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Going up

Giovanni defined

Definition

I ⊂ OX with maxord(I) = m is D-balanced if for i ≤ m − 1 we
have (Di (I))m ⊂ Im−i .

Assume I as above is D-balanced and S a smooth hypersurface,
J = IOS , and assume S 6⊂ V (Dm−1I). The goal was to prove:

Theorem (3.84)

A blowup sequence ΠS of order ≥ m for (J,m) gives rise to a
blowup sequence Π of order m for I.

Since the order at a point of a D-balanced ideal is either m or 0,
Giovanni showed that the case of one blowup is immediate.
He also showed that after r steps

Sr ∩ cosupp(Π−1∗ (I,m)) =
m
∩
j=0

cosupp(ΠS)−1∗
(
(D jI)|S ,m − j

)
.
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Proof of going up

We need to show that cosupp(Jr ,m) ⊂ cosupp(Ir ,m).

Sr ∩ cosupp(Π−1∗ (I,m)) =
m
∩
j=0

cosupp(ΠS)−1∗
(
(D jI)|S ,m − j

)
=

m
∩
j=0

cosupp(ΠS)−1∗
(
(D jI)m|S ,m(m − j)

)
⊃

m
∩
j=0

cosupp(ΠS)−1∗
(
Im−j |S ,m(m − j)

)
=

m
∩
j=0

cosupp(ΠS)−1∗ (I|S ,m)

= cosupp(ΠS)−1∗ (J ,m) = cosupp (Jr ,m)

as needed ♠
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3.10 Uniqueness

Let (X , I ,E ) of maximal order m and maximal contact
j , j ′ : H,H ′ ↪→ X having normal crossings with E .

We want to apply a lower dimensional procedure
B(H, IH ,m,EH), which Giovanni showed gives a procedure
j∗B(H, IH ,m,EH) for X .

However to make sure these glue we need to have
j∗B(H, IH ,m,EH) = j∗B(H ′, IH′ ,m,EH′).

This would be OK if we had an automorphism φ of X sending
H to H ′,

such that φ∗I = I but also fixing V (I,m) and inductively
fixing V (Π−1∗ I,m).
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Formal equivalence

Fix a point p ∈ X such that maxord(I) = ordp I.

Definition

A formal equivalence at p of H,H ′ with respect to (X , I,E ) is an
automorphism φ of X̂p such that (1) φ∗Ĥ = Ĥ ′, (2) φ∗Î = Î, (3)
φ∗Ê i = Ê i and (4) h − φ∗h ∈ MC (Î)∀h ∈ Ôx .

Definition

An étale equivalence at p of H,H ′ with respect to (X , I,E ) is a
pair of étale surjections ψ,ψ′ : U → Xx such that (1)
φ∗H = ψ′∗H ′, (2) ψ∗I = ψ′∗I, (3) ψ∗E i = ψ′∗E i and (4)
ψ∗h − ψ′∗h ∈ MC (ψ∗I)∀h ∈ Ox .
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Uniqueness for MC invariant ideals

Definition

I is MC-invariant if MC (I)D(I) ⊂ I.

Theorem (3.92)

Suppose X , I,E ,H,H ′ as above with I MC-invariant, p ∈ H ∩ H ′.
Then H,H ′ are étale equivalent at p with respect to (X , I,E ).

We will use special types of automorphisms.

Definition

An automorphism ψ of kJx1, . . . , xnK is of form 1 + B, where
B ⊂ m, if ψ(xi )− xi ∈ B. We say I is 1 + B if it is invariant under
any automorphism of form 1 + B.
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Taylor expansions

Proposition

The following are equivalent.

(1) I is 1 + B-invariant.

(2) BD(I) ⊂ I.

(3) B jD j(I) ⊂ I for all j ≥ 0.

Assuming (3) write f (x + b) = f (x) +
∑

bi
∂f
∂xi

+ · · · .
If f ∈ I then for any s ≥ 1 this gives
ψ(f ) ∈

∑s
j=0 B

jD j(I) + ms+1 = I + ms+1.

