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Abstract. We give a new approach for relative and degenerate
Gromov–Witten invariants, inspired by that of Jun Li but replacing
predeformable maps by transversal maps to a twisted target. The
main advantage is a significant simplification in the definition of the
obstruction theory. We reprove in our language the degeneration
formula, extending it to the orbifold case.
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Introduction

0.1. Gromov–Witten invariants in the smooth case. Gromov–
Witten invariants were originally defined for a compact symplectic
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manifold, and in the algebraic language for a smooth projective com-
plex variety. For an extensive bibliography see [C-K]. From an alge-
braic viewpoint the construction proceeds via the following steps.

Step 1 Definition of a proper moduli stack

M := M g,n(X, β)

of stable maps to X with fixed discrete invariants β ∈ H2(X,Z)
and g, n ∈ N, together with an evaluation map ev : M → Xn.

Step 2 Construction on M of a 1-perfect obstruction theory, giving rise
to a virtual fundamental class [M ]vir ∈ Ad(M), where d is the
expected dimension of M .

Step 3 Definition of the invariants by integrating cohomology classes
on Xn against ev∗((

∏
ψmii )[M ]vir).

This construction has subsequently been extended to the case of
orbifolds, namely smooth Deligne–Mumford stacks, see [CR, AGV].
For Step 1 above this case required care in the definition of stable
maps, which were replaced by twisted stable maps in order to preserve
properness of the moduli, see [AV]; on the other hand, the obstruction
theory in Step 2 stayed essentially the same. The main difference in the
formalism of Step 3 is that the evaluation map takes values in I(X)n,
where I(X) is the so called rigidified cyclotomic inertia stack of X.

0.2. Invariants of pairs and degenerate varieties. IfX is singular,
the moduli stack of stable maps is still proper; however, the natural
obstruction theory is not perfect even for very mild singularities, and
the construction has to be modified to stand a chance to work.

The issue was addressed for singular varieties W0 = X1 tD X2,
with X − 1, X2 and D smooth appearing as fibers in a one-parameter
family with smooth total space, by A.M. Li and Y. Ruan [LR]. It
was also studied at about the same time by E. Ionel and T. Parker
[IP1, IP2], and subsequently worked out in the algebraic language by
Jun Li [Li1, Li2]. Here the moduli of stable maps was changed in such
a way as to have a perfect obstruction theory while keeping properness.
With similar techniques, relative Gromov–Witten invariants were de-
fined for a pair (X,D) with X a smooth projective variety and D a
smooth divisor in X. The main tool introduced here is that of expanded
degenerations and expanded pairs.

The degeneration formula is a way to express the Gromov–Witten
invariants of W0 = X1 tD X2 in terms of the relative invariants of the
pairs (Xi, D). It is now a key tool in Gromov–Witten theory.
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There is also work preceding the cited papers where the ideas in-
volved appear in different guises. The idea of expanded degenerations
and its use in enumerative geometry was introduced by Z. Ran [Ra87].
Even earlier Harris and Mumford introduced the related idea of admis-
sible covers [HM], revisited using logarithmic geometry by Mochizuki
[Mo]. Related ideas with a different view can be found in [Hi], [AH],
[CH], [Ber], [Va]. A simple approach in special but important cases
was developed by Gathmann [Ga].

0.3. The twisting method. In this paper we will give an alternative
algebraic definition of Gromov–Witten invariants for singular varieties
as above, and of relative Gromov–Witten invariants, which extends nat-
urally also to Deligne–Mumford stacks. Our treament follows closely
that of Jun Li. However, introducing appropriate auxiliary orbifold
structures along the nodes of both source curves and target varieties
allows us to give a shorter definition of the the obtruction theory in
Step 2 above, and a streamlined proof of the degeneration formula. At
the same time we obtain a somewhat more general result, which applies
to the orbifold case, see Theorem 0.4.1 below.

In a nutshell, the most difficult point in Jun Li’s approach is to define
an obstruction theory on predeformable maps. A predeformable map
C → W0 from a nodal curve C to a variety W0 with codimension-1
nodal singularities locally looks like

C = Spec C[u,v]
(uv)

// Spec C[x,y,zi]
(xy)

= W0

uc x�oo

vc y,�oo

and zi 7→ fi(u, v) arbitrary. As soon as c, the contact order, is > 1,
this predeformability condition is not open on maps but rather lo-
cally closed. This means that deformations and obstructions as prede-
formable maps cannot coincide with deformations and obstructions as
maps, so an obstruction theory must be constructed by other means.
Jun Li does this by a delicate explicit construction.

Our approach to this is the following: we replace W0 by the orbifold

W0 = [Spec C[ξ,η,zi]
(ξη)

/µc] having W0 as its coarse moduli space. Here

µc acts via (ξ, η) 7→ (ζcξ, ζ
−1
c η), and x = ξc, y = ηc. Then the map

C → W0 locally lifts to

C //W0

u ξ�oo

v η.�oo
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Transversal maps of this type form an open substack of all maps, so
an obstruction theory is immediately given by the natural obstruction
theory of maps. An identical twisting construction applies in the case
of pairs.

This in itself works well when we look at one node of C mapping
to a singular locus of W0. When several nodes pj map to the same
singular locus, they may have different contact orders cj. If we pick an

integer r divisible by all cj, take W0 = [Spec C[ξ,η,zi]
(ξη)

/µr], and at each

pj put a similar orbifold structure on C with index r/cj, we still obtain
a transversal map and therefore a good obstruction theory. In order
to keep the moduli stacks separated, we must sellect a way to choose
the integer r. We do this using the notion of a twisting choice - a rule
that assigns to a collection c = {cj} of contact orders a positive integer
r = r(c) divisible by all the contact orders cj, see Definition 3.4.1.

With this at hand we can define Gromov–Witten invariants. The-
orem 4.4.1 shows that our invariants are independent of the twisting
choice. Theorem 4.6.1 shows they are defomation invariants.

0.4. The degeneration formula.

Theorem 0.4.1.〈
n∏
i=1

τmi(γi)

〉W0

β,g

=
∑
η∈Ω

∏
j∈M dj

|M |!
∑
δj∈F

for j∈M

(−1)ε

〈∏
i∈N1

τmi(γi)

∣∣∣∣ ∏
j∈M

δj

〉(X1,D)

Ξ1

·

〈∏
i∈N2

τmi(γi)

∣∣∣∣ ∏
j∈M

δ̃∨j

〉(X2,D)

Ξ2

.

0.4.2. User’s guide - left hand side.

1. W0 is a proper Deligne–Mumford stack having projective coarse
moduli space W̄0. The rigidified inertia stack of W0 is denoted I(W0).

2. W0 = X1 tD X2 has first-order smoothable singular locus D sepa-
rating it in two smooth stacks X1, X2, see Sections A.1 and A.2.

3. g ≥ 0 is an integer and β is a curve class on W0.

4. γ1, . . . , γn ∈ H∗orb(W0,Q) := H∗(I(W0),Q) are classes having homo-
geneous parity, see opening of Section 5. In particular only classes on
sectors transversal to D are relevant.

5. m1, . . . ,mn ≥ 0 are integers.
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6. Consider a twisting choice r (see 3.4.1) and the moduli stack K :=
Kr

Γ(W0) of r-twisted stable maps (see 3.4.5).

7. K carries several universal maps, the coarsest of which is a stable
map C → W̄0 from the coarse contracted curve C to the coarse target
W̄0. We have n sections si : K → C. We denote ψi = s∗i c1(ωC/K).

8. We have n evaluation maps evi : K → I(W0).

9. Finally we define

〈
n∏
i=1

τmi(γi)

〉W0

β,g

= deg

((
n∏
i=1

ψmii · ev∗i γi

)
∩ [K]vir

)
.

0.4.3. Right hand side.

1. F is a homogeneous basis for H∗(I(D),Q).

2. δ̃∨ is the dual of δ ∈ F with respect to the Chen–Ruan pairing, i.e.∫
I(D)

1
r
ι∗δ̃∨j · δi =

∫
I(D)

ι∗δ̃∨j · δi = δi,j, see 5.2.3.

