MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich

Brown University

February 4, 2017

Rings of fractions

- Let $S \subset (A, \times)$ be a submonoid (multiplicative subset of A).
- Say $(a,s) \sim (b,t) \in (A \times S)$ if $\exists u \in S : u(at bs) = 0$.
- S submonoid \Rightarrow equivalence relation.
- Define a set $S^{-1}A = A[S^{-1}] = (A \times S) / \sim$.
- The class of (a, s) is denoted a/s.
- Define $a/s \ b/t = (ab)/(st)$, a/s + b/t = (at + bs)/(st).
- This defines an A-algebra via $a \mapsto a/1$ sending S to $A[S^{-1}]^{\times}$.

Theorem

If $f : A \to B$ such that $F(S) \subset B^{\times}$ there is a unique h making $A \longrightarrow A[S^{-1}]$ commutative. $\downarrow h$ B

Facts on rings of fractions

•
$$A[S^{-1}] = 0 \Leftrightarrow 0 \in S$$
.

• $A \to A[S^{-1}]$ injective $\Leftrightarrow S$ contains no zero divisors.

•
$$A[S^{-1}] = A[(A^{\times}S)^{-1}]$$

- $\mathfrak{p} \subset A$ prime $\Leftrightarrow S = A \setminus \mathfrak{p}$ a multiplicative subset.
- If $\mathfrak{p} \subset A$ prime, one writes $A_{\mathfrak{p}} := A[S^{-1}]$.
- If A = k[x₁,...,x_n] and p = (x₁,...,x_n) then A_p is the ring of rational functions which are well-defined near the origin. Thus "localization".
- If A = k[x₁,...,x_n] and p ⊂ A prime then A_p is the ring of rational functions which can be restricted as rational functions to Z(p).

• For
$$f \in A$$
 write $S = \{f^i : i \ge 0\}$, and $A[S^{-1}] = A[f^{-1}] = A[x]/(fx - 1)$.

• I'll never write A_f (just thing of $p \in \mathbb{Z}$).

Modules of fractions

- Let M and A-module, $S \subset A$ multiplicative subset.
- Say $(m,s) \sim (n,t) \in (N \times S)$ if $\exists u \in S : u(mt ns) = 0$.
- S submonoid \Rightarrow equivalence relation.
- Define a set $S^{-1}M = M[S^{-1}] = (M \times S) / \sim$.
- The class of (m, s) is denoted m/s.
- Define a/s m/t = (am)/(st), m/s + n/t = (mt + ns)/(st).
- This defines an $A[S^{-1}]$ -module $M[S^{-1}]$.
- Functor: $M \to N \rightsquigarrow M[S^{-1}] \to N[S^{-1}]$ compatible with compositions. Additive (compatible with direct sums).

Exactness of fractions

Proposition

 $M \mapsto M[S^{-1}]$ an exact functor.

By functoriality since $M' \to M \to M''$ a complex (factors through 0) then $M'[S^{-1}] \to M[S^{-1}] \to M''[S^{-1}]$ a complex. If g(m/s) = 0 then there is $u \in S$ with ug(m) = g(um) = 0, so um = f(m'), so m/s = f(m'/us).

Corollary

 $M \mapsto M[S^{-1}]$ preserves sums of submodules, intersections of submodules, quotients.

(Look at the kernel and image of the difference map $N \oplus P \to M$.)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Flatness of $A[S^{-1}]$

- Define $A[S^{-1}] \times M \to M[S^{-1}]$ by $(a/s, m) \mapsto am/s$.
- It is well-defined, surjective and A-bilinear,
- giving A[S⁻¹] ⊗_A M → M[S⁻¹], an A[S⁻¹]-module homomorphism.
- Taking common denominators, every element of $A[S^{-1}] \otimes_A M$ is of the form $1/s \otimes m$.
- If its image m/s = 0 then um = 0, so $1/s \otimes m = 1/(su) \otimes um = 0$, giving

Proposition

 $A[S^{-1}] \otimes_A M \simeq M[S^{-1}].$

Theorem

$$A[S^{-1}]$$
 is a flat A-module.

