MA 205/206 notes: Derived functors and cohomology Following Hartshorne

Dan Abramovich

Brown University

February 2, 2019

Definition

An abelian category is a category \mathfrak{A} with each Hom(A, B) provided the structure of an abelian group, such that

- Compositions laws Hom(B, C) × Hom(A, B) → Hom(A, C) are bilinear (pre-additive category)
- Finite^a products and coproducts exist and coincide (additive category), in particular an initial and final object 0 exists.
- Every morphism has a kernel and cokernel (pre-abelian).
- Every monomorphism is the kernel of its cokernel.
- Every epimorphism is the cokernel of its kernel.
- Every morphism factors into an epimorphism followed by a monomorphism (image and coimage in some order).

< ロ > < 同 > < 回 > < 回 >

^a0 and 2 enough

Kernels, cokernels, monomorphisms, epimorphisms

- In an additive category, a kernel of f : X → Y is a fibered product X ×_Y 0.
- In an additive category, a cokernel of f : X → Y is a fibered coproduct Y ⊕^X 0.
- In any category, $f: X \to Y$ is a monomorphism if $g \mapsto f \circ g$ is injective.
- In any category, $f: X \to Y$ is an epimorphism if $g \mapsto g \circ f$ is injective.

- The prototypical example is $\mathfrak{A}b$.
- The typical example is $\mathfrak{M}od(A)$.
- We will use $\mathfrak{Ab}(X)$, $\mathfrak{Mod}(\mathcal{O}_X)$, $\mathfrak{Q}coh(\mathcal{O}_X)$,
- and, if X noetherian, $\mathfrak{Coh}(\mathcal{O}_X)$.

There is an embedding theorem saying any abelian \mathcal{F} is a full subcategory of $\mathfrak{A}b$.

Complexes

- A complex A[●] in an abelian category 𝔅 is a sequence with maps dⁱ : Aⁱ → Aⁱ⁺¹ such that dⁱ⁺¹ ∘ dⁱ = 0.
- Complexes in \mathfrak{A} form an abelian category by requiring arrows to commute with d and doing things componentwise.

•
$$h^i(A^{\bullet}) = \operatorname{Ker}(d^i) / \operatorname{Im}(d^{i-1})$$
. It is a functor $\mathfrak{Comp}(\mathfrak{A}) \to \mathfrak{A}$.

• If
$$0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$$
 exact, there is $\delta^{i} : h^{i}(C^{\bullet}) \to h^{i+1}(A^{\bullet})$ with a long exact sequence.

- A homotopy between $f, g : A^{\bullet} \to B^{\bullet}$ is a collection $k^{i} : A^{i} \to B^{i-1}$ with f g = dk + kd.
- If there is a homotopy we say f and g are homotopic, $f \sim g$.
- if $f \sim g$ then $h^i(f) = h^i(g)$.

伺 ト イ ヨ ト イ ヨ ト

Additive, left exact functors

- A covariant F : 𝔅 → 𝔅 is additive if Hom(A, A') → Hom(FA, FA') is a homomorphism.
- Such F is left exact if $0 \to A' \to A \to A'' \to 0$ exact implies $0 \to FA' \to FA \to FA''$ exact.
- For contravariant, require $0 \rightarrow FA'' \rightarrow FA \rightarrow FA'$ exact.

Prototypical example: for fixed A the covariant functor $Hom(A, \bullet) : \mathfrak{A} \to \mathfrak{A}b$

 $A' \mapsto Hom(A, A')$

and the contravariant functor $Hom(\bullet, A) : \mathfrak{A} \to \mathfrak{A}b$

 $A'' \mapsto Hom(A'', A)$

are left exact, by the abelian category axioms.

A B > A B >

Injectives, resolutions, derived functors

- $I \in Ob(\mathfrak{A})$ is injective if $Hom(\bullet, I)$ is exact.
- An injective resolution of A is an exact sequence

$$0 \to A \to I^0 \to I^1 \to \cdots$$

with I^{j} injective.

• \mathfrak{A} has enough injectives if every A is a subobject of an injective, so (inductively) has an injective resolution.

Fix an abelian category \mathfrak{A} with enough injectives, and for each object A fix an injective resolution I_A^{\bullet} .