3. Ω is the set of splittings of the data g, n, β, see 5.1.1 for all details.
An element η = (Ξ1,Ξ2) ∈ Ω includes in particular the data below:

4. N1, N2 is a decomposition of {1, . . . , n} in two subsets.

5. Ξ1,Ξ2 is a possibly disconnected splitting of the data β, g in two
modular graphs having roots labelled by M = {n + 1, . . . , n + |M |},
see 4.8.1.

6. di for i ∈M are assigned intersection multiplicities satisfying condi-
tion B of 5.1.1

7. We take K1 := Kr
Ξ1

(X1, D) and K2 := Kr
Ξ2

(X2, D).

8. For j ∈ M the new evaluation maps are evj : K1 → I(D), and
similarly for K2.

9. (−1)ε is the sign determined formally by the equality

n∏
i=1

γi
∏
j∈M

δj δ̃
∨
j = (−1)ε

∏
i∈N1

γi
∏
j∈M

δj
∏
i∈N2

γi
∏
j∈M

δ̃∨j .

10. Finally we define〈∏
i∈N1

τmi(γi)

∣∣∣∣ ∏
j∈M

δj

〉(X1,D)

Ξ1

:= deg

((∏
i∈N1

ψmii · ev∗i γi

)(∏
j∈M

ev∗jδj

)
∩ [K1]vir

)
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and similarly〈∏
j∈N2

τmj(γj)

∣∣∣∣ ∏
j∈M

δ̃∨j

〉(X2,D)

Ξ1

:= deg

((∏
i∈N2

ψmii · ev∗i γi

)(∏
j∈M

ev∗j δ̃
∨
j

)
∩ [K2]vir

)
.

Perhaps the most mysterious part of the formula is the factor
∏

j∈M dj.
In previous works this arises as a result of delicate deformation theory
of admissible or predeformable maps. In this paper it arises as a nat-
ural, but still delicate, outcome of the geometry of orbifold maps.

0.5. The logarithmic approach. Jun Li’s study of predeformable
maps and their obstruction theory was inspired by log structures: pre-
deformable maps are maps of suitable logarithmic structures on C and
W , and in fact predeformable maps with such logarithmic structures
are open among maps of logarithmic schemes. However, at the time
when he wrote, deformation theory for log schemes was not as advanced
as it is now: it applied to log smooth schemes but the moduli spaces
are far from log smooth. In addition the passage from a log obstruction
theory to a virtual fundamental class had not been addressed. So Jun
Li had to resort to ad hoc methods to define his obstruction theory.

The situation is much improved given the later work of Olsson [Ol05].
In order to compare our results with Jun Li’s, one can first replace his
obstruction theory by one induced by the natural log structures; this
viewpoint is studied by B. Kim [Ki] and M. Gross and B. Siebert (work
in preparation).

We are able to compare our obstruction theory with the logarithmic
construction. Some further work is needed to understand the rela-
tionship of the logarithmic construction with Li’s obstruction theory.
Comparing the resulting Gromov–Witten invariants can be done indi-
rectly using deformation invariance, localization, and the work [MP]
of Maulik and Pandharipande. We plan to give details for all these
comparison issues in [AF].

0.6. Further directions. Taking a slightly broader view, an impor-
tant reason for revisiting relative Gromov–Witten theory and the de-
generation formula and putting them on a firm foundation with ei-
ther logarithmic geometry or orbifolds, is the need to develop gener-
alizations. We have been working on Gromov–Witten theory relative
to a normal crossings divisor, and we are aware of others developing
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such theories: E. Ionel, B. Parker, J. Davis, Eliashberg–Givental–Hofer,
Gross–Siebert. Gross and Siebert have a far reaching program which
includes logarithmic stable maps without expanded degenerations

. A related work is currently developed by Q. Chen.

Regarding more immediate questions, the subsequent paper [AF] will
address the following questions:

(1) comparison with the logarithmic approach and hopefully with
Jun Li’s original obstruction theory,

(2) a few simple generalizations and extensions, e.g. non-rigid tar-
gets, and

(3) orbifold relative virtual localization.

0.7. Outline of the paper. In section 1 we review twisted curves and
root constructions, as their fine structure is key to our methods.

In Section 2 we briefly review expanded pairs and expanded degen-
erations and their twisted versions, and describe their boundary. In
addition we introduce a weighted version of the stacks of twisted ex-
panded pairs and expanded degenerations. Finally we treat stable con-
figurations of points on expanded pairs and expanded degenerations.

Section 3 leads to the construction of stacks of r-twisted stable maps
and a proof of their properness. Properness is proven by way of proper-
ness of the stack of untwisted predeformable maps. In the orbifold case
this does not immediately follow from Jun Li’s result; his proof can
however be repeated without much change. We find it instructive to
use a different proof, which relies on properness of the stack of stable
configurations.

In Section 4 we define Gromov–Witten invariants using r-twisted
stable maps. We prove their deformation invariance and independence
of twisting choice.

The degeneration formula is stated and proven in Section 5. We
finish by outlining a proof, detailed in [AF], that our invariants must
coincide with Li’s.

Results in sections 4 and 5 rely on compatibility results for virtual
fundamental classes. We find it useful to systematically use Costello’s
result [Co, Theorem 5.0.1] and its generalization in [Ma, Proposition
2, Section 4.3] where a smoothness assumption is removed.

In addition we have three appendices, with necessary material which
the knowledgeable reader may only wish to peruse when needed. In
Appendix A we review material concerning pairs (X,D), nodal singu-
larities, and transversality. Appendix B is devoted to a number of basic
construction with stacks. In Appendix C we review the algebricity of
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stacks of maps and construction and properties of their obstruction
theories.

0.8. Conventions. The following conventions will be in force through-
out the paper.

We work over an algebraically closed base field of characteristic 0,
denoted by C. We note that the assumption that the field be alge-
braically closed is mostly for convenience, whereas the characteristic
assumption is significantly harder, and for some purposes impossible,
to avoid.

All stacks and morphisms are assumed to be locally of finite type
over C, unless otherwise specified.

A point in a scheme or algebraic stack (sometimes denoted by p ∈ X)
is a C-valued point, unless otherwise specified.

Whenever we say locally we always mean étale locally, unless other-
wise specified.

If X is an algebraic stack, by D(X) we denote the derived category
of sheaves of OX-modules with coherent cohomology. An object F ∈
D(X) is called perfect of perfect amplitude contained in [a, b], or just
perfect in [a, b] for brevity, if it is locally isomorphic to a complex of
locally free sheaves in degrees a, a+ 1, . . . , b.

An element in a skew commutative graded ring is of homogeneous
parity if it is a sum of only even-degree or only odd-degree terms, in
which case its parity is even or odd, respectively.

0.9. Notation.

C fixed algebraically closed field of characteristic 0.
A The stack [A1/Gm].
LX/Y , Lf cotangent complex of a morphism f : X → Y .
k number of components in an accordion
` generic splitting divisor
r twisting index along a divisor
r, r twisting sequence on an accordion, twisting choice
nX , ei number of legs to general point, twisting tuple
nD, fj number of legs to boundary divisor, twisting tuple
cj, dj contact order and intersection multiplicity at such a point
d β ·D
m index of τ in descendant notation τm(γ)
h, j number of components of a disconnected graph, their index
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1. Roots and twists

1.1. Twisted curves. A prestable twisted curve with n markings is a
one dimensional separated connected Deligne–Mumford stack C, with
at most nodal singularities, together with a collection of disjoint closed
substacks Σ1, . . . ,Σn of the smooth locus of C such that:

(1) the open locus Csm r
⋃

Σi in C is a scheme;
(2) each node is a balanced node.

The latter condition means that locally C looks like the model balanced
node of index rp

Nrp :=
[

Spec (C[u, v]/(uv))
/

µrp

]
where the action of µrp is balanced, namely (u, v) 7→ (ζrpu, ζ

−1
rp v).

Similarly, locally near each Σi the twisted curve C looks like[
Spec C[u] / µei

]
where µei

acts via u 7→ ζeiu. The integers e1, . . . , en are the orbifold
indices of the markings Σi.