By Krull ψ(f ) ∈ I giving (1).

Assuming (1) write

f (x1 + λ1b1, x2, . . . , xn) =
∑s

j=0 λ
jbj ∂

j f

∂x j1
ms+1 ∈ I + ms+1.

Applying this to s = 1 different λ and using Vandermonde we
get in particular λb ∂f

∂x1
∈ I + ms+1, so BD(I) ⊂ I giving (2).

(2) implies (3) by the product rule.
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Constructing formal and étale equivalence

Write H = V (x1),H ′ = V (x ′) for x , x ′ ∈ MC (I).

Choose x2, . . . , xn so that x1, x2, . . . , xn and x ′1, x2, . . . , xn are
both coordinate systems and E i = V (xi+1).

Writing h = x1 − x ′1 and considering the automorphism
φ(x ′1) = x1 = X ′1 + h and φ(xi ) = xi , i > 1 we get an
automorphism of the form 1 + MC (I), so we get a formal
equivalence.

To get an étale equivalence, consider the locus
x11 = x2

′
1 , x

1
2 = x22 , . . . x

1
n = x2n in X × X .

Its completion at (p.p) is the graph of φ̂, so unramified at
(p, p) over each projection.

A neighborhood gives U étale over each projection.
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Uniqueness of blowup sequences

We say that blowup sequences B,B′ are equivalent if at every
point there is an étale equivalence ψ,ψ′ : U → X of (X , I,E ) such
that ψ∗B = ψ′∗B′.

Theorem

If blowup sequences B,B′ of order m = maxord(I) for (X , I,E )
are equivalent then they are identical.

By taking finitely many étale neighborhoods we get a covering with
equivalence ψ,ψ′ : U → X . We claim inductively that

(1) (Xi , Ii ) = (X ′i , I ′i )
(2) ψ,ψ′ lift to ψi , ψ

′
i : Ui → Xi with

ψ∗i − ψ′i
∗ ∈ (ΠU

i )−1∗ (MC (I), 1)

(3) Zi−1 = Z ′i−1
The base i = 0 follows by assumption. Assume things hold for i , so
Zi ⊂ V ((ΠU

i )−1∗ (MC (I), 1)), so Zi = ψi (Z
U
i ) = ψ′i (Z

U
i ) = Z ′i

giving (3)i+1. This implies also (1)i+1.
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Lifting the equivalence

The universal property gives ψi+1, ψ
′
i+1 : Ui+1 → Xi+1.

We claim it is of form 1 + (ΠU
i+1)−1∗ (MC (I), 1).

Choose coordinates so that Zi = V (x1, . . . , xk).

We have ψ′i
∗(xj) = ψ∗i (xj)− bij ,

bij ∈ (ΠU
i )−1∗ (MC (I), 1), in particular vanish on ZU

i .

A generic blowup chart:
y1 = x1/xk , . . . , yk−1 = xk−1/xk , yk = xk , . . . , yn = xn.

(πUi )−1∗ bij = ψ∗i+1(xr )bi+1 j , bi+1 j ∈ (ΠU
i+1)−1∗ (MC (I), 1).

Compute:
ψ′i+1

∗(yj) = (ψ∗i+1(yj)− bi+1 j)/(1− bi+1 r ) = ψ∗i+1(yj) + ε

with ε ∈ (ΠU
i+1)−1∗ (MC (I), 1), as needed.
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Order reduction for marked ideals

In other lectures we have seen the inductive proof of functorial
order reduction for ideals in dimension ≤ n, compatible with
re-embeddings, assuming functorial order reduction of marked
ideals in dimension < n
We will show:

Theorem (3.107)

Assume given an order reduction functor BOm of ideals in
dimension ≤ n. Then there is an order reduction functor BMO for
marked ideals in dimension n, in such a way that if I of maximal
order m then BMO(X , I,m∅) = BOm(X , I, ∅).