Definition

For an additive covariant left exact $F : \mathfrak{A} \to \mathfrak{B}$ define the right derived functors

$$R^iF(A) = h^i(F(I_A^{\bullet}))$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic Properties of $R^i F$

Theorem

- $R^iF: \mathfrak{A} \to \mathfrak{B}$ is additive.
- Independence: Changing I^{*}_A results in a naturally isomorphic functor.
- $R^0 F \simeq F$
- For exact $E_A : 0 \to A' \to A \to A'' \to 0$ there is $\delta^i : R^i F(A'') \to R^{i+1} F(A')$ with long exact sequence

$$R^{i}F(A') \rightarrow R^{i}F(A) \rightarrow R^{i}F(A'') \xrightarrow{\delta^{i}} R^{i+1}F(A') \cdots$$

- This is compatible with morphisms of exact sequences $E_A \rightarrow E_B$.
- If I injective and I > 0 then $R^i F(I) = 0$.

We say J is F-acyclic if $R^i F(J) = 0$ for all i > 0. An F-acyclic resolution J^{\bullet} of A is what you think.

Proposition

If $A \to J^{\bullet}$ is an *F*-acyclic resolution then $R^i F(A) \simeq h^i(F(J^{\bullet}))$.

Try it at home!

- One might think that the injective resolution definition is artificial. Read in Hartshorne (or Grothendieck) about δ -functors, universal δ -functors, effaceable δ -functors.
- It is shown that that an effaceable δ -functors is universal, and there can be at most one universal δ -functor up to isomorphism.
- Then it is shown that if there are enough injectives, the derived functor is effaceable so it is (the unique) universal δ -functor.

同 ト イ ヨ ト イ ヨ ト

Enough injectives in $\mathfrak{A}b$ and $\mathfrak{M}od(A)$

- It is not too hard to see that an abelian group is injective if and only if it is divisible.
- Also one can embed any abelian group in a divisible group, so there are enough injectives in 𝔄b.
- If M is an A-module and M → I_Z be an embedding into a divisible group, then the natural embedding M → Hom_Z(A, I_Z) provide an embedding into an injective A-module.
- You can find all this explained in a few pages e.g. in http://www.math.leidenuniv.nl/~edix/tag_2009/ michiel_2.pdf.

伺 ト く ヨ ト く ヨ ト

Proposition (Proposition III.2.2)

If (X, \mathcal{O}_X) a ringed space^a then $\mathfrak{Mod}(\mathcal{O}_X)$ has enough injectives.

anot necessarily Irs

Embedding:

- Embed the stalks $\mathcal{F}_x \hookrightarrow I_x$ in injective $\mathcal{O}_{X,x}$ -modules.
- Define $\mathcal{J} = \prod_{x} j_{x*}(I_x)$.

• We have an embedding $\mathcal{F} \hookrightarrow \prod_x j_{x*}(\mathcal{F}_x) \hookrightarrow \prod_x j_{x*}(I_x) = \mathcal{J}$. Injectivity:

• We have

 $Hom_{\mathcal{O}_{X}}(\mathcal{G},\mathcal{J}) = \prod Hom_{\mathcal{O}_{X}}(\mathcal{G},j_{x*}(I_{x})) = \prod Hom_{\mathcal{O}_{X,x}}(\mathcal{G}_{x},I_{x}).$

• $\mathcal{G} \mapsto \mathcal{G}_x$ and $\mathcal{G}_x \mapsto Hom_{\mathcal{O}_{X,x}}(\mathcal{G}_x, I_x)$ are exact,

• so $\mathcal{G} \mapsto Hom_{\mathcal{O}_X}(\mathcal{G}, \mathcal{J})$ is exact, so \mathcal{J} injective.

イロト イポト イヨト イヨト 二日

Since (X, \mathbb{Z}_X) is a ringed space, $\mathfrak{A}b(X)$ has enough injectives.

Definition The sheaf cohomology $H^i(X, \mathcal{F}) = R^i \Gamma(X, \mathcal{F})$, the right derived functor of $\mathcal{F} \mapsto \Gamma(X, \mathcal{F}) = \mathcal{F}(X)$, as a functor $\mathfrak{Ab}(X) \to \mathfrak{Ab}$.

This is clean, but also disturbing, since it ignores any possible structure on X.

伺 ト イ ヨ ト イ ヨ ト

Flasque sheaves and cohomology

We say \mathcal{F} is flasque¹ if for any opens $V \subset U$ the restriction $\mathcal{F}(U \to \mathcal{F}(V)$ is surjective.