A family of twisted prestable curves with orbifold indices e1, . . . , en
is a flat morphism C → S together with closed substacks (Σ1, . . . ,Σn)
of C such that:

(1) Σi is a gerbe banded by µei
over S;

(2) each fiber (Cs,Σ1,s, . . . ,Σn,s) is a twisted prestable curve with
orbifold indices ei.

1.1.1. Automorphism groups of twisted curves. By [AV, Lemma 4.2.3],
see B.1, the 2-groupoid of twisted curves is equivalent to a stack, so we
can speak of automorphisms of twisted curves.
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Let π : C → C be the morphism from a twisted curve C to its
coarse moduli space C. Since the formation of C is functorial, the
automorphism group of C acts on C. Consider the group AutCC of au-
tomorphism of C acting trivially on C. As shown in [ACV, Proposition
7.1.1] there is a canonical isomorphism

AutCC '
∏

p∈Sing(C)

µrp .

Notice that nodes contribute but markings do not. These automor-
phisms are known as ghost automorphisms, as they become “invisible”
when looking only at C. The action of µrp is induced on local coordi-
nates by (ξ, η) 7→ (ζrpξ, η), equivalently (ξ, η) 7→ (ξ, ζrpη). We further
discuss these through gluing data in 1.4.5 below.

1.1.2. Deformations of twisted curves. We now consider proper twisted
curves. Just like the untwisted case, deformations of twisted curves are
unobstructed [AJ, Proposition 2.1.1], [ACV, 3.0.3]. The infinitesimal
theory is identical to the untwisted case: first-order infinitesimal auto-
morphisms are in the group Hom(Ω1

C(
∑

Σi),OC), first-order deforma-
tions in Ext1 and obstructions vanish since Ext2 = 0.

Again as in the untwisted case, the sheaf Ext1(Ω1
C(
∑

Σi),OC) is a
sum of one-dimensional skyscraper sheaves supported at the nodes:
Ext1(Ω1

C(
∑

Σi),OC) = ⊕p∈Sing(C)Ext1(Ω1
C(
∑

Σi),OC)p. The balanced
action condition guarantees that the action of the stabilizers on these
skyscraper sheaves is trivial, therefore they are generated by sections.
The local-to-global spectral sequence for Ext gives epimorphisms

Ext1(Ω1
C(
∑

Σi),OC)→ H0
(
Ext1(Ω1

C(
∑

Σi),OC)p
)

for all p ∈ Sing(C), corresponding to a divisor ∆p in the versal defor-
mation space - the locus where the node p persists.

1.1.3. Comparing deformations and automorphisms of C and C. Since
AutCC is discrete, it does not affect first-order infinitesimal automor-
phisms, so the homomorphism

Hom(Ω1
C(
∑

Σi),OC)→ Hom(Ω1
C(
∑

Σ̄i),OC)

is an isomorphism.

On the other hand the action of AutCC on H0
(
Ext1(Ω1

C(
∑

Σi),OC)
)

is easily seen to be effective. The deformation spaces of C and C are
smooth and have the same dimension. It follows that the deformation
space DefC,Σi of the twisted curve is a branched cover of the deformation
space DefC,Σ̄i of the coarse moduli space, with index rp along ∆p. See
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[A, 3.5], [Ol07a, 1.10]. If we denote by ∆p̄ the corresponding divisor
in DefC,Σ̄i , then the pullback of the divisor ∆p̄ in DefC,Σi is the divisor
rp∆p. It follows that over the smooth locus of ∆p, the scheme-theoretic
inverse image of ∆p̄ is locally of the form ∆p × Spec C[ε]/(εrp).

1.1.4. Moduli of twisted curves. Families of twisted prestable curves
of genus g with n markings form an algebraic stack, denoted Mtw

g,n; its
connected components are labeled by the indices ei of the markings, and
they are all isomorphic to each other ([AGV, Theorem 4.2.1], [Ol07a,
Theorem 1.8]). We have an evident embedding Mg,n ↪→ Mtw

g,n, since
a curve is in particular a twisted curve. Taking coarse moduli spaces
gives a left inverse morphisms Mtw

g,n →Mg,n. Even when fixing ei, the
latter morphism is not of finite type and not separated - over the nodal
locus of Mg,n there are infinitely many boundary components of Mtw

g,n

corresponding to different indices at the nodes. Along a boundary
component ∆ ⊂ Mtw

g,n corresponding to a node with index rp, this
morphism is branched with index rp as described above. A similar
result holds on universal families [A, Section 3.3], given by the usual
identification of the universal families in terms of moduli of curves with
an additional untwisted marking [?, Corollary 9.1.3].

1.2. Root stacks. We review here the theory developed in [AGV, Ap-
pendix B], [C1, Section 2], [M-O, Section 4].

1.2.1. Power morphisms. For a positive integer r, let νr : A1 → A1

be the morphism given by t 7→ tr; its restriction to Gm is a group
endomorphism, hence we get induced endomorphisms which we denote
by the same symbol νr : BGm → BGm and νr : A = [A1/Gm]→ A.

1.2.2. Root stack of a line bunle. If X is an algebraic stack, a morphism
from X to BGm is a line bundle L on X; we denote by r

√
L/X the fiber

product X ×
L,BGm,νr

BGm. The stack r
√
L/X parametrizes r-th roots of

the pullback of L: objects of r
√
L/X over a base scheme S are triples

(f,M, φ) where

(1) f : S → X is a morphism, i.e. an object of X(S),
(2) M is an invertible sheaf on S, and
(3) φ : M r → f ∗L is an isomorphism.

Arrows are given using pullbacks as usual. Note that there is a natural
isomorphism r

√
L/X → r

√
L∨/X defined by mapping (f,M, φ : M⊗r →

f ∗L) to (f,M∨, (φ∨)−1).
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1.2.3. Root of a divisor. If D is an effective Cartier divisor on X,
it defines a morphism to [A1/Gm]; it corresponds to the line bundle

OX(D) = I∨D with its canonical section 1D. We denote by X( r
√
D) the

fiber product X D×νr [A1/Gm]. This stack parametrizes symultaneous
r-th roots of the pullback of I∨D and of the section: objects over a base
scheme S are tuples (f,M, φ, s) where

(1) f : S → X is a morphism,
(2) M is an invertible sheaf on S,
(3) φ : M r → f ∗L an isomorphism, and
(4) s ∈ H0(M) a section,

such that φ(sr) = 1D. Again arrows are given using pullbacks.

Notice that in case f ∗D is still a Cartier divisor (e.g. if f is dom-
inant), then this structure simply means that f ∗ is divisible by r: an

object of X( r
√
D) with such f is given by M = O(D) and s = 1D,

where rD = f ∗D. In other words, the object is canonically determined
by f .

In particular, the stack X( r
√
D) carries an effective Cartier divisor D

such that rD is the inverse image of D. As a stack D ' r
√
ND⊂X/D.

If (X,D) is a locally smooth pair in the sense of A.1, then so is

(X( r
√
D),D); we call it the locally smooth pair obtained from (X,D)

by taking an r-th root.

1.2.4. Roots with several divisors. Given finitely many effective Cartier
divisors D1, . . . , Dk on X, and given positive integers r1, . . . , rk, we use
the following notation:

X( r1
√
D1, . . . ,

rk

√
Dk) := X( r1

√
D1)×X · · · ×X X( rk

√
Dk).

We will mostly use this notation when the divisors meet transversally.

1.2.5. Comparison of roots. Note that if r = r′ · r′′ then νr = νr′ ◦ νr′′ .
In particular we have canonical morphisms r

√
L/X → r′

√
L/X and

X( r
√
D)→ X( r′

√
D). In fact this gives a canonical isomporphism

r
√
L/X // r′′

√
M
/(

r′
√
L/X

)
and similarly an isomorphism

X( r
√
D) //

(
X( r′
√
D)
)(

r′′
√
D
)
.
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1.2.6. Twisted curves as root stacks: the markings. Suppose now C is a
twisted curve with markings Σi with indices ei. Then C is canonically
a root stack as follows. Consider the curve Cu obtained by gluing the
coarse moduli space of the smooth locus Csm with C r (∪Σi). We have
a “partial coarse moduli space” morphism π′ : C → Cu. Denote by
Σu
i the markings on Cu. Then π′∗Σu

i = rpΣi. This gives a canonical
morphism

C → Cu( e1
√

Σ1, . . . ,
en
√

Σn)

which is easily seen to be an isomorphism [AGV, Theorem 4.2.1].

