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Abelian categories

An abelian category is a category 2 with each Hom(A, B) provided
the structure of an abelian group, such that

e Compositions laws Hom(B, C) x Hom(A, B) — Hom(A, C)
are bilinear (pre-additive category)

@ Finite? products and coproducts exist and coincide (additive
category), in particular an initial and final object 0 exists.

Every morphism has a kernel and cokernel (pre-abelian).
Every monomorphism is the kernel of its cokernel.

Every epimorphism is the cokernel of its kernel.

Every morphism factors into an epimorphism followed by a
monomorphism (image and coimage in some order).

?0 and 2 enough
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Kernels, cokernels, monomorphisms, epimorphisms

@ In an additive category, a kernel of f : X — Y is a fibered
product X xy 0.

@ In an additive category, a cokernel of f : X — Y is a fibered
coproduct Y &X 0.

@ In any category, f : X — Y is a monomorphism if g+ fog
is injective.

@ In any category, f : X — Y is an epimorphism if g — gof is
injective.
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Examples of abelian categories

@ The prototypical example is 2b.
@ The typical example is Mtod(A).
e We will use 2Ab(X), Mod(Ox), Qcoh(Ox),
e and, if X noetherian, €oh(Ox).

There is an embedding theorem saying any abelian F is a full
subcategory of 2b.
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Complexes

A complex A® in an abelian category 2l is a sequence with
maps d' : A" — A1 such that d"tlod' = 0.
@ Complexes in 2 form an abelian category by requiring arrows
to commute with d and doing things componentwise.
o hi(A®) = Ker(d")/Im(d’"=1). It is a functor Comp(2A) — 2.
o If 0 > A®* — B®* — C® — 0 exact, there is
6" h'(C®) — hT1(A®) with a long exact sequence.
@ A homotopy between f, g : A* — B® is a collection
ki - AT — Bl with f — g = dk + kd.
@ If there is a homotopy we say f and g are homotopic, f ~ g.
o if f ~ g then h'(f) = hi(g).

Abramovich MA 205/206 notes: Derived functors and cohomology 5 /31



Additive, left exact functors

@ A covariant F : 2 — B is additive if
Hom(A, A") — Hom(FA, FA") is a homomorphism.

@ Such F is left exact if 0 - A’ -+ A — A” — 0 exact implies
0 — FA" — FA — FA” exact.

e For contravariant, require 0 — FA” — FA — FA’ exact.

Prototypical example: for fixed A the covariant functor
Hom(A,e) : A — Ab

A’ — Hom(A, A')

and the contravariant functor Hom(e, A) : A — b
A" — Hom(A", A)

are left exact, by the abelian category axioms.
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Injectives, resolutions, derived functors

e / € Ob() is injective if Hom(e, ) is exact.

@ An injective resolution of A is an exact sequence
0-A= 1=t — ...

with IV injective.
@ 2 has enough injectives if every A is a subobject of an
injective, so (inductively) has an injective resolution.

Fix an abelian category 2l with enough injectives, and for each
object A fix an injective resolution /3.

Definition
For an additive covariant left exact F : 2l — 5 define the right
derived functors

RIF(A) = h'(F(I3)).
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Basic Properties of R'F

e R'F: 9 — B is additive.

@ Independence: Changing |, results in a naturally isomorphic
functor.

o ROF~F
@ Forexact E4:0— A" - A— A" — 0 there is
8" R'F(A") — RIFLF(A’) with long exact sequence

RIF(A') — RIF(A) — RIF(A") % RIFIF(A) ..

@ This is compatible with morphisms of exact sequences
EA — EB-

o If | injective and | > 0 then R'F(l) = 0.
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Acyclic objects and resolutions

We say J is F-acyclic if R'F(J) =0 for all i > 0. An F-acyclic
resolution J® of A is what you think.

Proposition

If A— J® is an F-acyclic resolution then R'F(A) ~ hi(F(J®)).

Try it at home!
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@ It is shown that that an effaceable d-functors is universal, and
there can be at most one universal §-functor up to
isomorphism.

@ Then it is shown that if there are enough injectives, the
derived functor is effaceable so it is (the unique) universal
d-functor.
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Enough injectives in 2(b and Mtod(A)

@ It is not too hard to see that an abelian group is injective if
and only if it is divisible.

@ Also one can embed any abelian group in a divisible group, so
there are enough injectives in 2b.

e If M is an A-module and M — I; be an embedding into a
divisible group, then the natural embedding M — Homgz(A, Iz)
provide an embedding into an injective A-module.
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Enough injectives in Mod(Ox)

Proposition (Proposition 111.2.2)
If (X,0Ox) a ringed space® then Mod(Ox) has enough injectives.

“not necessarily Irs

Embedding:

@ Embed the stalks F — I in injective Ox c-modules.

o Define J =[], jixx(Ix)-

@ We have an embedding F < [], jx«(Fx) = [[ Jxx (k) = T
Injectivity:

e We have

HOITI(/)X (g7 j) = H HOITI(QX(g,jX*(IX)) = H HOH’?@X,X(QX, IX)'
e G— G, and G, — Homox’x(gx, ly) are exact,
@ so G — Homp, (G, J) is exact, so J injective.
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Sheaf cohomology

Since (X, Zx) is a ringed space, 2(b(X) has enough injectives.

