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A scheme is a (locally) ringed space (X, Ox) which has an
open covering X = JSpec A,. A morphism of schemes is a
morphism of the corresponding locally ringed spaces.

@ You learned a whole lot about schemes without considering
sheaves other than Ox.

@ You can imagine that other sheaves might be of interest. For
instance, the ideal Zy of a closed subscheme Y C X is
naturally a sheaf which holds the key to understanding Y.

o Differential forms must say something about a scheme just
like in the theory of manifolds.

@ We have come to a point where we have to use them.
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Ox-modules

Definition

An Ox-module is a sheaf of abelian groups F with a bilinear map
Ox x F — F with the usual module axioms. *

Note: you know what the product of sheaves is.

Note: this is the same as an Ox-module in the category of sheaves
of abelian groups. So these form a category in the natural way!
Note: One can define direct products, more generally limits, of
sheaves of Ox-modules in the obvious manner. Direct sums also
work.

Note: The tensor product F ®p, G is the sheaf associated to the
presheaf U — F(U) @o, vy G(U). Same care is needed with
colimits.

Note: Homo, (F,G) is the sheaf given by

U~ Home, |, (Flu, Glu)-
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Global generation

F(U) is an Ox(U)-module and F is an Ox x-module. We have
an Ox(X)-module homomorphism F(X) — F.

Definition

F is globally generated- if the image of F(X) — Fx generates Fy
as an Ox x-module. In other words, F(X) ®0,(x) Ox x — Fx is
surjective.

For instance Oy is globally generated, any ®;Ox or its quotient is
also.

F is globally generated if and only if there is an epimorphism
©0x — F.

Indeed if F is globally generated the homomorphism
®rx)Ox — F sending the basis element corresponding to s to
s|y is surjective. The other direction is the remark above.
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Quasi-coherence

Definition

A sheaf of Ox-modules is quasi-coherent if every x € X has an
open neighborhood x € U C X and an exact sequence
©,0x|u = ©10x|u = Flu — 0.

This generality is important for instance in complex analysis. In
algebraic geometry there is a wonderful coincidence.x B

For a module M over a ring A we define a natural sheaf M. The
main result is

A sheaf F is quasicoherent if and only if for every affine open
U = Spec A C X there is an A-module M such that F|y ~ M.~
We get an equivalence A-mod ~ QCoh(Spec A).

Abramovich MA 205 notes: Sheaves of O x-modules 5/37



Sheaves associated to modules

o Let X = SpecA and M an A-module. We define a sheaf M by
specifying it on principal opens: M(D(f)) := M[f~1].

@ One needs to check that this satisfies the B-sheaf axiom. This
turns out to require exactly the same proof as for Ox, using
the “partition of unity” > a;ff = 1 whenever UD(f;) = X

o Consequently /\7],g = M, and M is an Ox-module.

@ One has a functor M — M, which respects direct sums since
localization does: &M; = &M;.

M — N — L exact if and only if M — N — L exact.

Indeed M — N — L exact if and only if M, — N, — Lp exact Vp

if and only if I\/l,3 — Np — Lp exact Vp, if and only if M — N—L
exact. N L
So both M — M and M — M(X) = M are exact functors!
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M is quasicoherent, and a converse

Proposition
M is quasicoherent

Take a presentation ;A — §;A — M — 0. By compatibility with
direct sums and exactness it induces a presentation

D ;0x — ®;0x — M — 0, as needed.®

Note: For any sheaf of Ox-modules on an affine X there is a

canonical homomorphism F(X) — F.

Proposition

Suppose X affine and &,0x — ®0x = F — 0 a presentation.

P

Then F(X) — F is an isomorphism.

Write M = Im(a(X)). So @A — @&/A — M — 0 is exact, and so
®,;0x = ®Ox —+ M — 0 exact, hence M — F an isomorphism,
and M = F(X), as needed.®
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Proof of the theorem

The proposition implies that . is quasicoherent if and only if there
is some covering by U; = Spec A; with Fy, = M;.