Generalizing the structure of twisted curves at nodes is a bit more
subtle, see 1.4.

1.2.7. Triviality of relative automorphisms. We return to the general
setup, and consider Since X( r

√
D)→ X is representable over the dense

open X rD, the groupoid AutX(X( r
√
D)) is equivalent to a group, see

B.1, and we regard it as a group. But since for dominant f : S → X
an object (f,M, φ, s) is determined by f , the group AutX(X( r

√
D)) is

trivial.

1.2.8. Inertia of root stacks when X is a scheme. Inertia stacks are
reviewed in B.3.1. Since we are working over C we will identify inertia
stacks and cyclotomic inertia stacks. It will be useful

for us to describe the cyclotomic inertia stack of X( r
√
D) and its

rigidified version, and similarly for the substack D. The picture is
clear when X is a scheme or an algebraic space: since D is a gerbe we
have I(D) = tr−1

i=0D and I(D) = tr−1
i=oDi, where Di ' g

√
ND⊂X/D and

g = gcd(r, i). We similarly have

I(X(
r
√
D)) = X(

r
√
D) t

r−1∐
i=1

D,

and

I(X(
r
√
D)) = X(

r
√
D) t

r−1∐
i=1

Di.

The latter follows from the decompositions into an open substack and
closed complement

I(X(
r
√
D)) = (X rD) t I(D)

and

I(X(
r
√
D)) = (X rD) t I(D).
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1.2.9. Inertia of root stacks when X is an orbifold. In case X itself is
an orbifold the picture is almost identical, using the inertia stacks of X
and D: we still have decompositions into an open substack and closed
complement precisely as above. The coarse moduli space of the stack
I(D) consists of r copies of the coarse moduli space of I(D). How-
ever the stack structure of the components of I(D) and I(D) becomes
slightly more involved than in the case when X is representable.

We note that I(BGm) ' Gm×BGm, and the morphism I(BGm)→
I(BGm) is simply νr×νr. In particular this morphism is a µr-gerbe over
a µr torsor, coresponding to the gerbe factor BGm → BGm and the
torsor factor Gm → Gm. As discussed in B.3.1, forming the inertia is
compatible with fiber products. We obtain that I(D) = I(D)×I(BGm)

I(BGm)→ I(D) is canonically a µr-gerbe over a µr torsor.

Since D is assumed Deligne–Mumford, the image of I(D) → Gm

is discrete, so the torsor is trivial (though as a group scheme it is a
possibly nontrivial extension). In particular every component of I(D)
is a µr-gerbe over the image component of I(D). By definition this is
the gerbe associated to the normal bundle of D, namely the pullback
of D. We obtain the following formula:

I(D) = µr × I(D)×D D.

Of course the group scheme structure of I(D) → D is not a prod-
uct but the extension of the group shcheme I(D) ×D D → D by µr

corresponding to the normal bundle of D. Explicitly, one can look at
local models on X of the form [V/G], where V is smooth and G is
the stabilizer of a geometric point. We may assume that D is defined
by an eigenfunction x. Denote the character of the action of G on x
by χ : G → Gm. Then a local model of X( r

√
D) is given by [Ṽ /G̃],

where Ṽ = SpecV OV [u]/(ur − x), and G̃ = G ×
χ,Gm,νr

Gm is the natural

extension of G by µr.

A similar description follows for rigidified inertia stack. What we
will need is the following:

Lemma 1.2.10. Let (x̃, g̃) be an object of a component Z ⊂ I(D).
Let (x, g) be the image object of the corresponding component Z ⊂
I(D). Denote by (x̃, g̃)((( 〈g̃〉 and (x, g)((( 〈g〉 the corresponding objects
of components Z ⊂ I(D) and Z ⊂ I(D). Write |〈g̃〉| = r

c
|〈g〉|. Then

the morphism Z → Z is a gerbe banded by µc.

Proof. We have that Z → Z is a gerbe banded by 〈g̃〉 and Z → Z is
a gerbe banded by 〈g〉. Also Z → Z is banded by µr. Chasing the
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diagram shows that Z → Z is indeed a gerbe banded by a cyclic group,
and its order is clearly the ratio |〈g〉| · r/ |〈g̃〉| = c. ♣

1.3. Maps and lifts. We now follow the key observation of Cadman’s
work [C1], especially Theorem 3.3.6, relating tangency with orbifold
maps. Suppose now (C,Σ) a twisted curve, (X,D) a locally smooth
pair and g : C → X a morphism such that g∗D = cΣ. We call c the
contact order of C and D at p. (Note that if Σ is twisted with index
e, then deg Σ = 1/e and the intersection multiplicity of C and D at P
is d = c/e.)

Lemma 1.3.1. Let r, rΣ ≥ 1 be integers, let X ′ = X( r
√
D) with divisor

D, and similarly C ′ = C( rΣ
√

Σ) with divisor Σ̃. We assume c divides
r. Then

(1) g : C → X lifts to g̃ : C ′ → X ′ if and only if r|c · rΣ,
(2) when r|c · rΣ such lift is unique up to unique isomorphism,
(3) the lift is representable if and only if r = c · rΣ, and
(4) the lift is transversal if and only if r = c · rΣ.

Proof. (see [C1, Theorem 3.3.6]) For (1), a lift corresponds to a line
bundle M on C ′ and a section s such that sr = g̃∗1D. But g∗1D = 1cΣ
and 1Σ pulls back to 1rσ

Σ̃
on C ′. So g̃∗1D = 1c·rΣ

Σ̃
. It follows that if a

lift exists then r|c · rσ. And if rd = c · rσ for some integer d, the pair
(O(dΣ̃),1d

Σ̃
) gives the desired lift C ′ → X ′.

(2) Uniqueness follows since (O(Σ̃),1Σ̃)|CrΣ ' (O,1) which has no
nontrivial automorphisms.

(3) It suffices to consider points over Σ. Here automorphisms of an

object (L, s = 0, LrΣ ' O(Σ̃)) of C ′ are given by L
ζ→ L with ζ a

primitive rΣ - root. The action on O(dΣ̃) = Ld is via ζd, which has a
nontrivial kernel exactly when d > 1.

(4) We have g̃∗D = dΣ̃, so g̃ is transversal if and only if d = 1.

♣

Remark 1.3.2. A similar result holds without the assumption that
c|r, with part (3) modified. See [C1, Theorem 3.3.6].

Given a morphism (C,Σ) → (X,D), the restriction Σ → D is an
object of a component Z of I(D). When r = crΣ, the representable
and transversal lift (C ′, Σ̃)→ (X ′,D) gives rise to an object Σ̃→ D of
a component Z of I(D) lying over Z. The following computation will
be used in the degeneration formula:

Lemma 1.3.3. The morphism Z → Z is a gerbe banded by µc.
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Proof. The object Σ→ D is the rigidification of an object correspond-
ing to (x, g) with |〈g〉| = e, and Σ̃→ D is the rigidification of an object
corresponding to (x̃, g̃) with |〈g̃〉| = e · rΣ. But rΣ = r/c and the result
follows from Lemma 1.2.10. ♣

1.4. Twisting along a nodal divisor. We now want to generalize the
singularity structure of a twisted curve to the following case. Let W
be an algebraic stack, nodal and first order smoothable along a closed
substack D, as discussed in A.3. Assume also that W = X1 tD X2

where X1 and X2 are closed substacks, which along D are smooth and
intersect transversally. The ordering of Xi will be kept throughout the
discussion. Assume we are given an isomorphism of Ext1(ΩW ,OW )|D
with OD, i.e., an isomorphism α : N1 → N∨2 , where Ni = ND/Xi .

Definition 1.4.1. We define the stack obtained by twisting W along
D with index r, or adding a balanced node structure of index r along
D, denoted W ( r

√
D), as follows. Let X ′i := Xi(

r
√
D), and D′i ⊂ X ′i the

reduced inverse image of D, so that D′i is isomorphic to r
√
Ni/D. Let

πi : D′i → D be the structure morphism, and let φi : L⊗ri → π∗iNi the
universal line r-th root. Let β : D′1 → D′2 be the morphism defined by
the triple (L∨1 , π1, α◦(φ∨1 )−1); it is easy to see that β is an isomorphism.

