At its core, algebraic geometry is the study of varieties, namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n, assumed irreducible (and reduced).

We are interested in intrinsic properties (dimension, smoothness . . .)

We are interested in ways to embed a variety in projective space,

We are interested in classifying: telling things apart, similarities, parameters . . .

Birational geometry is a special topic of algebraic geometry

moduli spaces are a phenomenon best studied in algebraic geometry.
At its core, algebraic geometry is the study of varieties, namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n, assumed irreducible (and reduced).

We are interested in intrinsic properties (dimension, smoothness . . .)

We are interested in ways to embed a variety in projective space,

We are interested in classifying: telling things apart, similarities, parameters . . .

Birational geometry is a special topic of algebraic geometry

moduli spaces are a phenomenon best studied in algebraic geometry.
Algebraic geometry

At its core, algebraic geometry is the study of varieties, namely the zero sets of collections of polynomials in \mathbb{A}^n or \mathbb{P}^n, assumed irreducible (and reduced).

We are interested in intrinsic properties (dimension, smoothness . . .)

We are interested in ways to embed a variety in projective space,

We are interested in classifying: telling things apart, similarities, parameters . . .

Birational geometry is a special topic of algebraic geometry

moduli spaces are a phenomenon best studied in algebraic geometry.
The current language is alertschemes.

An affine scheme $\text{Spec } A$ is the set of primes in the commutative ring A,

which is a departure from varieties, where maximal ideals are taken.

$\text{Spec } A$ is provided a topology by declaring $V(f) = \{p : f \in p\}$ to be closed

(or $D(f) = \{p : f \not\in p\}$ to be open).

$X = \text{Spec } A$ is made a locally ringed space by declaring

$\mathcal{O}_X(D(f)) = A[f^{-1}]$

(and taking \mathcal{O}_X the sheaf determined by this \mathcal{B}-sheaf).
Affine Schemes

- The current language is alertschemes.
- An affine scheme Spec A is the set of primes in the commutative ring A,
- which is a departure from varieties, where maximal ideals are taken.
- Spec A is provided a topology by declaring $V(f) = \{p : f \in p\}$ to be closed
- (or $D(f) = \{p : f \not\in p\}$ to be open).
- $X = \text{Spec } A$ is made a locally ringed space by declaring $\mathcal{O}_X(D(f)) = A[f^{-1}]$
- (and taking \mathcal{O}_X the sheaf determined by this \mathcal{B}-sheaf).
The current language is alertschemes.

An affine scheme $\text{Spec } A$ is the set of primes in the commutative ring A,

which is a departure from varieties, where maximal ideals are taken.

$\text{Spec } A$ is provided a topology by declaring $V(f) = \{p : f \in p\}$ to be closed

(or $D(f) = \{p : f \not\in p\}$ to be open).

$X = \text{Spec } A$ is made a locally ringed space by declaring

$\mathcal{O}_X(D(f)) = A[f^{-1}]$

(and taking \mathcal{O}_X the sheaf determined by this \mathcal{B}-sheaf).
Schemes are locally ringed spaces which are locally affine schemes.

Arrows are arrows of locally ringed spaces (so $\text{Sch} \subset \text{LRS}$ a full subcategory).

$\text{AffSch} \simeq \text{ComRings}^{op}$.

Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, ...

Further adjectives for morphisms (or S-schemes).

Important: *separated* and *proper* morphisms.

A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.
Schemes are locally ringed spaces which are locally affine schemes.

Arrows are arrows of locally ringed spaces (so $\text{Sch} \subset \text{LRS}$ a full subcategory).

$\text{AffSch} \simeq \text{ComRings}^{\text{op}}$.

Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .

Further adjectives for morphisms (or S-schemes).

Important: separated and proper morphisms.

A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.
Schemes are locally ringed spaces which are locally affine schemes.

Arrows are arrows of locally ringed spaces (so $\text{Sch} \subset \text{LRS}$ a full subcategory).

$\text{AffSch} \simeq \text{ComRings}^{\text{op}}$.

Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .

Further adjectives for morphisms (or S-schemes).

Important: separated and proper morphisms.

A variety over $k = \overline{k}$ is a separated integral scheme of finite type over k.
Schemes are locally ringed spaces which are locally affine schemes.

Arrows are arrows of locally ringed spaces (so $\text{Sch} \subset \text{LRS}$ a full subcategory).

$\text{AffSch} \cong \text{ComRings}^{\text{op}}$.

Then starts a barrage of adjectives: reduced, irreducible, integral, quasicompact, noetherian, regular, . . .

Further adjectives for morphisms (or S-schemes).

Important: separated and proper morphisms.

A variety over $k = \bar{k}$ is a separated integral scheme of finite type over k.
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are sheaves of \mathcal{O}_X-modules.

Particularly useful are quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.1

Understanding sections is a fundamental question of varieties.

1 also related to divisors and linear systems
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are sheaves of \mathcal{O}_X-modules.

Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.\(^1\)

Understanding sections is a fundamental question of varieties.