Given $f : A \to B$, we have $M_B \otimes_B N_B = (M \otimes_A N)_B$. Indeed the mapping $(b, m, b', n) \mapsto (bb' \otimes (m \otimes m)$ is A-multilinear and B-bilinear, and in the other direction $(b, m, n) \mapsto (b \otimes m) \otimes (1 \otimes n) = (1 \otimes m) \otimes (b \otimes n)$. Combining, we get

Proposition

$$M[S^{-1}] \otimes_{A[S^{-1}]} N[S^{-1}] = (M \otimes_A N)[S^{-1}].$$

Local properties

A property \mathcal{P} of a ring/module/module homomorphism is local if $X \in \mathcal{P} \iff X_{\mathfrak{p}} \in \mathcal{P} \ \forall \mathfrak{p} \in \operatorname{Spec} A.$

Proposition

- $M = 0 \iff M_{\mathfrak{p}} = 0 \ \forall \mathfrak{p} \iff M_{\mathfrak{m}} = 0 \ \forall \mathfrak{m}.$
- $\phi: M \to N$ injective $\Leftrightarrow \phi_{\mathfrak{p}}$ injective $\forall \mathfrak{p} \Leftrightarrow \mathfrak{m}_{\mathfrak{m}}$ injective $\forall \mathfrak{m}$.
- *M* flat \Leftrightarrow $M_{\mathfrak{p}}$ flat $\forall \mathfrak{p} \Leftrightarrow$ $M_{\mathfrak{m}}$ flat $\forall \mathfrak{m}$.

First, for $0 \neq x \in M$ we have $\mathfrak{a} = Ann(x) \neq A$. Let $\mathfrak{m} \supset \mathfrak{a}$ maximal. Then $0 = x/1 \in M_{\mathfrak{m}}$, so ux = 0 for some $u \in A \setminus \mathfrak{m} \subset A \setminus \mathfrak{a}$, contradiction. Now $(\text{Ker}\phi)_{\mathfrak{m}} = \text{Ker}(\phi_{\mathfrak{m}})$ by exactness, so the second statement follows.

Finally, $N \hookrightarrow P \Rightarrow N_{\mathfrak{m}} \hookrightarrow P_{\mathfrak{m}} \Rightarrow N_{\mathfrak{m}} \otimes M_{\mathfrak{m}} \hookrightarrow P_{\mathfrak{m}} \otimes M_{\mathfrak{m}}$ $\Rightarrow (N \otimes M)_{\mathfrak{m}} \hookrightarrow (P \otimes M)_{\mathfrak{m}} \Rightarrow N \otimes M \hookrightarrow P \otimes M.$

Extending and contracting ideals

Write $f : A \to A[S^{-1}]$ and $\mathfrak{a} \mapsto \mathfrak{a}^e = \mathfrak{a}[S^{-1}], \mathfrak{b}^c = f^{-1}\mathfrak{b}$, extended ideals = E, contracted ideals = C.

Proposition

- Every $\mathfrak{b} \in E$.
- $\mathfrak{a}^{ec} = \bigcup_{S} (\mathfrak{a} : s).$
- $\mathfrak{a}^e = 1 \Leftrightarrow \mathfrak{a} \cap S \neq \emptyset.$
- $1 \neq \mathfrak{a} \in C \Leftrightarrow$ no element of S is a zero divisor of A/\mathfrak{a} .
- Spec $A[S^{-1}] \leftrightarrow \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \cap S = \emptyset \}$,
 - in particular Spec $A_{\mathfrak{q}} \leftrightarrow {\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \subset \mathfrak{q}}.$
 - $\mathfrak{N}(A[S^{-1}]) = (\mathfrak{N}(A))[S^{-1}].$
- a → a[S⁻¹] is compatible with finite sums, products, intersections, radicals.