We define W ( r
√
D) to be the stack obtained by gluing X ′1 to X ′2 along

the identification of D′1 with D′2 via β. We let D′ be the closed substack
image of either D′i.

Remark 1.4.2. A generalization of this construction and more infor-
mation about it may be found in [ACFW] and [BV].

1.4.3. Gluing as pushout. In Definition 1.4.1, the term gluing means
the existence of a 2-pushout diagram

D′ //

��

X ′1

��

X ′2 // W ( r
√
D).

See [AGV, Appendix A]. In particular, for every algebraic stack Y , the

groupoid of morphisms from W ( r
√
D) to Y has as objects the triples

(f1, f2, ε) where fi : X ′i → Y is a morphism and ε is a 2-morphism
between f1|D′1 and f2|D′2 ◦ β; a 2-morphism from (f1, f2, ε) to (g1, g2, ζ)
is a pair of 2-morphisms αi : fi → gi such that the two 2-morphisms
from f1|D′1 to g2|D′2 ◦β induced respectively by ε and α2 and by α1 and
ζ coincide.



ORBIFOLD TECHNIQUES IN DEGENERATION FORMULAS 17

In particular, the structure maps X ′i → W and the identity of β

define a morphism π : W ( r
√
D)→ W .

Lemma 1.4.4. (1) W ( r
√
D) is an algebraic stack which is nodal

and first-order smoothable along D′;
(2) π is proper, quasifinite and an isomorphism over W rD.

Proof. (1) the only nontrivial part to check is the first-order smootha-
bility. This come from the identification of L2 with L∨1 via β, and the
fact that Li = ND′i/X

′
i
.

(2) Properness is local in the smooth topology of the target, so we

may assume that W = An ×N1; then W ( r
√
D) = An ×Nr, and we are

done since Nr → N1 is proper. Quasifiniteness is also smooth local in
the target and follows in the same way. The isomorphism over W rD
is obvious from the definition, as it is the case D = ∅. ♣

1.4.5. Automorphisms. Unlike root stacks, twisted nodal stacks do have
non-trivial relative automorphisms.

Proposition 1.4.6. Let hi be an automorphism of Xi restricting to the
identity on D, and let h : W → W be the induced automorphism. Each
hi acts on Ni by multiplication by a nowhere vanishing regular function
λi on D. Then the set of isomorphism classes of automorphisms of
W ( r
√
D) lifting h (in the sense of Lemma B.1.3) is in natural bijection

with the set of regular functions ε on D such that εr = λ1λ2.

Proof. Write W ′ := W ( r
√
D) for brevity. We apply 1.4.3 with the stack

Y = W ′. Let h′ : W ′ → W ′ be a lifting, and (h′1, h
′
2, ε) the correspond-

ing triple. Then h′1 and h′2 are determined up to unique 2-isomorphism
by Lemma B.1.3. All that is left is to find a two-isomorphism ε :
h′1|D′1 → h′2 ◦ β lifting the 2-isomorphism λ : h1|D1 → h2|D1 induced by

h. Since h|D acts on L = Ext1(ΩW ,OW )|D by multiplication with λ1λ2,
we have to find an automorphism ε of its r-th root whose rth power
is λ1λ2. Every automorphism of a line bundle is a nowhere vanishing
function ε, and the lifting condition means εr = λ1λ2. ♣

Corollary 1.4.7. In particular the group of automorphisms of W ( r
√
D)

in the sense of B.1 lifting the identity of W is naturally isomorphic to
µr(D); if D is connected, then it is just µr.

As in the case of curves, elements of this group are called ghost
automorphisms.



18 D. ABRAMOVICH AND B. FANTECHI (SEPTEMBER 19, 2010)

1.4.8. See [A], Section 3.3: suppose given a one-parameter smoothing of
W along D, that is a flat morphism π :W → B with B a smooth curve
and an isomorphism of W0 := π−1(b0) with W such that W is smooth
along D. Then the balanced node structure can be described more
directly as follows. LetW ′ be the fiber product over W̃ ofW( r

√
W1) and

W( r
√
W2); by the universal property, the morphism W ′ → B induces

π̃ :W ′ → B( r
√
b0). Then W ( r

√
D) is just the fiber of π̃ over a geometric

point of B( r
√
b0) over b0.

Note that the one-parameter smoothing induces a trivialization of
Ext1(ΩW ,OW ), unique up to a non-zero scalar (corresponding to a
choice of the basis of Tb0B).

1.4.9. Twisted curves and twisted nodes. Consider a node ℘ of index r
on a twisted curve C, and assume the two branches of C at ℘ belong to
two different components of C. Replacing C by an open neighborhood
of ℘ we may assume C = C1t℘ C2. Let C be the coarse moduli space of
C and p the image of ℘. It follows from the definition that C = C( r

√
p).

Even if the node ℘ is not locally separating in the Zariski topology,
there is an étale neighborhood where it is, so in fact every twisted
node is obtained by this construction locally in the étale topology. See
[Ol07a] for a formalism which works in general; we will not use this
generality in this paper.

1.4.10. Maps and lifts. Here is the result analogous to 1.3.1 for nodes:

Lemma 1.4.11. Let C = C1 tΣ C2 be a nodal twisted curve and let
W = X1 tD X2 have first-order smoothable nodal singularities. Let
g : C → W be a representable morphism, given via gi : Ci → Xi ⊂ W
and an isomorphism φ : (g1)|Σ → (g2)|Σ. Assume g∗iD = c · Σ as
Cartier divisor on Ci (so the two contact orders agree). Let r, rΣ ≥ 1

be an integers, and consider the twisted structures W ′ = Y ( r
√
D) and

C ′ = C( rΣ
√
D). We again assume c divides r. Then

(1) g : C → W lifts to g̃ : C ′ → X ′ if and only if r|c · rΣ,
(2) such lift is representable if and only if r = c · rΣ, and
(3) such lift is transversal if and only if r = c · rΣ.

Proof. The necessity in (1) as well as (2) and (3) hold since the Lemma
1.3.1 applies to gi. To show that r|c · rΣ is sufficient in (1), consider
the lift g̃i of gi corresponding to the line bundle O(dΣ̃) on (Ci)

′ with
section si = 1d

Σ̃
, where rd = crΣ as in Lemma 1.3.1; it clearly satisfies

sri = g̃∗i 1E.
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The isomorphism β of 1.4.1 sends O(C1)′(Σ̃)|Σ̃ to O(C2)′(Σ̃)∨|Σ̃. In

particular it sends O(C1)′(dΣ̃)|Σ̃ to O(C1)′(dΣ̃)|Σ̃, giving the gluing data
for a lift g̃ : C ′ → X ′.

♣
Remark 1.4.12. In this case we do not have uniqueness since we may
compose by ghost automorphisms.

2. Expanded pairs and degenerations

2.1. Expanded pairs.

Convention 2.1.1. In this subsection we fix a locally smooth pair
(X,D), i.e. X is an algebraic stack smooth along a smooth divisor D.
Write N for ND/X . Let P := PD(N ⊕ OD), with its sections D− and
D+ having normal bundle N∨ and N respectively. Let Pi (for i ≥ 1)
be copies of P, and let D−i and D+

i be the corresponding sections. For

a positive integer r, let Dr := r
√
N/D, see 1.2.

Definition 2.1.2. Let k ≥ 0 be an integer. Define X[k] to be the
algebraic stack obtained by gluing X to P1 via the natural isomorphism
of D with D−1 , and for every i ∈ {1, . . . , k − 1} gluing Pi with Pi+1 via
the natural isomorphism of D+

i with D−i+1.

Note that X[k] has nodal first-order smoothable singularities along
its singular locus, which is the disjoint union of D0, . . . , Dk−1 (where
Di is the image of either D−i+1 or D+

i ). Write Dk for the image of
D+
k ; note that X[k] is smooth along Dk and that ι∗NDk/X[k] = N , if

ι : D → Dk ⊂ X[k] is the natural isomorphism.