Proposition

A flasque sheaf \mathcal{F} of abelian groups is Γ -acyclic, i.e. $H^i(X, \mathcal{F}) = 0$ for all i > 0.

Proposition

An injective \mathcal{O}_X -module is flasque.

Corollary

The derived functors of $\Gamma(A, \bullet)$: $\mathfrak{Mod}(\mathcal{O}_X) \to \mathfrak{Ab}$ are $H^i(X, \bullet)$.

Corollary

if
$$Y \stackrel{\prime}{\hookrightarrow} X$$
 closed and $\mathcal F$ on Y , then $H^k(Y,\mathcal F) = H^k(X,i_*\mathcal F)$.

¹flabby

・ロト ・同ト ・ヨト ・ヨト

-

This uses the extension by 0 functor $j_!$ (II.1.19):

• For an open $U \xrightarrow{j_U} X$ consider the \mathcal{O}_X -module $\mathcal{O}_U := j_{U!}(\mathcal{O}_X|_U).$

•
$$Hom(\mathcal{O}_U, \mathcal{F}) = \mathcal{F}(U).$$

- For $V \subset U$ get inclusion $\mathcal{O}_V \to \mathcal{O}_U$.
- Take *J* injective, and so Hom(*O*_U, *J*) → Hom(*O*_V, *J*) surjective.

• So
$$\mathcal{J}(U) o \mathcal{J}(V)$$
 surjective.

This follows from general properties of flasque sheaves (exercise II.1.16), and requires an induction on *i* for all flasque seheaves:

• Let $\mathcal{F} \to I$ be an embedding in an injective sheaf in $\mathfrak{A}b(X)$, with s.e.s

$$0 \to \mathcal{F} \to I \to \mathcal{G} \to 0.$$

• Since \mathcal{F} and I flasque it follows that \mathcal{G} flasque.

Abramovich

- It also implies $0 o \mathcal{F}(X) o I(X) o \mathcal{G}(X) o 0$ exact.²
- Since $H^i(X, I) = 0$ for i > 0, the l.e.s gives $H^1(X, \mathcal{F}) = 0$ and $H^i(X, \mathcal{G}) = H^{i+1}(X, \mathcal{F})$ for i > 0.
- Induction gives the result.

²we did something similar

The derived functors of $\Gamma(A, \bullet)$: $\mathfrak{M}od(\mathcal{O}_X) \to \mathfrak{A}b$ coincide with $H^i(X, \bullet)$.

- We compute the derived functor by taking an \mathcal{O}_X -injective resolution $\mathcal{F} \to l^{\bullet}$.
- This is a flasque resolution, which is acyclic, hence computes cohomology.

if
$$Y \stackrel{i}{\hookrightarrow} X$$
 closed then $H^k(Y, \mathcal{F}) = H^k(X, i_*\mathcal{F})$.

If I^{\bullet} is an injective, hence flasque, resolution of \mathcal{F} then i_*I^{\bullet} is a flasque resolution of $i_*\mathcal{F}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Grothendieck's dimension theorem

Theorem

Let X be a noetherian topological space of dimension n. Then for i > n and for all sheaf \mathcal{F} on X we have $H^i(X, \mathcal{F}) = 0$.

This is an involved but elegant sequence of reduction steps, with some general input about colimits.

- One uses *i*_{*} and *j*_! and l.e.s to reduce to the case of irreducibles.
- One uses induction on dimension, the case of dimension 0 being trivial.
- One reduces using colimits to sheaves generated by finitely many sections.
- One uses the l.e.s to reduce to $j_!\mathbb{Z}_U$ and subsheaves of such.
- One uses the l.e.s to reduce to $j_!\mathbb{Z}_U$.
- One uses the l.e.s for $j_!\mathbb{Z}_U \subset \mathbb{Z}_X$ and flasqueness of \mathbb{Z}_X to conclude.

Cohomology of Quasicohrent sheaves on affine noetherian schemes

Proposition

Let A be a noetherian ring, I an injective A-module. Let \tilde{I} be the associated sheaf on Spec A. Then \tilde{I} is flasque.

The proof is non trivial and goes by way of showing that the sheaves of sections with support along an ideal \mathfrak{a} is also injective.

Theorem

Let A be a noetherian ring, X = Spec A, and \mathcal{F} quasicoherent. Then for all i > 0 we have $H^i(X, \mathcal{F}) = 0$.

