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Abelian categories

Definition

An abelian category is a category A with each Hom(A,B) provided
the structure of an abelian group, such that

Compositions laws Hom(B,C )× Hom(A,B)→ Hom(A,C )
are bilinear (pre-additive category)

Finitea products and coproducts exist and coincide (additive
category), in particular an initial and final object 0 exists.

Every morphism has a kernel and cokernel (pre-abelian).

Every monomorphism is the kernel of its cokernel.

Every epimorphism is the cokernel of its kernel.

Every morphism factors into an epimorphism followed by a
monomorphism (image and coimage in some order).

a0 and 2 enough
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Kernels, cokernels, monomorphisms, epimorphisms

In an additive category, a kernel of f : X → Y is a fibered
product X ×Y 0.

In an additive category, a cokernel of f : X → Y is a fibered
coproduct Y ⊕X 0.

In any category, f : X → Y is a monomorphism if g 7→ f ◦ g
is injective.

In any category, f : X → Y is an epimorphism if g 7→ g ◦ f is
injective.
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Examples of abelian categories

The prototypical example is Ab.

The typical example is Mod(A).

We will use Ab(X ), Mod(OX ), Qcoh(OX ),

and, if X noetherian, Coh(OX ).

There is an embedding theorem saying any abelian F is a full
subcategory of Ab.
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Complexes

A complex A• in an abelian category A is a sequence with
maps d i : Ai → Ai+1 such that d i+1 ◦ d i = 0.

Complexes in A form an abelian category by requiring arrows
to commute with d and doing things componentwise.

hi (A•) = Ker(d i )/Im(d i−1). It is a functor Comp(A)→ A.

If 0→ A• → B• → C • → 0 exact, there is
δi : hi (C •)→ hi+1(A•) with a long exact sequence.

A homotopy between f , g : A• → B• is a collection
k i : Ai → B i−1 with f − g = dk + kd .

If there is a homotopy we say f and g are homotopic, f ∼ g .

if f ∼ g then hi (f ) = hi (g).
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Additive, left exact functors

A covariant F : A→ B is additive if
Hom(A,A′)→ Hom(FA,FA′) is a homomorphism.

Such F is left exact if 0→ A′ → A→ A′′ → 0 exact implies
0→ FA′ → FA→ FA′′ exact.

For contravariant, require 0→ FA′′ → FA→ FA′ exact.

Prototypical example: for fixed A the covariant functor
Hom(A, •) : A→ Ab

A′ 7→ Hom(A,A′)

and the contravariant functor Hom(•,A) : A→ Ab

A′′ 7→ Hom(A′′,A)

are left exact, by the abelian category axioms.
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Injectives, resolutions, derived functors

I ∈ Ob(A) is injective if Hom(•, I ) is exact.

An injective resolution of A is an exact sequence

0→ A→ I 0 → I 1 → · · ·

with I j injective.

A has enough injectives if every A is a subobject of an
injective, so (inductively) has an injective resolution.

Fix an abelian category A with enough injectives, and for each
object A fix an injective resolution I •A.

Definition

For an additive covariant left exact F : A→ B define the right
derived functors

R iF (A) = hi (F (I •A)).
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Basic Properties of R iF

Theorem

R iF : A→ B is additive.

Independence: Changing I ∗A results in a naturally isomorphic
functor.

R0F ' F

For exact EA : 0→ A′ → A→ A′′ → 0 there is
δi : R iF (A′′)→ R i+1F (A′) with long exact sequence

R iF (A′)→ R iF (A)→ R iF (A′′)
δi→ R i+1F (A′) · · ·

This is compatible with morphisms of exact sequences
EA → EB .

If I injective and I > 0 then R iF (I ) = 0.
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Acyclic objects and resolutions

We say J is F -acyclic if R iF (J) = 0 for all i > 0. An F -acyclic
resolution J• of A is what you think.

Proposition

If A→ J• is an F -acyclic resolution then R iF (A) ' hi (F (J•)).

Try it at home!
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δ-functors

One might think that the injective resolution definition is
artificial. Read in Hartshorne (or Grothendieck) about
δ-functors, universal δ-functors, effaceable δ-functors.

It is shown that that an effaceable δ-functors is universal, and
there can be at most one universal δ-functor up to
isomorphism.

Then it is shown that if there are enough injectives, the
derived functor is effaceable so it is (the unique) universal
δ-functor.
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Enough injectives in Ab and Mod(A)

It is not too hard to see that an abelian group is injective if
and only if it is divisible.