Proposition (1.6 )

Assume X is either Noetherian or separated and quasicompact+, F
quasi-coherent, and f € Ox(X). Then F(X)[f 1] — F(X¢) is an
isomorphism.

@ Given the proposition, take any affine open U C X, for which
the proposition applies;
e hence F(U)[f~t] — F(D(f)) for any f € Ox(U).

—_—

@ Since these form a basis F(U) — F|y is an isomorphism, and
the theorem follows.&#
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Proof of the proposition

@ To prove the proposition cover X = Usinite U; where
Fu, = m

e Write V; = X¢ N U; = D(f|y;), which are also affine, so
F(UH[FY — F(V;) is an isomorphism.

@ This means that in the diagram
0 — F(X)[f 1 —eF(U)lf ] —aF(Un U)lf]

! % |

0 —— F(Xr) ©F (Vi) SF(VinV))
the arrow 3 is an isomorphism.

e It follows that F(X)[f~1] — F(X¢) is injective.

@ The assumption propagates from X to opens such as U; N U;,
so the right arrow is injective too;

@ by the Snake Lemma the left arrow is surjective, hence an
isomorphism &
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A surprisingly useful result (and vanishing of H')

Proposition

Suppose X affine and 0 -+ F — G — H — 0 an exact sequence of
Ox-modules with F quasicoherent. Then
0 — F(X) — G(X) = H(X) — 0 is exact.

@ We need to take s € H(X) and lift it to G(X).

@ By definition of surjectivity we can lift to t; € G(U;) with
U; = D(f;) principal opens.

o The difference t; — t; € G(Uj;) is vj; € F(Uj;), and these
satisfy the cocycle condition Vij’U;jk — Vik|Uijk + vjk‘Uijk =0.

There are w; € F(U;) so that Vi = wj — w;.

e With the lemma the elements t/ := t; — w; € G(U;) have the
property t; — t; = 0, hence define a section t' € G(X)
mapping to s, implying the proposition.
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Proof that H'(quasicoherent) = 0 on affine

There are w; € F(U;) so that vjj = wj — w;.»

o Writing F = M let vjj = m;;/(f:f;)", with m; € M, for
sufficiently large r good for all ij.

@ The cocycle condition means that for all a,i,j we have
mif — maf" + mf] =0 € M((f,f:f;)~], so for large £ we
have f(mafy — mayfy + myfy) =0 € MI(f6)"]

o Write Y h,fitr =1.

o Define w; = 3°, hafl(mai/f") € M[f']. Now

(5= w)luy = D by (maif] — maif )/ ()
a
=" hafE(muf) /(F£) = my/(F£)" = v

as needed.d
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Finite generation and coherence

Definition

F is (locally) finitely generated if for all x € X there is a
neighborhood x € U C X and epimorphism Of] — Fly. F is
coherent if further for any- o : O, — F|y also ker a is finitely
generated.

This is absolutely crucial for complex analytic spaces, but again in
algebraic geometry it is well-behaved, at least for locally noetherian
schemes.

Proposition

Let X be a locally noetherian scheme. Then a quasi-coherent F is
coherent if and only if it is locally finitely generated, if and only if
F(U) is finitely generated over Ox(U) for every affine open U.
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Proof of proposition

Coherent implies locally finitely generated by definition.

If F is locally finitely generated and U affine, we can find a
finite covering U = UU; by principal opens and epimorphisms
OZ’I," — f’Ui‘

By quasi-coherence we have O()'(U;) — F(U;) surjective, and
F(U) ®o(u) O(U;i) — F(U;) an isomorphism.

Find a finitely generated submodule M C F(U) such that

M @o vy O(U;) — F(U;) surjective for all i.

Now M — F|y surjective so F(U) is finitely generated.

We may take M = O(U)™.