Set $M = \Gamma(X, \mathcal{F})$, and let $0 \to M \to I^{\bullet}$ injective resolution. We have learned that $0 \to \mathcal{F} \to \tilde{I}^{\bullet}$ exact, flasque resolution! and taking sections $0 \to M \to \Gamma(X, \tilde{I}^{\bullet})$ also exact. So $H^{i}(X, \mathcal{F}) = h^{i}(\Gamma(X, \tilde{I}^{\bullet})) = 0$

Corollary

X noetherian, \mathcal{F} quasicoherent, then there is and embedding $\mathcal{F} \hookrightarrow \mathcal{G}$ with \mathcal{G} quasicoherent and flasque

Let $X = \bigcup_{\text{finite}} U_i$ with $U_i = \text{Spec } A_i \xrightarrow{j_i} X$, write $\mathcal{F}(U_i) = M_i$ and choose $M_i \subset I_i$, with I_i injective A_i modules. Then $\mathcal{F} \hookrightarrow \oplus j_{i*} \widetilde{I_i}$ injective, and $\widetilde{I_i}$ flasque hence $\oplus j_{i*} \widetilde{I_i}$ flasque.

Theorem

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
- (ii) $H^p(X, \mathcal{F})$ for every quasicoherent \mathcal{F} and p > 0.
- (iii) $H^1(X, \mathcal{F})$ for every quasicoherent \mathcal{F} .

(iv) $H^1(X, \mathcal{I})$ for every quasicoherent ideal \mathcal{I} .

- Let $A = \mathcal{O}(X)$. Need $\phi : X \to \operatorname{Spec} A$ an isomorphism.
- For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
- If X_f affine then $\phi_{X_f}: X_f \to D(f)$ an isomorphism,
- so it suffices to show (1) each $x \in X$ lies in an affine X_f , and (2) ϕ surjective.

伺 ト く ヨ ト く ヨ ト

Serre's criterion, (1) each $x \in X$ lies in an affine X_f

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the long exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

伺 ト イ ヨ ト イ ヨ ト

Serre's criterion, (2) ϕ surjective.

- Take finitely many f_i so that $X = \bigcup X_{f_i}$.
- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Enough to show $H^1(X, \text{Ker}\psi) = 0$, since then we have $A^n \to A$ surjective, as needed.
- Write $\mathcal{K}_i = \text{Ker}\psi \cap \mathcal{O}_X^i$ and $\mathcal{Q}_i = \mathcal{K}_i/\mathcal{K}_{i-1}$.
- Note: $Q_i \subset \mathcal{O}_X$ a sheaf of ideals.
- So $H^1(X, Q_i) = 0$, and by l.e.s and induction $H^1(X, \text{Ker}\psi) = 0$, as needed

伺い イラト イラト

Čech cohomology of sheaves

- Given a covering $\mathfrak{U} := \{U_i\}$ of X one defines a complex $0 \to \mathcal{F}(X) \to C^0(\mathfrak{U}, \mathcal{F}) \stackrel{d_0}{\to} C^1(\mathfrak{U}, \mathcal{F}) \stackrel{d_1}{\to} \cdots$,
- where $C^{p}(\mathfrak{U}, \mathcal{F}) := \prod_{i_0 < \ldots < i_p} \mathcal{F}(U_{i_0, \ldots, i_p}).$
- For $f \in C^p(\mathfrak{U}, \mathcal{F})$ one defines

$$df = \sum_{0}^{p+1} (-1)^k f_{i_0, \dots, \hat{i_k}, \dots, i_{p+1}} | u_{i_0, \dots, i_{p+1}} |$$

Exercise: d² = 0.
Define H
^p(𝔅, 𝔅) = hⁱ(C•(𝔅, 𝔅)).

Proposition

 $\check{H}^{0}(\mathfrak{U},\mathcal{F})=\mathcal{F}(X).$

Indeed for a collecton of sections $s_i \in \mathcal{F}(U_i)$ do have $d_0((s_i)) = 0$ we need precisely $s_i|_{U_{ij}} - s_j|_{U_{ij}} = 0$, and the sheaf axiom gives $s \in \mathcal{F}(X)$.

Observation

If \mathfrak{U} contains *n* opens then $\check{H}^{p}(\mathfrak{U}, \mathcal{F}) = 0$ for all $p \geq n$.