We will also show its implication: the re-embedding principle:

Corollary

If Y ⊂ X , assume I = J ′ + IY with J = J ′OY not zero on any
component of Y . Then BMO(X , I, 1, ∅) is the sequence induced
by BMO(Y ,J , 1, ∅).
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Proof of the re-embedding principle

The problem is local on X so we may assume Y a complete
intersection of codimension r .

Induction on r says we may assume Y = V (f ) a hypersurface.

f ∈ I so maxord(I) = 1,

so BMO(X , I, 1, ∅) = BO1(X , I, ∅).

The latter was constructed to be compatible with
re-embeddings, so it is induced by BMO(Y ,J , 1, ∅).

Abramovich Introduction to resolution of singularities 12 / 19



Definition-Lemma 3.110

My rule

if you write “Definition-Lemma” you have not thought
appropriately about what you want to define and what lemma you
want to prove. Don’t do it.

Let E be an snc divisor on a regular variety X , and I ⊂ ØX an
ideal sheaf.

Definition

I is said to be monomial if I =
∏
IajEj

where Ej ⊂ E smooth

divisors in X . I is nowhere monomial if it is not monomial on any
neighborhood of x ∈ E .

We note that if I is monomial (respectively, nowhere monomial)
and Y → X smooth then IOY is also monomial (respectively,
nowhere monomial).
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Decomposition of an ideal

Lemma

For any I there is a unique expression I =M(I)N (I), where
M(I) is monomial and N (I) is nowhere monomial. If Y → X
smooth then M(IOY ) =M(I)OY and N (IOY ) = N (I)OY

Definition

M(I) is the monomial part and N (I) is the nonmonomial part.

I leave the proof for you as an exercise.
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Proof of theorem: m-order reduction for N (I)

If k = maxord(N (I)) ≥ m consider BMk(X ,N (I), E),
reducing the order under k .

Continuing inductively we obtain a sequence Π1 of blowings
up of order ≥ m for N (I), so in particular of order ≥ m for I.

N ((Π1)−1∗ (I,m)) = (Π1)−1∗ N (I).

So enough to consider the case maxord(N (I)) < m.
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Separating V (I,m) from V (N (I))

Write s = maxordN (I).
The following is left as an exercise:

Lemma

ordZ J1 ≥ s and ordZ J2 ≥ m ⇐⇒ ordZ (Jm
1 + Jm

2 ) ≥ ms

Also:

Lemma

A smooth blowup sequence of order ms for N (I)m + Is is
simultaneously a smooth blowup sequence of order s for N (I) and
a smooth blowup sequence of order m for I. It results in
V (Ir ,m) ∩ V (N (Ir ), s) = ∅.

Continuing by induction, we may assume
V (Ir ,m) ∩ V (N (Ir )) = ∅.
In other words, we may assume V (Ir ,m) = V (M(Ir ),m).
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Order reduction for M(I): reducing coefficients below m

Recall E =
∑

E j with E j smooth. Write M =
∏
Iaij
E j
i

.

Might as well expand the ordering lexicographically and
rewrite E =

∑
E j
i as E =

∑
E j with new indices,

so that we have M =
∏
Iaj
E j .

If there is any aj > m we can blow up Ej . The coefficient in
the controlled transform π−1∗ M of Ej is reduced by m.
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Order reduction for M(I) : combinatorialinduction

Descending induction on the minimum cardinality r of a set I
of E j with ∩IE j 6= ∅ and

∑
I aj ≥ m:

Base: if
∑

aj < m we are done.

Given r induct on the value of such
∑

I aj and number of such
sets I achieving it.

Blowing up ∩IE j we have a new exceptional with coefficient∑
I aj −m in the controlled transform.

For any new k-tuple intersection we have weight
2
∑

I aj −m − ai <
∑

I aj , so induction applies.
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Compatibility

Assume m = maxord(I) and E = ∅.
Then N (I) = I.

In the first stem we apply BOm(X , I, ∅).

All blowings up have order m, so (Π1)−1∗ I = (Π1)−1∗ (I,m),
with trivial monomial part.

So BMO(X , I,m, ∅) = BOm(X , I, ∅).
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