MA 205/206 notes: Derived functors and cohomology
Following Hartshorne

Dan Abramovich
Brown University
February 2, 2019
Abelian categories

Definition

An abelian category is a category \mathcal{A} with each $\text{Hom}(A, B)$ provided the structure of an abelian group, such that

- Compositions laws $\text{Hom}(B, C) \times \text{Hom}(A, B) \to \text{Hom}(A, C)$ are bilinear (pre-additive category).
- Finite\(^a\) products and coproducts exist and coincide (additive category), in particular an initial and final object 0 exists.
- Every morphism has a kernel and cokernel (pre-abelian).
- Every monomorphism is the kernel of its cokernel.
- Every epimorphism is the cokernel of its kernel.
- Every morphism factors into an epimorphism followed by a monomorphism (image and coimage in some order).

\(^a\)0 and 2 enough
In an additive category, a kernel of $f : X \to Y$ is a fibered product $X \times_Y 0$.

In an additive category, a cokernel of $f : X \to Y$ is a fibered coproduct $Y \oplus^X 0$.

In any category, $f : X \to Y$ is a monomorphism if $g \mapsto f \circ g$ is injective.

In any category, $f : X \to Y$ is an epimorphism if $g \mapsto g \circ f$ is injective.
Examples of abelian categories

- The prototypical example is Ab.
- The typical example is $\text{Mod}(A)$.
- We will use $\text{Ab}(X)$, $\text{Mod}(\mathcal{O}_X)$, $\text{Qcoh}(\mathcal{O}_X)$,
- and, if X noetherian, $\text{Coh}(\mathcal{O}_X)$.

There is an embedding theorem saying any abelian \mathcal{F} is a full subcategory of Ab.
A complex A^\bullet in an abelian category \mathcal{A} is a sequence with maps $d^i : A^i \rightarrow A^{i+1}$ such that $d^{i+1} \circ d^i = 0$.

Complexes in \mathcal{A} form an abelian category by requiring arrows to commute with d and doing things componentwise.

$h^i(A^\bullet) = \text{Ker}(d^i)/\text{Im}(d^{i-1})$. It is a functor $\mathcal{C}omp(\mathcal{A}) \rightarrow \mathcal{A}$.

If $0 \rightarrow A^\bullet \rightarrow B^\bullet \rightarrow C^\bullet \rightarrow 0$ exact, there is $\delta^i : h^i(C^\bullet) \rightarrow h^{i+1}(A^\bullet)$ with a long exact sequence.

A homotopy between $f, g : A^\bullet \rightarrow B^\bullet$ is a collection $k^i : A^i \rightarrow B^{i-1}$ with $f - g = dk + kd$.

If there is a homotopy we say f and g are homotopic, $f \sim g$.

If $f \sim g$ then $h^i(f) = h^i(g)$.
A covariant $F : \mathcal{A} \to \mathcal{B}$ is additive if\[\text{Hom}(A, A') \to \text{Hom}(FA, FA') \]is a homomorphism.

Such F is left exact if $0 \to A' \to A \to A'' \to 0$ exact implies $0 \to FA' \to FA \to FA''$ exact.

For contravariant, require $0 \to FA'' \to FA \to FA'$ exact.

Prototypical example: for fixed A the covariant functor $\text{Hom}(A, \bullet) : \mathcal{A} \to \mathcal{Ab}$

\[A' \mapsto \text{Hom}(A, A') \]

and the contravariant functor $\text{Hom}(\bullet, A) : \mathcal{A} \to \mathcal{Ab}$

\[A'' \mapsto \text{Hom}(A'', A) \]

are left exact, by the abelian category axioms.
Injectives, resolutions, derived functors

- $I \in \text{Ob}(\mathcal{A})$ is injective if $\text{Hom}(\bullet, I)$ is exact.
- An injective resolution of A is an exact sequence

$$0 \to A \to I^0 \to I^1 \to \cdots$$

with I^i injective.
- \mathcal{A} has enough injectives if every A is a subobject of an injective, so (inductively) has an injective resolution.

Fix an abelian category \mathcal{A} with enough injectives, and for each object A fix an injective resolution I_A^\bullet.