Also one can embed any abelian group in a divisible group, so
there are enough injectives in Ab.

If M is an A-module and M → IZ be an embedding into a
divisible group, then the natural embedding M → HomZ(A, IZ)
provide an embedding into an injective A-module.

You can find all this explained in a few pages e.g. in
http://www.math.leidenuniv.nl/~edix/tag_2009/

michiel_2.pdf.
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Enough injectives in Mod(OX )

Proposition (Proposition III.2.2)

If (X ,OX ) a ringed spacea then Mod(OX ) has enough injectives.

anot necessarily lrs

Embedding:

Embed the stalks Fx ↪→ Ix in injective OX ,x -modules.

Define J =
∏

x jx∗(Ix).

We have an embedding F ↪→
∏

x jx∗(Fx) ↪→
∏

x jx∗(Ix) = J .

Injectivity:

We have
HomOX

(G,J ) =
∏

HomOX
(G, jx∗(Ix)) =

∏
HomOX ,x

(Gx , Ix).

G 7→ Gx and Gx 7→ HomOX ,x
(Gx , Ix) are exact,

so G 7→ HomOX
(G,J ) is exact, so J injective.
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Sheaf cohomology

Since (X ,ZX ) is a ringed space, Ab(X ) has enough injectives.

Definition

The sheaf cohomology H i (X ,F) = R iΓ(X ,F), the right derived
functor of

F 7→ Γ(X ,F) = F(X ),

as a functor
Ab(X )→ Ab.

This is clean, but also disturbing, since it ignores any possible
structure on X .
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Flasque sheaves and cohomology

We say F is flasque1 if for any opens V ⊂ U the restriction
F(U → F(V ) is surjective.

Proposition

A flasque sheaf F of abelian groups is Γ-acyclic, i.e. H i (X ,F) = 0
for all i > 0.

Proposition

An injective OX -module is flasque.

Corollary

The derived functors of Γ(A, •) : Mod(OX )→ Ab are H i (X , •).

Corollary

if Y
i
↪→ X closed and F on Y , then Hk(Y ,F) = Hk(X , i∗F).

1flabby
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An injective OX -module is flasque

This uses the extension by 0 functor j! (II.1.19):

For an open U
jU
↪→ X consider the OX -module

OU := jU!(OX |U).

Hom(OU ,F) = F(U).

For V ⊂ U get inclusion OV → OU .

Take J injective, and so Hom(OU ,J )→ Hom(OV ,J )
surjective.

So J (U)→ J (V ) surjective.
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If F flasque then H i(X ,F) = 0 for i > 0

This follows from general properties of flasque sheaves (exercise
II.1.16), and requires an induction on i for all flasque seheaves:

Let F → I be an embedding in an injective sheaf in Ab(X ),
with s.e.s

0→ F → I → G → 0.

Since F and I flasque it follows that G flasque.

It also implies 0→ F(X )→ I (X )→ G(X )→ 0 exact.2

Since H i (X , I ) = 0 for i > 0, the l.e.s gives H1(X ,F) = 0 and
H i (X ,G) = H i+1(X ,F) for i > 0.

Induction gives the result.

2we did something similar
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The corollaries

The derived functors of Γ(A, •) : Mod(OX )→ Ab coincide with
H i (X , •).

We compute the derived functor by taking an OX -injective
resolution F → I •.

This is a flasque resolution, which is acyclic, hence computes
cohomology.

if Y
i
↪→ X closed then Hk(Y ,F) = Hk(X , i∗F).

If I • is an injective, hence flasque, resolution of F then i∗I
• is a

flasque resolution of i∗F .
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Grothendieck’s dimension theorem

Theorem

Let X be a noetherian topological space of dimension n. Then for
i > n and for all sheaf F on X we have H i (X ,F) = 0.

This is an involved but elegant sequence of reduction steps, with
some general input about colimits.

One uses i∗ and j! and l.e.s to reduce to the case of
irreducibles.

One uses induction on dimension, the case of dimension 0
being trivial.

One reduces using colimits to sheaves generated by finitely
many sections.

One uses the l.e.s to reduce to j!ZU and subsheaves of such.

One uses the l.e.s to reduce to j!ZU .