A (1) > A (2) > A

Extending and contracting: proofs

- Every $\mathfrak{b} \in E$: need $\mathfrak{b} \subset \mathfrak{b}^{ce}$. Let $y = x/s \in \mathfrak{b}$ then $x/1 \in \mathfrak{b}$ so $x \in \mathfrak{b}^c$ so $x/s \in \mathfrak{b}^{ce}$.
- \mathfrak{a}^{ec} : $x \in \mathfrak{a}^{ec} \Leftrightarrow x/1 \in \mathfrak{a}^e \Leftrightarrow x/1 = a/s \Leftrightarrow (xs-a)t = 0 \Leftrightarrow xst \in \mathfrak{a} \Leftrightarrow x \in \bigcup_{S} (\mathfrak{a} : s).$
- $\mathfrak{a}^{\mathsf{e}} = 1 \Leftrightarrow \mathfrak{a}^{\mathsf{ec}} = 1 \Leftrightarrow 1 \in (\mathfrak{a} : s) \Leftrightarrow \mathbf{1s} \in \mathfrak{a}.$
- $\mathfrak{a} \in C \Leftrightarrow \mathfrak{a}^{ec} \subset \mathfrak{a} \Leftrightarrow (sx \in \mathfrak{a} \Rightarrow x \in \mathfrak{a}) \Leftrightarrow (\overline{sx} = 0 \in A/\mathfrak{a} \Rightarrow \overline{x} = 0 \in A/\mathfrak{a}) \Leftrightarrow \text{ no element of } S \text{ is a zero divisor of } A/\mathfrak{a}.$
- $\mathfrak{p} \in C \Leftrightarrow$ no element of S is a zero divisor of the domain $A/\mathfrak{p} \Leftrightarrow$ no element of S is a zero modulo $\mathfrak{p} \Leftrightarrow \mathfrak{p} \cap S = \emptyset$.
- sums, products work for extension in general, intersections have seen, radicals: if $x/t \in r(\mathfrak{a}[S^{-1}])$ with $(x/t)^n - a/s$, then $(xs)^n = s^{n-1}a \in \mathfrak{a}$ so $x/t = (xs)/(ts) \in (r(\mathfrak{a}))[S^{-1}]$, the other direction works in general.

Fractions and finitely generated modules

Proposition

Let M be a finitely generated A-module, S multiplicative. Then $Ann(M[S^{-1}]) = (Ann(M))[S^{-1}].$

Corollary

If $N, P \subset M$ and P finitely generated, then $(N : P)[S^{-1}] = (N[S^{-1}] : P[S^{-1}]).$

Proof of corollary.

(N:P) = Ann((N+P)/N).

Image: A image: A

Fractions and finitely generated modules - proof

$$\begin{aligned} (Ann(M))[S^{-1}] &= (Ann(M') \cap Ann(M''))[S^{-1}] \\ &= (Ann(M'))[S^{-1}] \cap (Ann(M''))[S^{-1}] \\ &= Ann(M'[S^{-1}]) \cap Ann(M''[S^{-1}]) \\ &= Ann(M''[S^{-1}] + M''[S^{-1}]) = Ann(M'[S^{-1}]). \end{aligned}$$

Contracted prime ideals in general

Proposition

Let $f : A \to B$, $\mathfrak{p} \in \text{Spec } A$. Then $\mathfrak{p} = f^{-1}\mathfrak{q}$ with \mathfrak{q} prime $\Leftrightarrow \mathfrak{p}^{ec} = \mathfrak{p}$.

- If $\mathfrak{p} = \mathfrak{q}^c$ then indeed $\mathfrak{p}^{ec} = \mathfrak{p}$.
- On the other hand assume $\mathfrak{p}^{ec} = \mathfrak{p}$ and consider the subsets \mathfrak{p}^e and the multiplicative set $T = f(A \setminus \mathfrak{p})$.
- The assumption implies these are disjoint.
- So $(\mathfrak{p}^e)[T^{-1}] \subset B[T^{-1}]$ is a proper ideal.
- It lies in a maximal ideal $\mathfrak{m} \subset B[T^{-1}]$.
- If $g: B \to B[T^{-1}]$ let $\mathfrak{q} = g^{-1}\mathfrak{m}$, so \mathfrak{q} is prime.
- We have $\mathfrak{q} \supset g^{-1}(\mathfrak{p}^e[T^{-1}]) \supset \mathfrak{p}^e$ so $\mathfrak{q}^c \supset \mathfrak{p}$,
- and $\mathfrak{q} \cap T = \emptyset$ so $\mathfrak{q}^c \subset \mathfrak{p}$.
- So $\mathfrak{q}^c = \mathfrak{p}$.

伺 ト く ヨ ト く ヨ ト