (p).

For f ∈ A write S = {f i : i ≥ 0}, and
A[S−1] = A[f −1] = A[x ]/(fx − 1).

I’ll never write Af (just thing of p ∈ Z).
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Fractions

Modules of fractions

Let M and A-module, S ⊂ A multiplicative subset.

Say (m, s) ∼ (n, t) ∈ (N × S) if ∃u ∈ S : u(mt − ns) = 0.

S submonoid ⇒ equivalence relation.

Define a set S−1M = M[S−1] = (M × S)/ ∼.

The class of (m, s) is denoted m/s.

Define a/s m/t = (am)/(st), m/s + n/t = (mt + ns)/(st).

This defines an A[S−1]-module M[S−1].

Functor: M → N  M[S−1]→ N[S−1] compatible with
compositions. Additive (compatible with direct sums).
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Fractions

Exactness of fractions

Proposition

M 7→ M[S−1] an exact functor.

By functoriality since M ′ → M → M ′′ a complex (factors through
0) then M ′[S−1]→ M[S−1]→ M ′′[S−1] a complex.
If g(m/s) = 0 then there is u ∈ S with ug(m) = g(um) = 0, so
um = f (m′), so m/s = f (m′/us).

Corollary

M 7→ M[S−1] preserves sums of submodules, intersections of
submodules, quotients.

(Look at the kernel and image of the difference map N ⊕ P → M.)
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Fractions

Flatness of A[S−1]

Define A[S−1]×M → M[S−1] by (a/s,m) 7→ am/s.

It is well-defined, surjective and A-bilinear,

giving A[S−1]⊗A M → M[S−1], an A[S−1]-module
homomorphism.

Taking common denominators, every element of A[S−1]⊗A M
is of the form 1/s ⊗m.

If its image m/s = 0 then um = 0, so
1/s ⊗m = 1/(su)⊗ um = 0, giving

Proposition

A[S−1]⊗A M ' M[S−1].

Theorem

A[S−1] is a flat A-module.
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Fractions

Tensor of fractions

Given f : A→ B, we have MB ⊗B NB = (M ⊗A N)B . Indeed the
mapping (b,m, b′, n) 7→ (bb′ ⊗ (m ⊗m) is A-multilinear and
B-bilinear, and in the other direction
(b,m, n) 7→ (b ⊗m)⊗ (1⊗ n) = (1⊗m)⊗ (b ⊗ n).
Combining, we get

Proposition

M[S−1]⊗A[S−1] N[S−1] = (M ⊗A N)[S−1].
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Fractions

Local properties

A property P of a ring/module/module homomorphism is local if
X ∈ P ⇐⇒ Xp ∈ P ∀p ∈ SpecA.

Proposition

M = 0 ⇔ Mp = 0 ∀p ⇔ Mm = 0 ∀m.

φ : M → N injective ⇔ φp injective ∀p ⇔ mm injective
∀m.

M flat ⇔ Mp flat ∀p ⇔ Mm flat ∀m.

First, for 0 6= x ∈ M we have a = Ann(x) 6= A. Let m ⊃ a
maximal. Then 0 = x/1 ∈ Mm, so ux = 0 for some
u ∈ Arm ⊂ Ar a, contradiction.
Now (Kerφ)m = Ker(φm) by exactness, so the second statement
follows.
Finally, N ↪→ P ⇒ Nm ↪→ Pm ⇒ Nm ⊗Mm ↪→ Pm ⊗Mm

⇒ (N ⊗M)m ↪→ (P ⊗M)m ⇒ N ⊗M ↪→ P ⊗M.
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Fractions

Extending and contracting ideals

Write f : A→ A[S−1] and a 7→ ae = a[S−1], bc = f −1b, extended
ideals = E , contracted ideals = C .

Proposition

Every b ∈ E .

aec = ∪S(a : s).

ae = 1⇔ a ∩ S 6= ∅.
1 6= a ∈ C ⇔ no element of S is a zero divisor of A/a.

SpecA[S−1]↔ {p ∈ SpecA | p ∩ S = ∅},
in particular SpecAq ↔ {p ∈ SpecA | p ⊂ q}.
N(A[S−1]) = (N(A))[S−1].

a 7→ a[S−1] is compatible with finite sums, products,
intersections, radicals.
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Fractions

Extending and contracting: proofs

Every b ∈ E : need b ⊂ bce . Let y = x/s ∈ b then x/1 ∈ b so
x ∈ bc so x/s ∈ bce .

aec : x ∈ aec ⇔ x/1 ∈ ae ⇔ x/1 = a/s ⇔ (xs − a)t = 0⇔
xst ∈ a⇔ x ∈ ∪S(a : s).

ae = 1⇔ aec = 1⇔ 1 ∈ (a : s)⇔ 1s ∈ a.

a ∈ C ⇔ aec ⊂ a⇔ (sx ∈ a⇒ x ∈ a)⇔ (sx = 0 ∈ A/a⇒
x̄ = 0 ∈ A/a)⇔ no element of S is a zero divisor of A/a.

p ∈ C ⇔ no element of S is a zero divisor of the domain
A/p⇔ no element of S is a zero modulo p⇔ p ∩ S = ∅.
sums, products work for extension in general, intersections
have seen, radicals: if x/t ∈ r(a[S−1]) with (x/t)n − a/s,
then (xs)n = sn−1a ∈ a so x/t = (xs)/(ts) ∈ (r(a))[S−1], the
other direction works in general.
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Fractions

Fractions and finitely generated modules

Proposition

Let M be a finitely generated A-module, S multiplicative. Then
Ann(M[S−1]) = (Ann(M))[S−1].

Corollary

If N,P ⊂ M and P finitely generated, then
(N : P)[S−1] = (N[S−1] : P[S−1]).

Proof of corollary.

(N : P) = Ann((N + P)/N). ♠
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Fractions

Fractions and finitely generated modules - proof

If M = Ax then M ' A/Ann(M), so
M[S−1] ' A[S−1]/(Ann(M))[S−1], so
Ann(M[S−1]) = (Ann(M))[S−1] as needed.

If M =
∑n

i=1 Axi and M ′ =
∑n−1

i=1 Axi ,M
′′ = Axn, we may

assume by induction that the result holds for M ′. Now

(Ann(M))[S−1] = (Ann(M ′) ∩ Ann(M ′′))[S−1]

= (Ann(M ′))[S−1] ∩ (Ann(M ′′))[S−1]

= Ann(M ′[S−1]) ∩ Ann(M ′′[S−1])

= Ann(M ′′[S−1] + M ′′[S−1]) = Ann(M ′[S−1]).
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Fractions

Contracted prime ideals in general

Proposition

Let f : A→ B, p ∈ SpecA.
Then p = f −1q with q prime ⇔ pec = p.

If p = qc then indeed pec = p.

On the other hand assume pec = p and consider the subsets
pe and the multiplicative set T = f (Ar p).

The assumption implies these are disjoint.

So (pe)[T−1] ⊂ B[T−1] is a proper ideal.

It lies in a maximal ideal m ⊂ B[T−1].

If g : B → B[T−1] let q = g−1m, so q is prime.

We have q ⊃ g−1(pe [T−1]) ⊃ pe so qc ⊃ p,

and q ∩ T = ∅ so qc ⊂ p.

So qc = p.
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