Definition

For an additive covariant left exact $F : \mathcal{A} \to \mathcal{B}$ define the right derived functors

$$R^i F(A) = h^i(F(I_A^\bullet)).$$
Basic Properties of R^iF

Theorem

- $R^iF : \mathcal{A} \to \mathcal{B}$ is additive.
- **Independence**: Changing I_A^* results in a naturally isomorphic functor.
- $R^0F \simeq F$
- For exact $E_A : 0 \to A' \to A \to A'' \to 0$ there is $\delta^i : R^iF(A'') \rightarrow R^{i+1}F(A')$ with long exact sequence

$$R^iF(A') \rightarrow R^iF(A) \rightarrow R^iF(A'') \xrightarrow{\delta^i} R^{i+1}F(A') \ldots$$

- This is compatible with morphisms of exact sequences $E_A \to E_B$.
- If I injective and $I > 0$ then $R^iF(I) = 0$.
We say J is F-acyclic if $R^i F(J) = 0$ for all $i > 0$. An F-acyclic resolution J^\bullet of A is what you think.

Proposition

If $A \to J^\bullet$ is an F-acyclic resolution then $R^i F(A) \simeq h^i(F(J^\bullet))$.

Try it at home!
One might think that the injective resolution definition is artificial. Read in Hartshorne (or Grothendieck) about δ-functors, universal δ-functors, effaceable δ-functors.

It is shown that that an effaceable δ-functors is universal, and there can be at most one universal δ-functor up to isomorphism.

Then it is shown that if there are enough injectives, the derived functor is effaceable so it is (the unique) universal δ-functor.
Enough injectives in $\mathbb{A}b$ and $\text{Mod}(A)$

- It is not too hard to see that an abelian group is injective if and only if it is divisible.
- Also one can embed any abelian group in a divisible group, so there are enough injectives in $\mathbb{A}b$.
- If M is an A-module and $M \to I_\mathbb{Z}$ be an embedding into a divisible group, then the natural embedding $M \to \text{Hom}_\mathbb{Z}(A, I_\mathbb{Z})$ provide an embedding into an injective A-module.
- You can find all this explained in a few pages e.g. in http://www.math.leidenuniv.nl/~edix/tag_2009/michiel_2.pdf.
Enough injectives in $\text{Mod}(\mathcal{O}_X)$

Proposition (Proposition III.2.2)

If (X, \mathcal{O}_X) *a ringed space*¹ *then* $\text{Mod}(\mathcal{O}_X)$ *has enough injectives.*

¹not necessarily lrs

Embedding:

- Embed the stalks $\mathcal{F}_x \hookrightarrow I_x$ in injective $\mathcal{O}_{X,x}$-modules.
- Define $\mathcal{J} = \prod_x j_{x*}(I_x)$.
- We have an embedding $\mathcal{F} \hookrightarrow \prod_x j_{x*}(\mathcal{F}_x) \hookrightarrow \prod_x j_{x*}(I_x) = \mathcal{J}$.

Injectivity:

- We have

 $$\text{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathcal{J}) = \prod \text{Hom}_{\mathcal{O}_X}(\mathcal{G}, j_{x*}(I_x)) = \prod \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{G}_x, I_x).$$

- $\mathcal{G} \hookrightarrow \mathcal{G}_x$ and $\mathcal{G}_x \hookrightarrow \text{Hom}_{\mathcal{O}_{X,x}}(\mathcal{G}_x, I_x)$ are exact,

- so $\mathcal{G} \hookrightarrow \text{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathcal{J})$ is exact, so \mathcal{J} injective.
Since \((X, \mathbb{Z}_X)\) is a ringed space, \(\mathcal{A}b(X)\) has enough injectives.

Definition

The **sheaf cohomology** \(H^i(X, \mathcal{F}) = R^i\Gamma(X, \mathcal{F})\), the right derived functor of

\[
\mathcal{F} \mapsto \Gamma(X, \mathcal{F}) = \mathcal{F}(X),
\]

as a functor

\[
\mathcal{A}b(X) \to \mathcal{A}b.
\]

This is clean, but also disturbing, since it ignores any possible structure on \(X\).
We say \mathcal{F} is flasque\(^1\) if for any opens $V \subset U$ the restriction $\mathcal{F}(U \to \mathcal{F}(V))$ is surjective.

Proposition

A flasque sheaf \mathcal{F} of abelian groups is Γ-acyclic, i.e. $H^i(X, \mathcal{F}) = 0$ for all $i > 0$.