We call the sequence of morphisms D → X[k] → X an untwisted
expanded pair. (It is also sometimes called an untwisted half accordion.)
of length k.

Definition 2.1.3. Let r := (r0, . . . , rk) be a sequence of positive inte-
gers. Define X[k](r)→ X[k] to be the morphism obtained by twisting
X[k] along Di with index ri; note that we can apply the construction
in section 1.4 since the relevant normal bundles are naturally dual to
each other. We call the sequence of morphisms Drk

ι→ X[k](r) → X
the r-twisted expanded pair of length k over (X,D), or just a twisted
expansion of (X,D). Its twisting index

is defined to be the integer rk.

Note that an untwisted expansions of length k is the same as a 1-
twisted expansion of length k, where 1 = (1, . . . , 1). Moreover, there
is a natural morphism X[k](r) → X[k] which, if X is a scheme or
algebraic space, is just the morphism to the coarse moduli space.
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2.1.4. Stacks of expanded pairs. Forming stacks of expanded pairs is
slightly more subtle than it might seem, since in general not all de-
formations are good. The stack T u of untwisted expanded pairs was
defined by Jun Li, see [Li1, Proposition 4.5] where the notation Zrel is
used for its universal family, and [GV, Section 2.8] where the notation
T for the stack we denote here by T u is introduced. In this paper we
also use the stack T tw of twisted espanded pairs. The stacks T u and
T tw are studied in [ACFW], where various alternative definitions and
properties are described. Here we give a definition which is quick but
somewhat unsatisfying, specific for the case where Gm(D) = C∗.

Definition 2.1.5. Assume Gm(D) = C∗. Fix a positive integer r. The
stack T tw

r of twisted expanded pairs of index r of (X,D) is defined as
follows.

An object over a reduced scheme S is a sequence of proper morphisms
D → X → X × S such that

(1) D → X is a closed embedding;
(2) the composite morphism X → S is flat;
(3) for every point s ∈ S the fiber Ds → Xs → X is isomorphic to

a half accordion of index r over (X,D).

A morphism of twisted expanded pairs of index r over a morphism
φ : S → S ′ is an equivalence class of morphisms ψ : X → X ′ such that
the following diagram is 2-cartesian:

D //

��

D′

��

X
ψ

//

��

X ′

��

X × S
Id×φ
// X × S ′.

Note that the implicit 2-arrows making such a diagram cartesian are
necessarily unique by Lemma B.1.3. Two such morphisms ψ, ψ̄ are
equivalent if there exists a (necessarily unique) 2-morphism λ : ψ ⇒ ψ̄
satisfying the appropriate compatibility with the given 2-arrows.

We define the stack of twisted expanded pairs of (X,D) to be T tw =
trT tw

r .

The stack T u of untwisted expanded pairs is defined as the substack
of T tw where in (3) above we insist that Ds → Xs → X is isomorphic
to an untwisted half accordion over (X,D). In this case D = D × S.
Note however that for twisted expansions D → S is in general not a
product - it only becomes a product over a µr-gerbe over S.
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We denote the universal families of expanded pairs X u
univ → T u and

X tw
univ → T tw.

Proposition 2.1.6. (1) The stacks T tw
r and T u are smooth con-

nected algebraic stacks of dimension 0.
(2) There is a natural open embedding T u ↪→ T tw and a natural

right inverse T tw → T u.
(3) The stacks T tw and T u do not depend on the choice of the pair

(X,D).
(4) If furthermore Pic(D) is representable and discrete, the objects

and arrows of T tw(S) agree with those given as in definition
2.1.5 also for non-reduced schemes.

A proof is given in [ACFW].

Part (3) of the proposition was observed in [GV]. Part (4) applies
for X a curve and D a point, and Graber and Vakil identify T tw with
a familiar stack of pointed semistabe curves: the substack of the stack
M0,3 of 3-pointed presetable curves of genus 0, where the pointed curve
curve is semistable and the points marked 1, 2 are on the same compo-
nent. This enables us to read off properties of T tw, T u from those of
stacks of twisted curves.

2.1.7. Defining the stack of expansions in general. As in part (4) of
the proposition, Definition 2.1.5 is valid also for non-reduced base
schemes S if we assume in addition that Pic(D) is representable and
H1(D,OD) = 0, i.e. Pic(D) discrete. But in general a half accordion
admits deformations which are no longer half accordions. Since the
stacks T u and T tw are smooth they are determined by their restriction
to reduced schemes.

A definition of the stacks T tw, T u without any restrictions on D, as
well as a proof of Proposition 2.1.6, can be found

in [ACFW]. Three approaches for doing this are given (along with
several variations and relationships between them).

The first approach is the original approach of Jun Li, which is done in
terms of an explicit limit presentation of the stacks and their universal
families. With this approach one can describe the structure of T tw, T u
and their universal families explicitly. The modular properties of the
stack, which is used in the proof of the degeneration formula, require
a further argument.

Another approach relies on the fact that the description above holds
for all base schems when X is a curve. The same holds for the “one
dimensional geometry” (A, BGm). One then shows that for such X the
stacks T tw and T u are independent of X as in Proposition 2.1.6 (3),



22 D. ABRAMOVICH AND B. FANTECHI (SEPTEMBER 19, 2010)

and in fact for every X the universal family can be constructed as a
pull-back via the map X → A associated to D.

The third approach relies on the fact that half accordions carry a
canonical log structure, and deformations of half accordions preserving
the log structure are automatically half accordions, so the issue of bad
deformations does not arise.

2.1.8. Charts for the stacks. Here we give a presentation of the base
stacks, as this is used in this paper. For the universal families see
[ACFW]:

(1) Jun Li’s stack T u is the limit of the stacks Uk = [Ak/Gk
m] '

Ak, with k a positive integer, carrying a universal family of
untwisted expansions with an order-preserving injective labeling
of the splitting divisors by elements of {1, . . . , k}. The locus ∆`

where the splitting divisor labeled by ` persists corresponds to
x` = 0 in Ak. There are natural injective maps Uk → Uk′ for
each strictly increasing map {1, . . . , k} → {1, . . . , k′}, and the
limit is taken in the categorical sense. This presentation can be
read off directly from Graber-Vakil’s realization of T u in terms
of semistable curves.

(2) The stack T tw
1 has a presentation similar to that of T u: it is

the limit of Uk,r = [Ak/Gk
m] ' Ak, where k is a positive integer

and r = (r1, . . . , rk) is a vector of positive integers (indicating
twisting indices). But now Uk,r carries a universal family of
twisted expansions of (X,D) with splitting divisors labelled by
elements of {1, . . . , k}, and the splitting divisor corresponding
to ` is twisted with index r`. We now take the same maps
Uk,r → Uk′,r′ , but only corresponding to those strictly increas-
ing maps φ : {1, . . . , k} → {1, . . . , k′} respecing the twisting,
namely r′φ(`) = r`. Again the limit is taken in the categorical

sense. This presentation comes by presenting T tw
1 as a stack of

twisted semistable curves.
(3) The stacks T tw

r are all isomorphic to T tw
1 : the universal family

is obtained by replacing the universal family by its r-th root
X ( r
√
Dk).

(4) The embedding T u → T tw is given by mapping Uk isomorphi-
cally to Uk,1, where 1 = (1, . . . , 1).

(5) The map T tw → T u is given by maps Uk,r → Uk, induced by
the map Ak → Ak given by (z1, . . . , zk) 7→ (zr11 , . . . , z

rk
k ). This

in particular gives that

Uk,r = Uk(
r1
√

∆1, . . . ,
rk

√
∆k).
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See 1.4.8.
(6) This immediately gives a relationship of boundary divisors.

Consider ∆ ⊂ T u the boundary divisor. Its inverse image in
T tw is the divisor

∑
r r∆r, where ∆r is the divisor correspond-

ing to expansions having a splitting divisor with twisting index
r. See 1.1.3, 1.1.4.

2.2. Twisted expanded degenerations. We now discuss stacks anal-
ogous to the Artin stack underlying Jun Li’s family W of expanded
degenerations.