Now let O" — F be a homomorphism on some affine. It is

determined by A" — M. Since A noetherian the kernel is also
finitely generated, as needed.
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Basic properties

@ Quasi-coherence is preserved by direct sums. Local finite
generation preserved by finite direct sums.

e If F,G are quasi-coherent then F ®¢ G is quasi-coherent,
with module F(U) ®o(y) G(U) on any affine open.

@ The kernel and cokernel of a homomorphism of quasi-coherent
sheaves is quasi-coherent. Same for coherent on a locally
Noetherian scheme.

@ An extension of quasi-coherent sheaves is quasi-coherent.
Same for coherent on a locally Noetherian scheme.

Indeed the useful result gives an exact sequence
0— F(U) = G(U) = H(U) — 0, so a diagram with exact rows

P e

0— F(U) —= G(U) —= H(U) —0

R

0 F g H 0
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Pull back and push forward

@ Given f : X — Y the structure arrow f# : Oy — £.Ox is
equivalent to f# .10y = Ox.
o Define f*G := f~1G ®f-10, Ox.*
@ Note F*Oy = Ox and f* commutes with direct sums.
Propoerties:
o Gy = gf(x) ®Oy,f(x) OX,X-
o If X =SpecB,Y = SpecA,G = M affine then
*G=M®,B.
@ If G quasi-coherent then f*G quasi-coherent.
The first follows from f~1G, = Gf(x)-
Fix presentation ;A — ® A — M — 0 giving presentation
®10y — &30y — G — 0. Direct sums and right exactness give
presentation &;O0x — ®;0x — f*G — 0. On the other hand we
also have presentation@/é//B — @B - M®as B — 0 giving
@,/QX/% ®;0x - M ®4 B — 0. This gives an isomorphism
M®aB — *G.
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Properties of pushforward

@ Assume either X noetherian or f separated and
quasi-compact. If F quasi-coherent then f,F quasi-coherent.

o If f finite and F quasi-coherent and L.F.G then f, F
quasi-coherent and L.F.G.

We may assume Y affine, so X either noetherian or separated and
quasi-compact.

—_—

e We want to show £, F = F(X). Enough to evaluate
f.F(D(g)). Write g’ = f*g. £.F(D(g)) = F(f*D(g)) =
F(Xg) =~ F(X)[g' " = F(X) ©a Alg™1], as needed.

@ f finite implies affine, so separated and quasi-compact, so

—_—~—

f. F = F(X). Now F(X) is finitely generated over Ox(X) so
finitely generated over Oy(Y).
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Ideals and subschemes

Proposition

The correspondence {Z C X} «> {Keri#} is an order-reversing 1-1
correspondence between closed subschemes and quasi-coherent
ideal sheaves.

We may assume X = Spec A affine. There is already a
correspondence between sheaves of ideals and closed ringed
subspaces.

If Z= V() is a closed subscheme then it was shown that

Ker i#(D(g)) = I[g~!] so Ker i*# = I is quasi-coherent. If
I=IcC Ox a quasi-coherent ideal sheaf then it was shown that
the ringed subspace V/(Z) is the closed subscheme Spec A/I.
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Sheaf associated to a graded module

o Let B = @®,>0B, be a graded ring, M = $,czM, a graded
module.

@ For a homogeneous f € B one defined an affine open
Dy (f) C X := Proj B with ring B(s) = B[f~1]o, the elements
of degree 0 in the Z-graded ring B[f~1].

o Define M) = M[f!]o,* the elements of degree 0 in the
graded B[f ~']-module M[f~1], namely

My = {mf~9|m € Mgqegr,d € N}.

Proposition

There exists a unique quasi-coherent sheaf | M on X such that
M|D+(f M(f) For p € Proj B we have I\/Ip = (Mp)o.

For this note that Mg,) = I\/I(f)[(gdegf/fdegg)*l] or repeat the
argument of Ox.

This is not an equivalence.
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The twisting sheaf and twists of sheaves

e Define a graded module B(n) by B(n)y = Bp+4. Denote

—_~—

Ox(n) := B(n).

e If f € By then B(n)(f) = f”B(f). So
Ox(n)lp,(r) = (Ox|p, () f"-

e We have Ox(n) ®o, Ox(m) = Ox(n+ m). The sheaf Ox(1)
is called the twisting sheaf.