Instead of $C(\mathfrak{U}, \mathcal{F})$ one can work with alternating chains $C'(\mathfrak{U}, \mathcal{F})$. We have $\check{H}(\mathfrak{U}, \mathcal{F}) = h^i(C'(\mathfrak{U}, \mathcal{F}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$\mathcal{O}_{\mathbb{P}^1_A}, \Omega_{\mathbb{P}^1_A}$

Example: Consider X = P¹_A with the open sets U_i = D₊(T_i).
The Čech complex C(𝔄, O_X) is

$$0
ightarrow A[t] \oplus A[t^{-1}] \xrightarrow{d_0} A[t, t^{-1}]
ightarrow 0 \cdots$$

•
$$\check{H}(\mathfrak{U}, \mathcal{O}_X) = \operatorname{Ker}(d_0) = A$$
,

•
$$\check{\mathsf{H}}^{1}(\mathfrak{U},\mathcal{O}_{X})=\operatorname{Coker}(d_{0})=0,$$

- and the rest is 0.
- The Čech complex $C(\mathfrak{U}, \Omega_X)$ is

$$0 o {\mathcal A}[t] dt \oplus {\mathcal A}[s] ds \stackrel{d_0}{ o} {\mathcal A}[t,t^{-1}] dt o 0 \cdots$$

- Here ds maps to $-dt/t^2$.
- $\check{H}(\mathfrak{U},\Omega_X) = \operatorname{Ker}(d_0) = 0$,
- $\check{H}^1(\mathfrak{U},\Omega_X) = \operatorname{Coker}(d_0) = A \, dt/t$,
- (and the rest is 0).

Čech complex of sheaves

Theorem

If X noetherian separated, \mathfrak{U} affine covering, \mathcal{F} quasicoherent, there is a functorial isom $\check{H}^{p}(\mathfrak{U},\mathcal{F}) \xrightarrow{\sim} H^{p}(X,\mathcal{F})$.

- Set $\mathfrak{C}^p(\mathfrak{U}, \mathcal{F}) = \prod_{i_0 < \cdots < j_p} (j_{i_0, \dots, i_p})_* (j_{i_0, \dots, i_p})^* \mathcal{F}.$
- Set $d : \mathfrak{C}^p(\mathfrak{U}, \mathcal{F}) \to \mathfrak{C}^{p+1}(\mathfrak{U}, \mathcal{F})$ as before.
- Note: $\Gamma(X, \mathfrak{C}^p(\mathfrak{U}, \mathcal{F})) = C^p(\mathfrak{U}, \mathcal{F}).$

Lemma

For any \mathcal{F} we have a resolution $0 \to \mathcal{F} \to \mathfrak{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$.

Proposition

If
$$\mathcal{F}$$
 is flasque then $\check{H}^{p}(\mathfrak{U},\mathcal{F}) = 0$ for all $p > 0$.

Lemma

There are functorial maps $\check{H}^{p}(\mathfrak{U},\mathcal{F}) \rightarrow H^{p}(X,\mathcal{F})$.

Lemma: we have a resolution $0 \to \mathcal{F} \to \mathfrak{C}^{\bullet}(\mathfrak{U}, \mathcal{F})$

- Check on stalks, say at $x \in U_j$.
- Construct homotopy $k : \mathfrak{C}^p(\mathfrak{U}, \mathcal{F})_x \to \mathfrak{C}^{p-1}(\mathfrak{U}, \mathcal{F})_x$.
- A section α_x ∈ 𝔅^p(𝔅, 𝓕)_x lifts to α ∈ 𝔅^p(𝔅, 𝓕)(𝒱) for some neighborhood x ∈ 𝒱 ⊂ 𝒴_j.
- Viewing α as an alternating cochain define

$$k(\alpha)_{i_0,\ldots,i_{p-1}} = \alpha_{j,i_0,\ldots,i_{p-1}}.$$

- This is well defined on V, hence at x, since $V \subset U_j$.
- Check $(dk + kd)(\alpha) = \alpha$, so $id \sim 0$ and $h^{p}(\mathfrak{C}^{\bullet}_{x}) = 0$.

伺い イラト イラト

Proposition: If \mathcal{F} flasque then $\check{H}^{p}(\mathfrak{U}, \mathcal{F}) = 0$ for p > 0.