Convention 2.2.1. In this subsection we fix π : W → B, a flat mor-
phism such that B is a smooth curve, W is a smooth stack, and b0 ∈ B
is the unique critical value of π; we set W0 := π−1(b0) an assume
W0 = X1 tD X2 is the union of two smooth closed substacks X1 and
X2 intersecting transversally along D, a smooth divisor in each Xi.
This implies that W0 is nodal and first-order smoothable along its sin-
gular locus D.

Definition 2.2.2. (1) Let k ≥ 0 be an integer. Define W0[k] to
be the Deligne–Mumford stack obtained by gluing the k-th un-
twisted half accordion X1[k] over (X1, D) to X2 via the iden-
tification of Dk ⊂ X1[k] with D ⊂ X2; denote the image of
Di ⊂ X1[k] again by Di.

(2) Let r := (r0, . . . , rk) be a sequence of positive integers. Define
W0[k](r) → W0[k] to be the morphism obtained by twisting
W0[k] along Di with index ri.

(3) We call the morphism W0[k](r) → W0 the (k, r) twisted accor-
dion or over W0, or just an expansion of W0. We call it an
untwisted accordion if r = (1, . . . , 1) or equivalently if it has the
form W0[k] → W0. An expanded degeneration of W is either a
general fiber or a twisted or untwisted accordion.

Definition 2.2.3. Assume Gm(D) = C∗. The stack Ttw
B,b0

of expanded
degenerations of π is defined as a stack over B as follows.

An object over a reduced B–scheme S is a locally projective mor-
phism W → S ×B W of algebraic stacks satisfying the following con-
ditions:

(1) the composite morphism W → S is flat;
(2) for every point s ∈ S the fiber Ws → Wp(s) is an isomorphism

if p(s) 6= b0, and is an accordion over W0 if p(s) = b0.

A morphism from W → S to W ′ → S ′ over a morphism of B–schemes
φ : S → S ′ is an equivalence class of morphisms ψ : W → W ′ such
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that the following diagram is 2-cartesian:

W
ψ

//

��

W ′

��

S ×B W
φ
// S ′ ×B W.

Note that the implicit 2-arrow is uniquely determined by ψ by Lemma
B.1.3, since there exists an open scheme-theoretically dense substack
ofW such thatW → S×BW is representable. Two morphisms ψ and
ψ̄ are equivalent if there exists an isomorphism λ : ψ → ψ̄ compatible
with the given 2-arrows.

The stack Tu
B,b0

of untwisted expanded degenerations is defined by
insisting that the fiber Ws → Wp(s) is an untwisted accordion over W0

if p(s) = b0.

We denote the universal families of expanded degenerationsWu
univ →

Tu and Wtw
univ → Ttw.

Here is the analogue of Proposition 2.1.6:

Proposition 2.2.4. (1) The stacks Ttw
B,b0

and Tu
B,b0

only depend on
the base (B, b0) but not on the family W .

(2) The stacks Ttw
B,b0

and Tu
B,b0

are smooth, algebraic connected stacks
of dimension 1;

(3) There is a natural open embedding Tu
B,b0

↪→ Ttw
B,b0

and a natural
right inverse Ttw

B,b0
→ Tu

B,b0
;

(4) If Pic(D) is representable and discrete, the objects of Ttw
B,b0

(S),Tu
B,b0

(S)
are described as above even for nonreduced S.

2.2.5. Definition in general and charts. The analogous discussion 2.1.7
holds for Ttw

B,b0
and Tu

B,b0
as well: the definition in terms of reduced base

schemes is sufficient since the stacks are smooth; but families over non-
reduced bas require care because not all deformations of an expansion
are expansions. The general base case, with no assumptions on D,
is treated in [ACFW]. The logarithmic approach and the approach
through one-dimensional geometry are almost identical to the case of
pairs.

Again we present the base stacks using Li’s limit approach. The
following charts are read off from a description of Ttw

B,b0
in terms of

semistable curves.

(1) For k a positive integer consider the morphism Ak → A given
by the product map, and the morphism B → A given by the
divisor b0. This time let Uk = Ak ×A B. Jun Li’s stack Tu

B,b0
is
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the limit of the stacks Uk. Again this carries a universal family
of untwisted expansions with an order-preserving labeling of the
splitting divisors by elements of {1, . . . , k}. And again the locus
∆` where the `-th splitting divisor persists corresponds to x` = 0
in Ak → Ak. There are again natural injective maps Uk → Uk′
for each strictly increasing map {1, . . . , k} → {1, . . . , k′}, and
the limit is taken in the categorical sense.

(2) The stack Ttw
B,b0

has a presentation similar to that of Tu
B,b0

: it is
the limit of Uk,r defined as follows. Fix k a positive integer and
r = (r1, . . . , rk) a vector of positive integers (indicating twisting
indices). Consider the map Ak → A induced by (x1, . . . , xk) 7→∏
xrii . We define Uk,r = Ak ×A B using this map. Now Uk,r

carries a universal family of twisted expansions with splitting
divisors labelled by elements of {1, . . . , k}, and the splitting
divisor corresponding to ` is twisted with index r`. We now take
the maps Uk,r → Uk′,r′ , but for only those strictly increasing
map φ : {1, . . . , k} → {1, . . . , k′} respecing the twisting, namely
r′φ(`) = r`. Again the limit is taken in the categorical sense.

(3) The embedding Tu
B,b0
→ Ttw

B,b0
is given by mapping Uk isomor-

phically to Uk,1, where 1 = (1, . . . , 1).
(4) The map Ttw

B,b0
→ Tu

B,b0
is given by maps Uk,r → Uk, induced by

the map Ak → Ak given by (z1, . . . , zk) 7→ (zr11 , . . . , z
rk
k ). Again

this gives that

Uk,r = Uk(
r1
√

∆1, . . . ,
rk

√
∆k).

(5) This gives the same relationship of boundary divisors: denote
the boundary divisor, namely the inverse image of b0, by Tu

0 ⊂
Tu
B,b0

. It is evidently a reduced normal crossings divisor. Its
inverse image in Ttw is the divisor Ttw

0 =
∑

r rT
r
0, where Tr

0

is the divisor corresponding to expansions having a splitting
divisor with twisting index r. Its reduction

∑
r Tr

0 is a reduced
normal crossings divisor.

(6) An observation about the universal family are useful. LetWk,r →
Uk,r be the universal family. By definition of ∆` ∈ Uk, we have
a splitting of the restriction Wk,1 ×Uk ∆` as W`

1 tD` W`
2. Then

Wk,r =Wk,1( r1

√
W1

1 ,
r1

√
W1

2 , . . . ,
rk

√
Wk

1 ,
rk

√
Wk

2 ).

This is obtained by iterating 1.4.8.

2.3. The singular case in the absence of smoothing. We have
defined Tu

0 = Tu
B,b0
×B {b0} and Ttw

0 = Ttw
B,b0
×B {b0}. When π :
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W → B is as in 2.2 above, these stacks parametrize untwisted and
twisted expansions of the singular fiber W0. But more is true: consider
a first-order smoothable W0 = X1 tD X2. We define untwisted and
twisted accordions on W0 as before, and they obviously coincide with
the previous definition if W0 is provided with a smoothing over some
curve B. In [ACFW] we define families of expansions of W0. Then we
have the following.

Proposition 2.3.1. (1) The stacks Ttw
0 and Tu

0 are the stacks of
twisted and untwisted expansions of W0.

(2) These stacks Ttw
0 and Tu

0 are independent of W0.

In particular, if W0 is a fiber in a one-parameter family π : W → B,
the universal families over Ttw

0 and Tu
0 are independent of the smooth-

ing.

Note that the stacks Ttw
0 and Tu

0 are singular, and Ttw
0 is nonreduced.

So a direct definition analogous to 2.1.5 and 2.2.3 in terms of families
over reduced schemes is insufficient.

2.4. Split expansions. As the stacks Ttw
0 and Tu

0 are normal crossings,
their normalizations are of interest.