Proposition

An injective \mathcal{O}_X-module is flasque.

Corollary

The derived functors of $\Gamma(A, \bullet) : \text{Mod}(\mathcal{O}_X) \to \text{Ab}$ are $H^i(X, \bullet)$.

Corollary

if $Y \hookrightarrow X$ closed and \mathcal{F} on Y, then $H^k(Y, \mathcal{F}) = H^k(X, i_*\mathcal{F})$.

\(^1\)flabby
An injective \mathcal{O}_X-module is flasque

This uses the extension by 0 functor $j_!$ (II.1.19):

- For an open $U \xrightarrow{j_U} X$ consider the \mathcal{O}_X-module $\mathcal{O}_U := j_U!(\mathcal{O}_X|_U)$.
- $\text{Hom}(\mathcal{O}_U, \mathcal{F}) = \mathcal{F}(U)$.
- For $V \subset U$ get inclusion $\mathcal{O}_V \to \mathcal{O}_U$.
- Take \mathcal{I} injective, and so $\text{Hom}(\mathcal{O}_U, \mathcal{I}) \to \text{Hom}(\mathcal{O}_V, \mathcal{I})$ surjective.
- So $\mathcal{I}(U) \to \mathcal{I}(V)$ surjective.
If \mathcal{F} flasque then $H^i(X, \mathcal{F}) = 0$ for $i > 0$

This follows from general properties of flasque sheaves (exercise II.1.16), and requires an induction on i for all flasque sheaves:

- Let $\mathcal{F} \to I$ be an embedding in an injective sheaf in $\mathcal{A}b(X)$, with s.e.s
 \[0 \to \mathcal{F} \to I \to \mathcal{G} \to 0.\]

- Since \mathcal{F} and I flasque it follows that \mathcal{G} flasque.

- It also implies $0 \to \mathcal{F}(X) \to I(X) \to \mathcal{G}(X) \to 0$ exact.\(^2\)

- Since $H^i(X, I) = 0$ for $i > 0$, the l.e.s gives $H^1(X, \mathcal{F}) = 0$ and $H^i(X, \mathcal{G}) = H^{i+1}(X, \mathcal{F})$ for $i > 0$.

- Induction gives the result.

\(^2\)we did something similar
The derived functors of $\Gamma(A, \bullet) : \text{Mod}(\mathcal{O}_X) \to \text{Ab}$ coincide with $H^i(X, \bullet)$.

- We compute the derived functor by taking an \mathcal{O}_X-injective resolution $\mathcal{F} \to I^\bullet$.
- This is a flasque resolution, which is acyclic, hence computes cohomology.

If $Y \xrightarrow{i} X$ closed then $H^k(Y, \mathcal{F}) = H^k(X, i_*\mathcal{F})$.

If I^\bullet is an injective, hence flasque, resolution of \mathcal{F} then i_*I^\bullet is a flasque resolution of $i_*\mathcal{F}$.

if $Y \xrightarrow{i} X$ closed then $H^k(Y, \mathcal{F}) = H^k(X, i_*\mathcal{F})$.
Grothendieck’s dimension theorem

Theorem

Let X be a noetherian topological space of dimension n. Then for $i > n$ and for all sheaf \mathcal{F} on X we have $H^i(X, \mathcal{F}) = 0$.

This is an involved but elegant sequence of reduction steps, with some general input about colimits.

- One uses i_* and $j_!$ and l.e.s to reduce to the case of irreducibles.
- One uses induction on dimension, the case of dimension 0 being trivial.
- One reduces using colimits to sheaves generated by finitely many sections.
- One uses the l.e.s to reduce to $j_! \mathbb{Z}_U$ and subsheaves of such.
- One uses the l.e.s to reduce to $j_! \mathbb{Z}_U$.
- One uses the l.e.s for $j_! \mathbb{Z}_U \subset \mathbb{Z}_X$ and flasqueness of \mathbb{Z}_X to conclude.
Proposition

Let A be a noetherian ring, I an injective A-module. Let \tilde{I} be the associated sheaf on $\text{Spec} A$. Then \tilde{I} is flasque.

The proof is non trivial and goes by way of showing that the sheaves of sections with support along an ideal α is also injective.

Theorem

Let A be a noetherian ring, $X = \text{Spec} A$, and \mathcal{F} quasicoherent. Then for all $i > 0$ we have $H^i(X, \mathcal{F}) = 0$.