@ For a scheme Y one has a canonical morphism f : P‘,’, — }P’%.
One defines (’)m(n) = f*OP%(n).

@ It is an exercise (5.1.20) to show that when Y = Spec A affine
then OP({/(n) coincides with A[To, ..., T4](1).

Definition

Let X =P, let F be an Ox-module. The n-th twist of F is
F(n) :=F @0, Ox(n).

For an immersion+ Y < X write Oy (1) = 1*Ox(1) and for a
quasi-coherent F write F(n) := F ®0, Oy(n).
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Sections on P/

Proposition (1.22)

Let B=A[To,..., T4],d > 1x and X = ProjB. Then
(Ox(n))(X) = By, so @z(Ox(n))(X) = B.

@ A section of (Ox(n))(X) restricts to sections of
(Ox(n))(D4+(T;)) which agree on intersections.

@ These are submodules of homogeneous elements of
AlTo,..., Tq, T(fl, ..., T-1] where only T; can be in the
denominator.

@ Since d > 0 this means that no T; can be in the denominator,
giving a homogeneous polynomial of degree n.

Note that if d = 0 one gets ®z(Ox(n))(X) = B[To_l]
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Invertible sheaves

@ We say that an Ox-module L is invertible if every x € X has
a neighborhood x € U C X and an isomorphism L|y ~ Ox|y.

@ Since P}, is covered by D (xp) which have degree 1, we see
that OPL{/(n) is invertible.

e If L invertible and s € £(X) one defines an open
Xe={xeX:Li=0xx- s} CX.

o It generalizes X¢ when f € Ox(X).

Proposition (- 1.25)

Let X be either noetherian or separated and quasicompact, L

invertible, F quasi-coherent. Fix s € L(X).

(1) Let f € F(X) with f|x, = 0. Then there is n > 0 such that
fs"=0€e F ®o, L.

(2) Let g € F(Xs), Then there isn> 0 and f € (F @o, L")(X)
such that f|x, = gs".
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Proof of the proposition, (1)

Let X; be finitely many opens covering X with isomorphisms
L g OX,-: and t; = (;5,'(5).

Let f € F(X) with f|x, = 0. Then there is n > 0 such that
fs" =0¢€ F ®oy L".

e As Xj N Xs = (Xj)t we can use Proposition 1.6.
@ So there is n such that fs"|x, = ft” = 0, for all /.
@ By the sheaf axiom fs" =0 &
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Proof of the proposition, (2)

Let g € F(Xs), Then thereis n> 0 and f € (F ®p, L")(X) such
that f|x, = gs". }

@ By 1.6 there is k and h; € (F ®p, L")(X;) such that
gsk|(xl.)S = gtk = hil(x,),. for all i.

o Note that (h; — hj)‘(X,-j)s = 0, and the assumption propagates
to the opens Xj;.

@ So by (1) there is m so that (h;s™ — h;s™)|x, = 0 for all /..

@ By the sheaf axiom there is f so that f|x, = hjs™ as needed.d
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Serre's eventual global generation

For an immersion Y < P4 we wrote Oy (1) = L*Opi‘(l) and for a
quasi-coherent F we wrote F(n) := F ®p, Oy(n).

Say X projective over A and F locally finitely generated
quasi-coherent. There exists ny so that for all n > ng the sheaf
F(n) is globally generated.

@ By assumption there is ¢ : X — ]P’f\.
@ There is a nice exercise (5.1.6) showing (¢, F)(n) = t.(F(n)).
e Since t.(F(n))(P4) = (F(n))(X), and since
L(F(n))(x) = (F(n))x we may and do replace X by P4
o For each i we have F(D,(T;)), and thus F|p, (7,), generated
by finitely many s;. Thus F(n)|p,(7;) is generated by s; T/".
@ By the proposition there is n such that s; T" = uji|p, (1)),
with uj € (F(n))(X), for all i, j, as needed. &
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Presenting coherent sheaves

Again X projective over A and F locally finitely generated
quasi-coherent. There is m and an epimorphism O%(m) — F.