One uses the l.e.s for j!ZU ⊂ ZX and flasqueness of ZX to
conclude.
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Cohomology of Quasicohrent sheaves on affine noetherian
schemes

Proposition

Let A be a noetherian ring, I an injective A-module. Let Ĩ be the
associated sheaf on SpecA. Then Ĩ is flasque.

The proof is non trivial and goes by way of showing that the
sheaves of sections with support along an ideal a is also injective.

Theorem

Let A be a noetherian ring, X = SpecA, and F quasicoherent.
Then for all i > 0 we have H i (X ,F) = 0.

Set M = Γ(X ,F), and let 0→ M → I • injective resolution.
We have learned that 0→ F → Ĩ • exact, flasque resolution!
and taking sections 0→ M → Γ(X , Ĩ •) also exact.
So H i (X ,F) = hi (Γ(X , Ĩ •)) = 0 ♠
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QC Flasque resolutions on noetherian schemes

Corollary

X noetherian, F quasicoherent, then there is and embedding
F ↪→ G with G quasicoherent and flasque

Let X =
⋃

finite Ui

with Ui = SpecAi
ji
↪→ X ,

write F(Ui ) = Mi and choose Mi ⊂ Ii , with Ii injective Ai modules.
Then F ↪→ ⊕ji∗ Ĩi injective,
and Ĩi flasque hence ⊕ji∗ Ĩi flasque.
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Serre’s criterion

Theorem

Suppose X either notherian or separated and quasicompact. Then
the following are equivalent:

(i) X affine.

(ii) Hp(X ,F) for every quasicoherent F and p > 0.

(iii) H1(X ,F) for every quasicoherent F .

(iv) H1(X , I) for every quasicoherent ideal I.

Let A = O(X ). Need φ : X → SpecA an isomorphism.

For f ∈ A we have Xf = φ−1D(f ) and by an old result
OX (Xf ) = A[f −1].

If Xf affine then φXf
: Xf → D(f ) an isomorphism,

so it suffices to show (1) each x ∈ X lies in an affine Xf , and
(2) φ surjective.

Abramovich MA 205/206 notes: Derived functors and cohomology 21 / 31



Serre’s criterion, (1) each x ∈ X lies in an affine Xf

The closure {x} is quasicompact, hence has a closed point;

might as well assume x closed.

Let M = I{x}. Let U 3 x be an affine neighborhood. Let
J = IXrU .

0→MJ → J → J /MJ → 0 is exact.

The latter is a skyscraper with fiber k(x) at x .

By assumption H1(X ,MJ ) = 0,

and by the long exact sequence there is f ∈ J such that
f (x) 6= 0.

Note that Xf = DU(f ) is an affine neighborhood of x .♠
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Serre’s criterion, (2) φ surjective.

Take finitely many fi so that X = ∪Xfi .

Need to show A = ∪Xfi , namely (f1, . . . , fm) = (1).

Consider ψ : On
X → OX , where ψ(a1, . . . , an) =

∑
ai fi .

0→ Kerψ → On → O → 0 is an exact sequence of
quasicoherent sheaves.

Enough to show H1(X ,Kerψ) = 0, since then we have
An → A surjective, as needed.

Write Ki = Kerψ ∩ Oi
X and Qi = Ki/Ki−1.

Note: Qi ⊂ OX a sheaf of ideals.

So H1(X ,Qi ) = 0, and by l.e.s and induction
H1(X ,Kerψ) = 0, as needed ♠
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Čech cohomology of sheaves

Given a covering U := {Ui} of X one defines a complex

0→ F(X )→ C 0(U,F)
d0→ C 1(U,F)

d1→ · · · ,
where Cp(U,F) :=

∏
i0<...<ip

F(Ui0,...,ip).

For f ∈ Cp(U,F) one defines

df =

p+1∑
0

(−1)k fi0,...îk ,...,ip+1
|Ui0,...,ip+1

.

Exercise: d2 = 0.

Define Ȟ
p
(U,F) = hi (C •(U,F)).
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Basic facts

Proposition

Ȟ
0
(U,F) = F(X ).

Indeed for a collecton of sections si ∈ F(Ui ) do have d0((si )) = 0
we need precisely si |Uij

− sj |Uij
= 0, and the sheaf axiom gives

s ∈ F(X ).

Observation

If U contains n opens then Ȟ
p
(U,F) = 0 for all p ≥ n.