The sheaf cohomology H(X, F) = R'T(X,F), the right derived
functor of

F e (X, F)=FX)

as a functor
Ab(X) — Ab.

This is clean, but also disturbing, since it ignores any possible
structure on X.
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Flasque sheaves and cohomology

We say F is flasque! if for any opens V C U the restriction
F(U — F(V) is surjective.

Proposition

A flasque sheaf F of abelian groups is [-acyclic, i.e. H'(X,F) =0
for all i > 0.

Proposition

An injective Ox-module is flasque.

The derived functors of T (A, e) : Mod(Ox) — Ab are H'(X, o).

if Y < X closed and F on Y, then H*(Y, F) = HX(X, i, F).

Hlabby
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An injective Ox-module is flasque

This uses the extension by 0 functor

@ For an open U 2% X consider the Ox-module
Ou = ju(Ox|u)-

e Hom(Oy,F) = F(U).

@ For V C U get inclusion Oy — Oy.

e Take J injective, and so Hom(Oy, J) — Hom(Oy, J)
surjective.

e So J(U) — J(V) surjective.
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If F flasque then H'(X,F) =0 for i >0

This follows from general properties of flasque sheaves
, and requires an induction on i for all flasque seheaves:

o Let 7 — | be an embedding in an injective sheaf in 2Ab(X),
with s.e.s
O—+F—=1—-G—=0.

Since F and [ flasque it follows that G flasque.

It also implies 0 — F(X) — I(X) — G(X) — 0 exact.?

Since H'(X,1) =0 for i > 0, the l.e.s gives H}(X, F) =0 and
Hi(X,G) = H*Y(X, F) for i > 0.

Induction gives the result.

2we did something similar
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The corollaries

The derived functors of (A, e) : Mod(Ox) — Ab coincide with
Hi(X, ). \

@ We compute the derived functor by taking an Ox-injective
resolution F — /°.

@ This is a flasque resolution, which is acyclic, hence computes
cohomology.

if Y <L> X closed then HX(Y, F) = HX(X, i,.F). J

If /* is an injective, hence flasque, resolution of F then i./® is a
flasque resolution of i, F.
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Grothendieck’'s dimension theorem

Let X be a noetherian topological space of dimension n. Then for
i > n and for all sheaf F on X we have H (X, F) = 0.

@ One uses iy and ji and l.e.s to reduce to the case of
irreducibles.

@ One uses induction on dimension, the case of dimension 0
being trivial.

@ One reduces using colimits to sheaves generated by finitely
many sections.

@ One uses the l.e.s to reduce to jiZy and subsheaves of such.

@ One uses the l.e.s to reduce to jiZy.

@ One uses the l.e.s for jiZy C Zx and flasqueness of Zx to
conclude.
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Cohomology of Quasicohrent sheaves on affine noetherian

schemes

Proposition
Let A be a noetherian ring, | an injective A-module. Let I be the
associated sheaf on Spec A. Then | is flasque.

Let A be a noetherian ring, X = Spec A, and F quasicoherent.
Then for all i > 0 we have H'(X,F) = 0.

Set M =T(X,F), and let 0 - M — [* injective resolution.

We have learned that 0 — F — J® exact, flasque resolution!

and taking sections 0 — M — (X, ]*) also exact.

So HI(X,F) = h(I'(X,1*) =0 'Y
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QC Flasque resolutions on noetherian schemes

X noetherian, F quasicoherent, then there is and embedding
F — G with G quasicoherent and flasque

Let X = Ufinite Ui

with U; = Spec A; &R X,

write F(U;) = M; and choose M; C I;, with /; injective A; modules.
Then F — @j,-*ﬁ injective,

and /; flasque hence &j;,/; flasque.
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Serre’'s criterion

Suppose X either notherian or separated and quasicompact. Then
the following are equivalent:

(i) X affine.

(i) HP(X,F) for every quasicoherent F and p > 0.
(ii) HY(X,F) for every quasicoherent F.

(iv) HY(X,Z) for every quasicoherent ideal T.

o Let A= O(X). Need ¢ : X — Spec A an isomorphism.

e For f € A we have Xy = ¢~1D(f) and by an old result
Ox(Xf) = A[f1].

o If X¢ affine then ¢x, : Xy — D(f) an isomorphism,

@ so it suffices to show (1) each x € X lies in an affine X¢, and
(2) ¢ surjective.
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Serre's criterion, (1) each x € X lies in an affine X

@ The closure @ is quasicompact, hence has a closed point;
@ might as well assume x closed.

Let M =1Zj,;. Let U S x be an affine neighborhood. Let
J=Txy.

0->MJ —-J —JT/MJ — 0is exact.

The latter is a skyscraper with fiber k(x) at x.

By assumption H}(X, MJ) =0,

and by the long exact sequence there is f € J such that
f(x) # 0.

e Note that X¢ = Dy(f) is an affine neighborhood of x.#
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Serre's criterion, (2) ¢ surjective.