@ Indeed for any n in the theorem take an epimorphism
0% — F(n).
e Taking ®0, Ox(—n) get an epimorphism O%(—n) — F,

@ so m = —n works.
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[ (F)

—_—

@ A quasi-coherent sheaf F on Spec A satisfies 7 = F(Spec A).

@ Suppose instead X = Proj B with B = A[To, ..., Tg]. The
A-module [¢(F) := @p>ol (X, F(n)) is a graded B-module
via (X, 0x(n)) @z (X, F(m)) — I'(X,F(n+ m)).

—_—

we have an isomorphism Ie(F) — F.

e Note that in general M — I4(M) is not an isomorphism.=

o Let T = Tp and U = D4 (Tp). By affine case it suffices to
show that ['e(F) (1) — F(U) is an isomorphism.

o Let T7"t € [o(F) (1), with t € [(F(n)).

e So tly e I(U,F(n)) =T"T(U,F), and t|y = T"s for unique
s € F(U).

e This is surjective by Proposition 1.25 (2) and injective by
Proposition 1.25 (1).
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Closed subschemes of projective space

Proposition

With A, B, X as above, let Z C X be closed. Then Z = ProjB/I
for some homogeneous ideal | C B. In particular any projective
A-scheme is of the form Proj C.~

o Let Z be the quasi-coherent sheaf of ideals defining Z and
I =Te(2).

@ Z(n) C Ox(n) because O(n) is locally free hence flat.
@ So by Proposition 1.22, | C [,(Ox) = B.
@ By the Lemma I=1T. So Ty = I'=7 and V()= Z-~
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Maps to projective space

For an invertible £ and section s € £(X) one has an isomorphism
Ox, ~ Lx, via 1 — s. The inverse maps t — t/s.

Proposition (5.1.31)

Let Z/A be a scheme and X = ProjA[To,..., T4].

1) Iff: Z — X an A-morphism then f*Ox(1) is generated by
the d + 1 sections f*T;.

2) If L an invertible sheaf on Z generated by sections sy, ..., Sq
there is a unique morphism f : Z — X with s; = f*T;.

1) Note T; generate Ox(1), with epimorphism 0%~ — Ox(1)
giving epimorphism ngl — f*Oz(1) by right-exactness of ®.
2) Define Zs; — D4(T;) via the A-algebra homomorphism
TJ'/T,' — SJ'/S,' S OZ(ZS,')-
These glue, and give an isomorphism £ = f*Ox(1).
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Maps to projective space: the fundamental question

Examples: power maps, Veronese, Segre.

Note: the morphism f is not changed by rescaling s;
simultaneously.

Note: An invertible linear transformation on s; results in composing
with the corresponding projective linear transformation on P9,

The fundamental question of projective geometry is: what are the
possible ways to map Z to projective space?

The discussion says that this is equivalent to: what are the
invertible sheaves with finitely many generating sections (up to
chosen equivalence)?

Definition

Pic(X) = set of isomorphism classes of invertible sheaves, with
group structure given by £1 ®o, L2 and L1 = Home, (£, Ox).

Sections up to rescaling will be characterized in terms of linear
systems of Cartier divisors.
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Very ample and ample sheaves

A sheaf of the form L*Opf‘(l), with ¢ : X < P4 an immersion, is
very ample over A.

An invertible sheaf £ is ample if for every finitely generated
quasi-coherent F there is ng such that 7 ® L" is globally
generated for all n > ng.

Say f : X — Spec A is of finite type, and either X noetherian or f
separated. If L is ample on X there is m > 1 such that L™ is very
ample.
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Proof of the theorem: good affine neighborhoods

Say either X noetherian or f separated, and L is ample on X.
Each x € X has an affine neighborhood of the form Xs,s € L"(X).