- Products and direct images of flasque sheaves are flasque.
- The sheaves $\mathfrak{C}^p(\mathfrak{U},\mathcal{F})$ are thus flasque.
- We have a flasque resolution $0 o \mathcal{F} o \mathfrak{C}^{ullet}(\mathfrak{U},\mathcal{F})$,
- hence $H^p(X, \mathcal{F}) = h^p(\Gamma(\mathfrak{C}^{\bullet}(\mathfrak{U}, \mathcal{F}))) = h^p(C^{\bullet}(\mathfrak{U}, \mathcal{F})) = \check{H}^p(\mathfrak{U}, \mathcal{F}).$
- But since ${\mathcal F}$ is itself flasque we have

$$\check{H}^{p}(\mathfrak{U},\mathcal{F})=H^{p}(X,\mathcal{F})=0$$

for p > 0.

Lemma: There are functorial maps $\check{H}^{p}(\mathfrak{U},\mathcal{F}) \to H^{p}(X,\mathcal{F})$.

- Take an injective resolution $0 \to \mathcal{F} \to \mathcal{J}^{\bullet}$.
- Since $\mathcal{F} \to \mathfrak{C}^0(\mathcal{F})$ injective there is an extension $\mathfrak{C}^0(\mathcal{F}) \to \mathcal{J}^0$.
- The composite $\mathfrak{C}^0(\mathcal{F}) \to \mathcal{J}^1$ factors through $\mathfrak{C}^0(\mathcal{F})/\mathcal{F}$.
- Since $\mathfrak{C}^0(\mathcal{F})/\mathcal{F} \to \mathfrak{C}^1(\mathcal{F})$ injective, there is an extension $\mathfrak{C}^1(\mathcal{F}) \to \mathcal{J}^1$
- Induction provides an arrow $\mathfrak{C}^{\bullet}(\mathfrak{U},\mathcal{F}) \to \mathcal{J}^{\bullet}$.
- Then apply $h^p(\Gamma(X, \bullet))$.
- Functoriality is trickier

X noetherian separated, \mathfrak{U} affine , \mathcal{F} quasicoherent $\Rightarrow \check{H}^{p}(\mathfrak{U}, \mathcal{F}) \tilde{\rightarrow} H^{p}(X, \mathcal{F}).$

- Induction on p for all \mathcal{F} etc.
- Take $0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{Q} \rightarrow 0$ s.e.s with \mathcal{G} quasicoherent flasque (so \mathcal{Q} quasicoherent).
- X separated $\Rightarrow U_{i_0,...,i_p}$ affine.

•
$$\Rightarrow 0 \rightarrow \mathcal{F}(U_{i_0,...,i_p}) \rightarrow \mathcal{G}(U_{i_0,...,i_p}) \rightarrow \mathcal{Q}(U_{i_0,...,i_p}) \rightarrow 0$$
 exact.

- $\Rightarrow 0 \rightarrow C^{\bullet}(\mathfrak{U}, \mathcal{F}) \rightarrow C^{\bullet}(\mathfrak{U}, \mathcal{G}) \rightarrow C^{\bullet}(\mathfrak{U}, \mathcal{Q}) \rightarrow 0$ exact.
- Since \mathcal{G} flasque $\check{H}^{p}(\mathfrak{U},\mathcal{G}) = H^{p}(X,\mathcal{G}) = 0$ for p > 0.
- The long exact sequences and functoriality give

$$\begin{array}{cccc} 0 \rightarrow \check{H}^{0}(\mathfrak{U},\mathcal{F}) \rightarrow \check{H}^{0}(\mathfrak{U},\mathcal{G}) \rightarrow \check{H}^{0}(\mathfrak{U},\mathcal{Q}) \rightarrow \check{H}^{1}(\mathfrak{U},\mathcal{F}) \rightarrow 0 & \text{and} & \check{H}^{p}(\mathfrak{U},\mathcal{Q}) = \check{H}^{p+1}(\mathfrak{U},\mathcal{F}) \\ \psi & \psi & \psi & \psi \\ 0 \rightarrow H^{0}(X,\mathcal{F}) \rightarrow H^{0}(X,\mathcal{G}) \rightarrow H^{0}(X,\mathcal{Q}) \rightarrow H^{1}(X,\mathcal{F}) \rightarrow 0 & H^{p}(X,\mathcal{Q}) = H^{p+1}(X,\mathcal{F}) \end{array}$$

Induction gives the required isomorphisms.