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Abstract. Moduli spaces are a geometer’s obsession. A cele-
brated example in algebraic geometry is the space M̄g,n of stable
n-pointed algebraic curves of genus g, due to Deligne–Mumford
and Knudsen. It has a delightful combinatorial structure based on
weighted graphs.

Recent papers of Branetti, Melo, Viviani and of Caporaso de-
fined an entirely different moduli space of tropical curves, which are
weighted metrized graphs. It also has a delightful combinatorial
structure based on weighted graphs.

One is led to ask whether there is a geometric connection be-
tween these moduli spaces. In joint work [1] with Caporaso and
Payne, we exhibit a connection, which passes through a third type
of geometry - nonarchimedean analytic geometry.
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Figure 1. A Riemann surface of genus 2
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geometer, I tend to think about these Riemann surfaces as “smooth
projective and connected complex algebraic curves of genus g”, or just
“curves of genus g” in short. This explains the choice of the letter C.2

The moduli space Mg is the result of important work of many math-
ematicians, such as Ahlfors, Teichmüller, Bers, Mumford ...

2. From elliptic curves to higher genus

The first example, of elliptic curves, is familiar from Complex Anal-
ysis, where an elliptic curve is defined as the quotient C/〈1, τ〉 of the
complex plane by a lattice of rank 2 with Im(τ) > 0. We learn, for in-
stance in Ahlfors’s book[?], that isomorphism classes of elliptic curves
are identified uniquely by the so called j-invariant j(τ), an important
but complicated analytic function on the upper half plane. In algebraic
geometry one can use a shortcut to circumvent this: every elliptic curve
has a so called Weierstrass equation

Ea,b : y2 = x3 + ax + b

with nonzero discriminant ∆(a, b) = 4a3 + 27b2 #= 0. One can identify
the j-invariant as

j(a, b) =
4a3

4a3 + 27b2
∈ C,

so that two elliptic curves are isomorphic: Ea,b % Ea′,b′ if and only if
j(a, b) = j(a′, b′).

Either way, the moduli space of elliptic curves is just C - or, in the
language of algebraic geometers, the affine line A1

C.

Figure 1. The family of elliptic curves over C

The story for genus g > 1 is quite a bit more involved. But the
principle, at least in algebraic geometry, is similar: note that j(a, b)
is an invariant rational function in the parameters a, b, which are the
coefficients of the defining equation of Ea,b written in its Weierstrass

2I hope I can be excused for the confusion between “surfaces” and “curves”,
which comes from the fact that the dimension of C as a real manifold is 2.

Figure 2. The family of elliptic curves over C
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Figure 3. A degenerate elliptic curve as a sphere with
glued points
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form. For higher genus one does the same: one finds a sort of canonical
form for a Riemann surface in a suitable projective space, one collects
the coefficients of the defining equations, and then the coordinates on
Mg are invariant rational functions in these. The result, in its algebraic
version due to Mumford, is:

Theorem 1. The space Mg is a complex quasi projective variety.

It is a rather nice variety - it is not quite a manifold, but it is an
orbifold: it locally looks like the quotient of a manifold by the action
of a finite group.

In general the global geometry of Mg is quite a bit more involved
than the geometry of C. Its complex dimension is indeed 3g − 3.

3. The problem of compactness

Angelo Vistoli from Pisa has said that “working with a noncompact
space is like trying to keep your change when you have holes in your
pockets”. The space C of elliptic curve, and the space Mg of curves of
genus g, are noncompact, and one wishes to find a natural compactifi-
cation.

Of course every quasi-projective variety sits inside a projective space,
and its closure is a compactification. But that is not natural: we want
a compactification which is itself a moduli space, of slightly singular
Riemann surfaces!

For instance, the moduli space of elliptic curves C has a nice com-
pactification P1

C, the Riemann sphere. In which way does the added
point ∞ represent a singular Riemann surface?

∞

Figure 2. The family of elliptic curves over P1
C

The function j(a, b) extends to a regular function j : C2 !{(0, 0)} →
P1, and indeed all the points where ∆ = 0 in C2!{(0, 0)} correspond to
“singular elliptic curves” such as E−3,2 : y2 = x3 − 3x + 2: the singular
point (x, y) = (1, 0) has local plane coordinates with equation of the

Figure 4. The family of elliptic curves over P1
C
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Figure 5. A degenerate Riemann surface of genus 2
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Figure 6. A degenerate Riemann surface of genus 2

Figure 7. Gluing the same degenerate Riemann surface
of genus 2
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Figure 8. The glued curve ... and its graph
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Figure 9. Contracting an edge ... and a loop
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Figure 10. Curves in M2 ... and their graphs
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Figure 11. Pulling an edge ... and a loop
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Figure 12. Graph contractions in genus 2

MΓ′ ⊂MΓ ⇐⇒ ∃ contraction Γ′ → Γ.

MTrop
Γ′ ⊃M

Trop
Γ ⇐⇒ ∃ contraction Γ′ → Γ.

12



Mg

!!

MTrop
g

||

{Γ}

13



Mg

!!

?

MTrop
g

||

{Γ}

14



MAn
g

}}

?

Mg

""

MTrop
g

{{

{Γ}

15



MAn
g

}} ""

Mg

""

MTrop
g

{{

{Γ}

16



References

[1] D. Abramovich, L. Caporaso, and S. Payne,
The tropicalization of moduli space,
ArXiv 1212.0373

[2] D. Abramovich,
Moduli of algebraic and tropical curves,
ArXiv 1301.0474

17