Set $M = \Gamma(X, \mathcal{F})$, and let $0 \to M \to I^\bullet$ injective resolution. We have learned that $0 \to \mathcal{F} \to \tilde{I}^\bullet$ exact, flasque resolution! and taking sections $0 \to M \to \Gamma(X, \tilde{I}^\bullet)$ also exact.

So $H^i(X, \mathcal{F}) = h^i(\Gamma(X, \tilde{I}^\bullet)) = 0$.
Corollary

If X is noetherian, \mathcal{F} quasicoherent, then there is an embedding $\mathcal{F} \hookrightarrow \mathcal{G}$ with \mathcal{G} quasicoherent and flasque.

Let $X = \bigcup_{\text{finite}} U_i$

with $U_i = \text{Spec } A_i \xrightarrow{j_i} X$,

write $\mathcal{F}(U_i) = M_i$ and choose $M_i \subset I_i$, with I_i injective A_i modules.

Then $\mathcal{F} \hookrightarrow \bigoplus j_i^! \tilde{I}_i$ injective,

and \tilde{I}_i flasque hence $\bigoplus j_i^! \tilde{I}_i$ flasque.
Serre’s criterion

Theorem

Suppose X either noetherian or separated and quasicompact. Then the following are equivalent:

(i) X affine.

(ii) $H^p(X, \mathcal{F})$ for every quasicoherent \mathcal{F} and $p > 0$.

(iii) $H^1(X, \mathcal{F})$ for every quasicoherent \mathcal{F}.

(iv) $H^1(X, \mathcal{I})$ for every quasicoherent ideal \mathcal{I}.

- Let $A = \mathcal{O}(X)$. Need $\phi : X \to \text{Spec } A$ an isomorphism.
- For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}]$.
- If X_f affine then $\phi_{X_f} : X_f \to D(f)$ an isomorphism,
- so it suffices to show (1) each $x \in X$ lies in an affine X_f, and (2) ϕ surjective.
Serre’s criterion, (1) each \(x \in X \) lies in an affine \(X_f \)

- The closure \(\{x\} \) is quasicompact, hence has a closed point;
- might as well assume \(x \) closed.
- Let \(\mathcal{M} = \mathcal{I}_{\{x\}} \). Let \(U \ni x \) be an affine neighborhood. Let \(J = \mathcal{I}_{X \setminus U} \).
- \(0 \to \mathcal{M}J \to J \to J/MJ \to 0 \) is exact.
- The latter is a skyscraper with fiber \(k(x) \) at \(x \).
- By assumption \(H^1(X, \mathcal{M}J) = 0 \),
- and by the long exact sequence there is \(f \in J \) such that \(f(x) \neq 0 \).
- Note that \(X_f = D_U(f) \) is an affine neighborhood of \(x \). ♦
Take finitely many \(f_i \) so that \(X = \bigcup X_{f_i} \).

Need to show \(A = \bigcup X_{f_i} \), namely \((f_1, \ldots, f_m) = (1)\).

Consider \(\psi : \mathcal{O}^n_X \to \mathcal{O}_X \), where \(\psi(a_1, \ldots, a_n) = \sum a_i f_i \).

0 \to \text{Ker}\psi \to \mathcal{O}^n \to \mathcal{O} \to 0 \) is an exact sequence of quasicoherent sheaves.

Enough to show \(H^1(X, \text{Ker}\psi) = 0 \), since then we have \(A^n \to A \) surjective, as needed.

Write \(K_i = \text{Ker}\psi \cap \mathcal{O}_X^i \) and \(Q_i = K_i / K_{i-1} \).

Note: \(Q_i \subset \mathcal{O}_X \) a sheaf of ideals.

So \(H^1(X, Q_i) = 0 \), and by l.e.s and induction \(H^1(X, \text{Ker}\psi) = 0 \), as needed.
Čech cohomology of sheaves

- Given a covering $\mathcal{U} := \{U_i\}$ of X one defines a complex

 $0 \to \mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d_0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d_1} \cdots$,

- where $C^p(\mathcal{U}, \mathcal{F}) := \prod_{i_0 < \cdots < i_p} \mathcal{F}(U_{i_0}, \ldots, U_{i_p})$.