@ Let U be an affine neighborhood of x on which £L|y ~ Ox|y,
and 7 = Z(X < U).

@ The inclusion J C Oy gives J @ L" = JL" C L", since L"
locally free.

e By ampleness there is a section s € (JL")(X) generating
(TJL")x =L, soxe Xs C U.

@ The isomorphism L|y ~ Ox|y carries s to f € Ox(U), so
Xs = Dy(f) is affine.
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Proof of the theorem: lifting coordinates to sections and

embedding

e Say Ox(Xs) = Alf,..., fx]. For some r we have that s"f; lifts
to s € LM (X).

@ X is covered by finitely many, Xs, renumbered X,;. May
choose n, r good for all i, .

o Consider Y = ProjA[{T;, T;j}]. By Proposition 5.1.31 there is
¢ X = Y with ¢*Oy (1) = L.

o X, = ¢ 1D, (T;) and Oy (D4 (T;)) — Ox(Xs,) surjective.

@ So ¢ a closed embedding, as needed.
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Ampleness and quasi-projective schemes

Assume X either Noetherian or quasicompact and separated; L
invertible.
a) If X = UX,, affine open cover for s; € L(X), then L ample.
b) If L ample and U subsetX open and quasicompact then L|y
ample.

Corollary

If X — Spec A as in theorem, then it is quasi-projective if and only
if there is an ample sheaf.

v

The theorem gives ample = quasi-projective. If quasi-projective
then X open in a projective Y, which has an ample. By the lemma
the restriction is ample.
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Proof of Lemma

a) o Suppose F finitely generated and quasicoherent. Say f;
generate F(X).
o Then f;s] lift to t; € (F ® L")(X) generating the sheaf on
Xs,, for some n and for all i, as needed.
b) By the Lemma there are sections of L" satisfying (a). Also
U N X, is covered by finitely many principal opens
stj(h,'j) C ij- So Sjnh,j lifts to tij € ﬁ(X) Now uj = tij‘U
have U, = stj(h,-j) are affine so satisfy (a) on U, and L|y

ample by (a).
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Ampleness is local

Let f : X — Y be a proper morphism of locally noetherian
schemes, L invertible on X. Fixy € Y and

¢ : Xy, =X xy Spec Oy, — X the canonical base change
morphism.

a) If *L is globally generated then there is an openy € V. C Y
such that Ly, is globally generated.

b) If *L is ample then there is an open y € V C Y such that
Lx, is ample.

Lemma (Flat base change)

Assume Y = Spec A affine. Then F(X) ®a Oy, — F(Xy,) an
isomorphism.
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Proof of Lemma

One only needs X noetherian or separated and quasi-compact.

Pick a finite affine open covering X = UU;. The sequence

0 — F(X) = @&F(U;) = &F(U;n U;) induces a commutative

diagram with exact rows

0—F(X)®a Oy, —®F(Uj) ®a Oy, —dF(UinU)®a0y,
! 7 }

0——F(Xvy) SF((Ui)y.y) SF((UinUj)y,y)

the arrow 3 is an isomorphism. So the left arrow is injective. Same

holds for X replaced by U; N U;. So it is an isomorphism.

Abramovich MA 205 notes: Sheaves of O x-modules 36 /37



Proof of Proposition

We may replace Y by affine open.
a) Then ¢*£(Xy7y) = ﬁ(X) XA Oyy and ¢*L, = L. So

L(X) ®a Ox — L is surjective along f~1y. There is an open
set of X containing f 'y where this is surjective. Since

X — Y is proper tehre is a neighborhood of y where this is
surjective.

By taking a high power we may assume ¢*L is very ample and
globally generated. Shrinking Y and using (a) we may assume
L is globally generated. Since X is quasicompact a finite
number of sections suffices, giving a morphism X — P4. Let
Z is the closure of the image, with f : X — Z the morphism.
This is an isomorphism to the image along Xy ,, so it is an
isomorphism on an open set (this is exercise 3.2.5).
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