Instead of C (U,F) one can work with alternating chains C ′(U,F).
We have Ȟ(U,F) = hi (C ′(U,F)).
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OP1
A
,ΩP1

A

Example: Consider X = P1
A with the open sets Ui = D+(Ti ).

The Čech complex C (U,OX ) is

0→ A[t]⊕ A[t−1]
d0→ A[t, t−1]→ 0 · · · .

Ȟ(U,OX ) = Ker(d0) = A,

Ȟ
1
(U,OX ) = Coker(d0) = 0,

and the rest is 0.

The Čech complex C (U,ΩX ) is

0→ A[t]dt ⊕ A[s]ds
d0→ A[t, t−1]dt → 0 · · · .

Here ds maps to −dt/t2.

Ȟ(U,ΩX ) = Ker(d0) = 0,

Ȟ
1
(U,ΩX ) = Coker(d0) = Adt/t,

(and the rest is 0).
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Čech complex of sheaves

Theorem

If X noetherian separated, U affine covering, F quasicoherent,
there is a functorial isom Ȟ

p
(U,F)→̃Hp(X ,F).

Set Cp(U,F) =
∏

i0<···<jp
(ji0,...,ip)∗(ji0,...,ip)∗F .

Set d : Cp(U,F)→ Cp+1(U,F) as before.
Note: Γ(X ,Cp(U,F)) = Cp(U,F).

Lemma

For any F we have a resolution 0→ F → C•(U,F).

Proposition

If F is flasque then Ȟ
p
(U,F) = 0 for all p > 0.

Lemma

There are functorial maps Ȟ
p
(U,F)→ Hp(X ,F).
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Lemma: we have a resolution 0→ F → C•(U,F)

Check on stalks, say at x ∈ Uj .

Construct homotopy k : Cp(U,F)x → Cp−1(U,F)x .

A section αx ∈ Cp(U,F)x lifts to α ∈ Cp(U,F)(V ) for some
neighborhood x ∈ V ⊂ Uj .

Viewing α as an alternating cochain define

k(α)i0,...,ip−1 = αj ,i0,...,ip−1 .

This is well defined on V , hence at x , since V ⊂ Uj .

Check (dk + kd)(α) = α, so id ∼ 0 and hp(C•x) = 0.
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Proposition: If F flasque then Ȟ
p
(U,F) = 0 for p > 0.

Products and direct images of flasque sheaves are flasque.

The sheaves Cp(U,F) are thus flasque.

We have a flasque resolution 0→ F → C•(U,F),

hence
Hp(X ,F) = hp(Γ(C•(U,F))) = hp(C •(U,F)) = Ȟ

p
(U,F).

But since F is itself flasque we have

Ȟ
p
(U,F) = Hp(X ,F) = 0

for p > 0.
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Lemma: There are functorial maps Ȟ
p
(U,F)→ Hp(X ,F).

Take an injective resolution 0→ F → J •.
Since F → C0(F) injective there is an extension C0(F)→ J 0.

The composite C0(F)→ J 1 factors through C0(F)/F .

SInce C0(F)/F → C1(F) injective, there is an extension
C1(F)→ J 1

Induction provides an arrow C•(U,F)→ J •.
Then apply hp(Γ(X , •)).

Functoriality is trickier
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X noetherian separated, U affine , F quasicoherent
⇒ Ȟ

p
(U,F)→̃Hp(X ,F).

Induction on p for all F etc.

Take 0→ F → G → Q→ 0 s.e.s with G quasicoherent
flasque (so Q quasicoherent).

X separated ⇒ Ui0,...,ip affine.

⇒ 0→ F(Ui0,...,ip)→ G(Ui0,...,ip)→ Q(Ui0,...,ip)→ 0 exact.

⇒ 0→ C •(U,F)→ C •(U,G)→ C •(U,Q)→ 0 exact.

Since G flasque Ȟ
p
(U,G) = Hp(X ,G) = 0 for p > 0.

The long exact sequences and functoriality give

0 // Ȟ0(U,F) //
��

Ȟ0(U,G) //
��

Ȟ0(U,Q) //
��

Ȟ1(U,F) //
��

0 and Ȟp(U,Q)

��
Ȟp+1(U,F)

��
0 // H0(X ,F) // H0(X ,G) // H0(X ,Q) // H1(X ,F) // 0 Hp(X ,Q) Hp+1(X ,F)

Induction gives the required isomorphisms. ♠

Abramovich MA 205/206 notes: Derived functors and cohomology 31 / 31