- For $f \in C^p(\mathcal{U}, \mathcal{F})$ one defines

 \[df = \sum_{0}^{p+1} (-1)^k f_{i_0, \ldots, \hat{i}_k, \ldots, i_{p+1}}|_{U_{i_0}, \ldots, i_{p+1}}. \]

- Exercise: $d^2 = 0$.

- Define $\check{H}^p(\mathcal{U}, \mathcal{F}) = h^i(C^\bullet(\mathcal{U}, \mathcal{F}))$.
Proposition

\[\check{H}^0(\mathcal{U}, \mathcal{F}) = \mathcal{F}(X). \]

Indeed for a collection of sections \(s_i \in \mathcal{F}(U_i) \) do have \(d_0((s_i)) = 0 \) we need precisely \(s_i|_{U_{ij}} - s_j|_{U_{ij}} = 0 \), and the sheaf axiom gives \(s \in \mathcal{F}(X) \).

Observation

If \(\mathcal{U} \) contains \(n \) opens then \(\check{H}^p(\mathcal{U}, \mathcal{F}) = 0 \) for all \(p \geq n \).

Instead of \(C(\mathcal{U}, \mathcal{F}) \) one can work with alternating chains \(C'(\mathcal{U}, \mathcal{F}) \). We have \(\check{H}(\mathcal{U}, \mathcal{F}) = h^i(C'(\mathcal{U}, \mathcal{F})) \).
Example: Consider $X = \mathbb{P}^1_A$ with the open sets $U_i = D_+(T_i)$.

The Čech complex $C(\mathcal{U}, \mathcal{O}_X)$ is

$$0 \to A[t] \oplus A[t^{-1}] \xrightarrow{d_0} A[t, t^{-1}] \to 0 \cdots .$$

- $\check{H}(\mathcal{U}, \mathcal{O}_X) = \text{Ker}(d_0) = A$,
- $\check{H}^1(\mathcal{U}, \mathcal{O}_X) = \text{Coker}(d_0) = 0$,
- and the rest is 0.

The Čech complex $C(\mathcal{U}, \Omega_X)$ is

$$0 \to A[t]dt \oplus A[s]ds \xrightarrow{d_0} A[t, t^{-1}]dt \to 0 \cdots .$$

- Here ds maps to $-dt/t^2$.
- $\check{H}(\mathcal{U}, \Omega_X) = \text{Ker}(d_0) = 0$,
- $\check{H}^1(\mathcal{U}, \Omega_X) = \text{Coker}(d_0) = A dt/t$,
- (and the rest is 0).
Čech complex of sheaves

Theorem

If X noetherian separated, \mathcal{U} affine covering, \mathcal{F} quasicoherent, there is a functorial isom $\check{H}^p(\mathcal{U}, \mathcal{F}) \sim H^p(X, \mathcal{F})$.

- Set $\mathcal{C}^p(\mathcal{U}, \mathcal{F}) = \prod_{i_0 < \ldots < i_p} (j_{i_0}, \ldots, i_p)^* \mathcal{F}$.
- Set $d : \mathcal{C}^p(\mathcal{U}, \mathcal{F}) \to \mathcal{C}^{p+1}(\mathcal{U}, \mathcal{F})$ as before.
- Note: $\Gamma(X, \mathcal{C}^p(\mathcal{U}, \mathcal{F})) = C^p(\mathcal{U}, \mathcal{F})$.

Lemma

For any \mathcal{F} we have a resolution $0 \to \mathcal{F} \to \mathcal{C}^\bullet(\mathcal{U}, \mathcal{F})$.

Proposition

If \mathcal{F} is flasque then $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p > 0$.

Lemma

There are functorial maps $\check{H}^p(\mathcal{U}, \mathcal{F}) \to H^p(X, \mathcal{F})$.
Lemma: we have a resolution $0 \to \mathcal{F} \to \mathcal{C}^\bullet(\mathcal{U}, \mathcal{F})$

- Check on stalks, say at $x \in U_j$.
- Construct homotopy $k : \mathcal{C}^p(\mathcal{U}, \mathcal{F})_x \to \mathcal{C}^{p-1}(\mathcal{U}, \mathcal{F})_x$.
- A section $\alpha_x \in \mathcal{C}^p(\mathcal{U}, \mathcal{F})_x$ lifts to $\alpha \in \mathcal{C}^p(\mathcal{U}, \mathcal{F})(V)$ for some neighborhood $x \in V \subset U_j$.
- Viewing α as an alternating cochain define $k(\alpha)_{i_0,\ldots,i_{p-1}} = \alpha_{j,i_0,\ldots,i_{p-1}}$.