\(^1\) also related to divisors and linear systems
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are Sheaves of \mathcal{O}_X-modules.

Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.1

Understanding sections is a fundamental question of varieties.

1also related to divisors and linear systems
We are working with schemes X.
The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.
Most important are Sheaves of \mathcal{O}_X-modules.
Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.
We want to understand their sections.
For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.\(^1\)
Understanding sections is a fundamental question of varieties.

\(^1\)also related to divisors and linear systems
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are Sheaves of \mathcal{O}_X-modules.

Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.\footnote{also related to divisors and linear systems}

Understanding sections is a fundamental question of varieties.
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are Sheaves of \mathcal{O}_X-modules.

Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.\(^1\)

Understanding sections is a fundamental question of varieties.

\(^1\)also related to divisors and linear systems
We are working with schemes X.

The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X.

Most important are Sheaves of \mathcal{O}_X-modules.

Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X-modules.

We want to understand their sections.

For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.\(^1\)

Understanding sections is a fundamental question of varieties.

\(^1\)also related to divisors and linear systems
Reminder: failure of right-exactness

Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.

If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact…

but right exactness fails in general:

say $Y = \text{two points in } X = \mathbb{P}^1_k$;

then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but $0 \to 0 \to k \to k^2 \to 0$ is not.
Reminder: failure of right-exactness

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
 - say $Y = \text{two points in } X = \mathbb{P}^1_k$;
 - then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
 - $0 \to 0 \to k \to k^2 \to 0$ is not.
Reminder: failure of right-exactness

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say $Y = \text{two points in } X = \mathbb{P}^1_k$;
 - then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
 - $0 \to 0 \to k \to k^2 \to 0$ is not.
- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.

- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...

- but right exactness fails in general:

- say $Y = \text{two points in } X = \mathbb{P}^1_k$;

- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but

- $0 \to 0 \to k \to k^2 \to 0$ is not.
Recall the sheaf axiom \(0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij}) \).

If \(0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0 \) exact then
\(0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X) \) exact...

but right exactness fails in general:

say \(Y = \) two points in \(X = \mathbb{P}^1_k \);
then \(0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0 \), but
\(0 \to 0 \to k \to k^2 \to 0 \) is not.
Measuring the failure

- Failure of right exactness is a fact of life\(^2\).
- We want to understand it, measure it, control it, interpret it in geometric terms,
- We need to study **cohomology of sheaves**.
Failure of right exactness is a fact of life2. We want to understand it, measure it, control it, interpret it in geometric terms, and we need to study cohomology of sheaves.
Measuring the failure

Failure of right exactness is a fact of life\(^2\).

We want to understand it, measure it, control it, interpret it in geometric terms,

We need to study **cohomology of sheaves**.

\(^2\text{Mathematical life} \)
We’ll follow Hartshorne, who follows **Grothendieck**, *Sur quelques points d’algèbre homologique*[^3], to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.

Liu follows **Serre**, *Faisceaux algèbriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.

An important modern approach uses derived categories (**Gelfand–Manin**, **Weibel**), still in the additive realm.

Homotopy theory has even loftier approaches (model categories, . . .)

[^3]: never do that to yourself!
We’ll follow Hartshorne, who follows Grothendieck, *Sur quelques points d’algèbre homologique*\(^3\), to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.

Liu follows Serre, *Faisceaux algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.

An important modern approach uses derived categories (Gelfand–Manin, Weibel), still in the additive realm.

Homotopy theory has even loftier approaches (model categories, . . .)

\(^3\)never do that to yourself!
We’ll follow Hartshorne, who follows Grothendieck, *Sur quelques points d’algèbre homologique*\(^3\), to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.

Liu follows Serre, *Faisceaux algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.

An important modern approach uses derived categories (Gelfand–Manin, Weibel), still in the additive realm.

Homotopy theory has even loftier approaches (model categories, . . .)

\(^3\)never do that to yourself!
We’ll follow Hartshorne, who follows Grothendieck, *Sur quelques points d'algèbre homologique*\(^3\), to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.

Liu follows Serre, *Faisceaux algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.

An important modern approach uses derived categories (*Gelfand–Manin, Weibel*), still in the additive realm.

Homotopy theory has even loftier approaches (model categories, . . .)

\(^3\)never do that to yourself!
- We’ll follow Hartshorne, who follows Grothendieck, *Sur quelques points d’algèbre homologique*\(^3\), to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- Liu follows Serre, *Faisceaux algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.
- An important modern approach uses derived categories (Gelfand–Manin, Weibel), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, . . .)

\(^3\)never do that to yourself!
We’ll follow Hartshorne, who follows Grothendieck, *Sur quelques points d'algèbre homologique*\(^3\), to resolve this using derived functors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.

Liu follows Serre, *Faisceaux algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves, and will be subsumed in Hartshorne’s treatment.

An important modern approach uses derived categories (Gelfand–Manin, Weibel), still in the additive realm.

Homotopy theory has even loftier approaches (model categories, . . .)

\(^3\)never do that to yourself!