MA 206 notes: Review of math 205

Dan Abramovich

Brown University

January 20, 2019

Algebtraic geometry

- At its core, algebraic geometry is the study of varieties,
- namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n ,
- assumed irreducible (and reduced).
- We are interested in intrinsic properties (dimension, smoothness . . .)
- We are interested in ways to embed a variety in projective space,
- We are interested in classifying: telling things apart, similarities, parameters . . .
- Birational geometry is a special topic of algebraic geometry
- moduli spaces are a phenomenon best studied in algebraic geometry.

Algebtraic geometry

- At its core, algebraic geometry is the study of varieties,
- namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n ,
- assumed irreducible (and reduced).
- We are interested in intrinsic properties (dimension, smoothness . . .)
- We are interested in ways to embed a variety in projective space,
- We are interested in classifying: telling things apart, similarities, parameters . . .
- Birational geometry is a special topic of algebraic geometry
- moduli spaces are a phenomenon best studied in algebraic geometry.

Algebtraic geometry

- At its core, algebraic geometry is the study of varieties,
- namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n ,
- assumed irreducible (and reduced).
- We are interested in intrinsic properties (dimension, smoothness . . .)
- We are interested in ways to embed a variety in projective space,
- We are interested in classifying: telling things apart, similarities, parameters . . .
- Birational geometry is a special topic of algebraic geometry
- moduli spaces are a phenomenon best studied in algebraic geometry.

Affine Schemes

- The current language is alertschemes.
- An affine scheme Spec A is the set of primes in the commutative ring A,
- which is a departure from varieties, where maximal ideals are taken.
- Spec A is provided a topology by declaring $V(f) = \{ \mathfrak{p} : f \in \mathfrak{p} \}$ to be closed
- (or $D(f) = {\mathfrak{p} : f \notin \mathfrak{p}}$ to be open).
- $X = \operatorname{Spec} A$ is made a locally ringed space by declaring $\mathcal{O}_X(D(f)) = A[f^{-1}]$
- (and taking \mathcal{O}_X the sheaf determined by this \mathcal{B} -sheaf).

Affine Schemes

- The current language is alertschemes.
- An affine scheme Spec A is the set of primes in the commutative ring A,
- which is a departure from varieties, where maximal ideals are taken.
- Spec A is provided a topology by declaring $V(f) = \{ \mathfrak{p} : f \in \mathfrak{p} \}$ to be closed
- (or $D(f) = {\mathfrak{p} : f \notin \mathfrak{p}}$ to be open).
- $X = \operatorname{Spec} A$ is made a locally ringed space by declaring $\mathcal{O}_X(D(f)) = A[f^{-1}]$
- (and taking \mathcal{O}_X the sheaf determined by this \mathcal{B} -sheaf).

Affine Schemes

- The current language is alertschemes.
- An affine scheme Spec A is the set of primes in the commutative ring A,
- which is a departure from varieties, where maximal ideals are taken.
- Spec A is provided a topology by declaring $V(f) = \{ \mathfrak{p} : f \in \mathfrak{p} \}$ to be closed
- (or $D(f) = {\mathfrak{p} : f \notin \mathfrak{p}}$ to be open).
- $X = \operatorname{Spec} A$ is made a locally ringed space by declaring $\mathcal{O}_X(D(f)) = A[f^{-1}]$
- (and taking \mathcal{O}_X the sheaf determined by this \mathcal{B} -sheaf).

- Schemes are locally ringed sapces which are locally affine schemes.
- Arrows are arrows of locally ringed spaces (so Sch ⊂ LRS a full subcategory).
- AffSch \simeq ComRings^{op}.
- Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .
- Further adjectives for morphisms (or *S*-schemes).
- Important: separated and proper morphisms.
- A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.

- Schemes are locally ringed sapces which are locally affine schemes.
- Arrows are arrows of locally ringed spaces (so Sch ⊂ LRS a full subcategory).
- AffSch ≃ ComRings^{op}.
- Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .
- Further adjectives for morphisms (or *S*-schemes).
- Important: separated and proper morphisms.
- A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.

- Schemes are locally ringed sapces which are locally affine schemes.
- Arrows are arrows of locally ringed spaces (so Sch ⊂ LRS a full subcategory).
- AffSch ≃ ComRings^{op}.
- Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, ...
- Further adjectives for morphisms (or *S*-schemes).
- Important: separated and proper morphisms.
- A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.

- Schemes are locally ringed sapces which are locally affine schemes.
- Arrows are arrows of locally ringed spaces (so Sch ⊂ LRS a full subcategory).
- AffSch ≃ ComRings^{op}.
- Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .
- Further adjectives for morphisms (or *S*-schemes).
- Important: separated and proper morphisms.
- A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

 $^{^{1}}$ also related to divisors and lienar systems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

 $^{^{}m l}$ also related to divisors and lienar svstems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

¹also related to divisors and lienar systems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

¹also related to divisors and lienar systems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

¹also related to divisors and lienar systems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

¹also related to divisors and lienar systems

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.¹
- Understanding sections is a fundamental question of varieties.

¹also related to divisors and lienar systems

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

Measuring the failure

- Failure of right exactness is a fact of life².
- We want to understand it, measure it, control it, interpret it in geometric terms,
- We need to study cohomology of sheaves.

²Mathematical life

Measuring the failure

- Failure of right exactness is a fact of life².
- We want to understand it, measure it, control it, interpret it in geometric terms,
- We need to study cohomology of sheaves.

Measuring the failure

- Failure of right exactness is a fact of life².
- We want to understand it, measure it, control it, interpret it in geometric terms,
- We need to study cohomology of sheaves.

²Mathematical life

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows SERRE, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

never do that to vourself!

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows SERRE, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (Gelfand-Manin, Weibel), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

³never do that to yourself!

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows SERRE, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, . . .)

³never do that to yourself!

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows Serre, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (Gelfand-Manin, Weibel), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

³never do that to yourself!

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows Serre, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (Gelfand-Manin, Weibel), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, . . .)

³never do that to yourself!

- We'll follow Hartshorne, who follows GROTHENDIECK, Sur quelques points d'algèbre homologique³, to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows Serre, Faisceax algébriques cohérents, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne's treatment.
- An important modern approach uses derived categories (Gelfand-Manin, Weibel), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

³never do that to yourself!