- This is well defined on V, hence at x, since $V \subset U_j$.
- Check $(dk + kd)(\alpha) = \alpha$, so $id \sim 0$ and $h^p(\mathcal{C}^\bullet_\mathcal{U}) = 0$.

Abramovich
MA 205/206 notes: Derived functors and cohomology 28 / 31
Proposition: If \mathcal{F} flasque then $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for $p > 0$.

- Products and direct images of flasque sheaves are flasque.
- The sheaves $\mathcal{C}^p(\mathcal{U}, \mathcal{F})$ are thus flasque.
- We have a flasque resolution $0 \to \mathcal{F} \to \mathcal{C}^\bullet(\mathcal{U}, \mathcal{F})$,
- hence

 \[H^p(X, \mathcal{F}) = h^p(\Gamma(\mathcal{C}^\bullet(\mathcal{U}, \mathcal{F}))) = h^p(\mathcal{C}^\bullet(\mathcal{U}, \mathcal{F})) = \check{H}^p(\mathcal{U}, \mathcal{F}). \]
- But since \mathcal{F} is itself flasque we have

 \[\check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(X, \mathcal{F}) = 0 \]

 for $p > 0$.
Lemma: There are functorial maps $\check{H}^p(U, F) \to H^p(X, F)$.

- Take an injective resolution $0 \to F \to J^\bullet$.
- Since $F \to C^0(F)$ injective there is an extension $C^0(F) \to J^0$.
- The composite $C^0(F) \to J^1$ factors through $C^0(F)/F$.
- Since $C^0(F)/F \to C^1(F)$ injective, there is an extension $C^1(F) \to J^1$.
- Induction provides an arrow $C^\bullet(U, F) \to J^\bullet$.
- Then apply $h^p(\Gamma(X, \bullet))$.
- Functoriality is trickier
X noetherian separated, \(U \) affine, \(\mathcal{F} \) quasicoherent
\[\Rightarrow \check{H}^p(U, \mathcal{F}) \xrightarrow{\sim} H^p(X, \mathcal{F}). \]

- Induction on \(p \) for all \(\mathcal{F} \) etc.
- Take \(0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{Q} \to 0 \) s.e.s with \(\mathcal{G} \) quasicoherent flasque (so \(\mathcal{Q} \) quasicoherent).
- \(X \) separated \(\Rightarrow \) \(U_{i_0}, \ldots, i_p \) affine.
- \(\Rightarrow 0 \to \mathcal{F}(U_{i_0}, \ldots, i_p) \to \mathcal{G}(U_{i_0}, \ldots, i_p) \to \mathcal{Q}(U_{i_0}, \ldots, i_p) \to 0 \) exact.
- \(\Rightarrow 0 \to C^\bullet(U, \mathcal{F}) \to C^\bullet(U, \mathcal{G}) \to C^\bullet(U, \mathcal{Q}) \to 0 \) exact.
- Since \(\mathcal{G} \) flasque \(\check{H}^p(U, \mathcal{G}) = H^p(X, \mathcal{G}) = 0 \) for \(p > 0 \).
- The long exact sequences and functoriality give

\[
\begin{align*}
0 & \Rightarrow \check{H}^0(U, \mathcal{F}) \Rightarrow \check{H}^0(U, \mathcal{G}) \Rightarrow \check{H}^0(U, \mathcal{Q}) \Rightarrow \check{H}^1(U, \mathcal{F}) & \Rightarrow 0 & \text{and} & \check{H}^p(U, \mathcal{Q}) & \Rightarrow \check{H}^{p+1}(U, \mathcal{F}) \\
\downarrow & & \downarrow & & & \downarrow \\
0 & \Rightarrow H^0(X, \mathcal{F}) \Rightarrow H^0(X, \mathcal{G}) \Rightarrow H^0(X, \mathcal{Q}) \Rightarrow H^1(X, \mathcal{F}) & \Rightarrow 0 & & \Rightarrow H^p(X, \mathcal{Q}) & \Rightarrow H^{p+1}(X, \mathcal{F})
\end{align*}
\]

Induction gives the required isomorphisms. ♠