Take finitely many f; so that X = UXE.

Need to show A = UXg, namely (fi,...,fn) = (1).
Consider ¢ : O% — Ox, where ¢(a1,...,an) = > aif:.
0 — Keryp — O" — O — 0 is an exact sequence of
quasicoherent sheaves.

@ Enough to show H(X,Kery) = 0, since then we have
A" — A surjective, as needed.

Write K; = Kery) N 03'( and Q; = K;/K;_1.
@ Note: Q; C Ox a sheaf of ideals.

e So H}(X,Q;) =0, and by l.e.s and induction
HY(X, Ker)) = 0, as needed o
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Cech cohomology of sheaves

Given a covering i := {U;} of X one defines a complex
0— F(X) = CO(u, F) B cl, 7) & ...,

e where CP(L, F) := Hi0<...<i,, F(Ui,....i»)-
e For f € CP(8, F) one defines
p+1
_ k
df— Z(_l) f—l'07...l:;\(7...,l'p+1 UiO """ ip+l‘
0

Exercise: d? = 0.
Define H” (4, F) = h(C*(L, F)).
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Proposition

HO(4, F) = F(X).

Indeed for a collecton of sections s; € F(U;) do have dy((s;)) =0
we need precisely s,-|UU - Sj|Uij = 0, and the sheaf axiom gives

s € F(X).

Observation

If 4 contains n opens then H” (4, F) = 0 for all p > n.

Instead of C(4, F) one can work with alternating chains C’(4, F).
We have H(4, F) = hi(C'(44, F)).
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Op1, (p1

o Example: Consider X = PL with the open sets U; = D4 (T;).
@ The Cech complex C(4, Ox) is

0 At @Al B ALt -0
o H(U, Ox) = Ker(dy) = A,

o B (U, Ox) = Coker(dp) = 0,
@ and the rest is 0.

@ The Cech complex C(8, Qx) is
0 — At]dt ® A[s]ds B A[t, t ]dt - 0--- .
@ Here ds maps to —dt/t2.
o H(U, Qx) = Ker(dp) =0,
o M (8L, Qx) = Coker(do) = Adt/t,
(and the rest is 0).
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Cech complex of sheaves

If X noetherian separated, { affine covering, F quasicoherent,
there is a functorial isom HP (4, F)=HP(X, F).

o Set Q:P(u’ ]:) == H,’O<...<jp(jio,...,ip)*(ji07~--aip)*‘7:'
o Set d: €P(U, F) — €PTL(LL F) as before.
e Note: I'(X,€P(U, F)) = CP(U, F).

For any F we have a resolution 0 — F — €*(4, F).

Proposition

If F is flasque then HP (81, F) = 0 for all p > 0.

. v p
There are functorial maps H™ (U, F) — HP(X, F).




Lemma: we have a 0— F — (U, F)

Check on stalks, say at x € U;.
Construct homotopy k : €P(8, F), — €P7L(L F),.

A section ay € €P(LL, F)y lifts to v € €P(L, F)(V) for some
neighborhood x € V' C U;.

Viewing « as an alternating cochain define

k(@)ip,..rip1 = Qig,omsip1-

This is well defined on V/, hence at x, since V C U;.
° so id ~ 0 and hP(€3) = 0.
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Proposition: If F then H°(4(, F) = 0 for p > 0.

Products and direct images of flasque sheaves are flasque.
The sheaves €P(LL, F) are thus flasque.

We have a flasque resolution 0 — F — €*(4L, F),

hence

HP(X,F) = hP(T(€*(U, F))) = hP(C*(U, F)) = HP (4, F).

But since F is itself flasque we have

HP(U, F) = HP(X,F) =0

for p > 0.
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Lemma: There are functorial maps H”(4, F) — HP(X, F).

Take an injective resolution 0 — F — J°.

Since F — €°(F) injective there is an extension ¢°(F) — J°.
The composite €(F) — J* factors through €°(F)/F.

Since €°(F)/F — €L(F) injective, there is an extension
el(F) - Tt

Induction provides an arrow €*(4, F) — J°.

Then apply hP(T'(X,)).
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X

= H(, F)SHP(X, F).

@ Induction on p for all F etc.

@ Take 0 - F — G — Q — 0 s.e.s with G quasicoherent
flasque (so Q quasicoherent).

e X separated = Uj, ..., affine.

o = 0— F(Uj,..i,) = G(U,...i,) = QU,....i,) — 0 exact.

e =0— C(UF)— C*(LU,G) = C*(L, Q) — 0 exact.

e Since G flasque H”(4,G) = HP(X,G) = 0 for p > 0.

@ The long exact sequences give

0> RO, F) > FO(, G) = PO, Q) = AMNY, F) >0 and  FP(, Q) = HPT (41, F)

\ ¥ ¥ i ¥ ¥

0 > HYX, F) > H%X,G) > H(X, Q) > HY(X,F) >0 HP(X, Q) = HPTY(X, F)

Induction gives the required isomorphisms. [
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