We define the stack Tr,spl
0 to be the stack of twisted accordions with

a choice of a splitting divisor D of twisting index r. We similarly Tu,spl
0

in the untwisted case. We have a natural map Tr,spl
0 → Tr

0 ⊂ Ttw
0 and

Tu,spl
0 → Tu

0 . On the level of charts these are defined as follows: recall
the chart Uk,r of Ttw

0 . For an index ` such that r` = r consider the locus

∆k,r,` ⊂ Uk,r defined by x` = 0. Then Tr,spl
0 is the limit of the stacks

∆k,r,`, where the maps ∆k,r,` → ∆k′,r′,`′ are taken only with respect to
those strictly increasing maps φ : {1, . . . , k} → {1, . . . , k′} respecting
r, r′ as before such that in addition φ(`) = `′. The universal splitting
divisor over ∆k,r,` is denoted D`.

Consider now the stack Q = Tu,spl
0 ×Tu0

Ttw
0 . It decomposes as a

disjoint union Q = trQr, where over he reduction of Qr the splitting
divisor in the universal family is twisted with index r. On the level of
charts Qr is given by r∆k,r,` ⊂ Uk,r defined by xr` = 0. It follows that

Lemma 2.4.1. The morphism Tr,spl
0 → Qr is of degree 1/r.

Consider the universal family Wr,spl
univ over Tr,spl

0 . Taking the partial
normalization along the splitting divisor D gives two families D → X1

and D → X2 of expanded pairs, which define a morphism Tr,spl
0 →

T tw
r × T tw

r .
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Lemma 2.4.2. The natural morphism

Tr,spl
0 → T tw

r × T tw
r

corresponding to the two components of the partial normalization of
the universal family Wr,spl

univ is a gerbe banded by µr; in particular it has
degree 1/r.

Proof. This is identical to [AGV, Section 5]

. The gluing datum corresponds to an isomorphism of the residual
gerbes reversing the band. Such isomorphisms form a torsor under the
group-stack Bµr.

♣

2.5. Weighted and r-twisted expansions. In Theorem 4.4.1 we will
need a slightly refined version of the stacks T tw of expanded pairs and
Ttw of expanded degenerations, namely the stacks T r and Tr of r-
twisted ∆-wighted expansions.

2.5.1. ∆-weighted expansions. As a first step we consider a set ∆ and
stacks T ∆ and T∆ in which the splitting divisors of the universal ob-
ject are weighted, in a sense analogous to Costello [Co, Section 2], by
elements of ∆. In our application of Theorem 4.4.1 the set ∆ is the
set of finite multi-sets c = {c1, . . . , cn} of positive integers, which will
indicate contact orders of branches of a curve along a splitting divisor.
(Recall that a multi-set is an unordered sequence, with elements pos-
sibly appearing several times). Unlike Costello’s situation we will not
need a monoid structure on the weight set.

The construction and algebricity of these weighted stacks can be
obtained by a slight modification of their various constructions for the
stacks without weights. An approach as in [ACFW] close to Jun Li’s
original construction described in 2.1.7 and 2.2.4 is as follows: the
stack Ttw is obtained as a direct limit of stacks of the form Uk,r, where
r denotes the twisting sequence of the k splitting divisors. The stack
T∆ is similarly defined as a direct limit of labelled copies of the same:

Uk,r,c ' Uk,r.

Here c = (c1, . . . , ck) and c` ∈∆ denote the weight on the `-th splitting
divisor; the arrows Uk,r,c → Uk′,r′,c′ are included in the limiting category
only when r′ and c′ are both compatible with the underlying increasing
map φ : {1, . . . k} → {1, . . . k′}, namely r′φ(`) = r` and c′φ(`) = c`. The

construction for T ∆ is similar.

There are evident forgetful maps T∆ → Ttw and T ∆ → T tw. By
construction these maps are étale and representable. The universal
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families on T∆ and T ∆ are given by pullback along the respective
forgetful map. As before we define T∆

0 to be the inverse image of b0.
The relationship of families in 2.2.5 (6) immediately applies to charts
of the stacks T∆, T ∆.

2.5.2. r-twisted expansions. Next we consider a function r : ∆ → N
with positive integer values. An object of T∆ or T ∆ is said to be
r-twisted if the `-th splitting divisor is twisted with index r(c`). We
obtain open substacks T r ⊂ T ∆ and Tr ⊂ T∆ of r-twisted, ∆-weighted
expansions. Indeed these are simply obtained by only taking the charts
Uk,r,c for which r` = r(c`) in the notation above. Again Tr

0 denotes the
inverse image of b0

We define a partial ordering ≺ on functions r : ∆→ N by divisibility:
r ≺ r′ if an only if r(c)|r′(c) for all c ∈∆.

Lemma 2.5.3. Assume that we are given functions r and r′ : ∆ →
N such that r ≺ r′. Then are natural partial untwisting morphisms
Tr′

B,b0
→ Tr

B,b0
, Tr′

0 → Tr
0 and T r′ → T r. These morphisms lift canon-

ically to universal families, i.e.: for every algebraic stack S and ev-
ery family of expansions W ′ → S corresponding to a morphism f ′ :
S → Tr′, let W → S be the family induced by the composite morphism
f : S → Tr; then there is a natural morphism p : W ′ → W lifting
Tr′

B,b0
→ Tr

B,b0
.

Proof. This can be described on the level of charts defined above.
We have a canonical morphism from Uk,r′,c = Uk(

r′1
√

∆1, . . . ,
r′k
√

∆k) to
Uk,r,c = Uk(

r1
√

∆1, . . . ,
rk
√

∆k) and similarly on the universal families,
see 1.2.5. ♣

The following proposition is a manifestation of the well-known fact
that given a twisted curve, there is essentially a unique way to increase
its indices by any given amount.

Proposition 2.5.4. The morphisms Tr′

B,b0
→ Tr

B,b0
, Tr′

0 → Tr
0 and

T r′ → T r are proper, quasi-finite, flat and surjective. Moreover this
map has pure degree 1 in the sense of [Co, Section 5].

Proof. This can be tested locally on the target, and the statement for
Tr′

0 → Tr
0 follows from that for Tr′

B,b0
→ Tr

B,b0
. It suffices to consider

a chart Uk,r,c in Tr
B,b0

or T r, and note that there is a canonical chart

Uk,r′,c in Tr′

B,b0
or T r′ and a proper quasi-finite birational surjective map

Uk,r′,c → Uk,r,c. This is because Uk,r′,c is the root stack of Uk,r,c with
indices given by r′`/r` along the divisor corresponding to the `-th node.
Since these charts are smooth, the map is flat. ♣
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2.6. Stable expanded configurations. We now consider stable maps
of collections of points to expanded pairs and expanded degenerations.
If X is a smooth stack, we can view Xn as a (smooth) parameter space
for maps from n ordered points to X. We want to generalize this to
the case of a pair (X,D) and to that of the fibers of a one-parameter
degeneration π : W → B, where we insist that none of the n points
maps to either a singular point or the boundary divisor.

In the case of a pair (X,D) this was done by Kim and Sato in
[KS]. The case of a degeneration is similar, but we approach it from
a slightly different angle, which can also be adapted to the case of
pairs. Further details on both cases are available in [ACFW]. To avoid
notation conflicts with [KS], we will consider configurations of points
labeled by {1, . . . , n}. The unlabeled case is obtained as usual by taking
the quotient by the symmetric group Sn.

Convention 2.6.1. We fix a morphism W → B and a point b0 ∈ B
with the same assumptions as in Convention 2.2.1.

Definition 2.6.2. A stable expanded configuration (W → W,σi) of
degree n on W → B consists of

(1) an object W → Wb of Tu
B,b0

(C), namely either a general fiber
or an untwisted accordion, and

(2) an ordered collection of n smooth points σi ∈ Wsm,

such that, in case W is an accordion, for each component Pj there
exists an ij such that σij ∈ Pj.

An isomorphism ρ : (W → W,σi) → (W ′ → W ′, σ′i) is an isomor-
phism ρ :W →W ′ over W such that ρ(σi) = σ′i.

Definition 2.6.3. A family of stable expanded configurations of degree
n over a B–scheme S is given by

(1) an object WS → W × S of TB,b0(S);
(2) n sections σi : S →Ws;

such that for every s ∈ S the fiber over s is a stable expanded config-
uration of degree n.

Morphisms of families of stable expanded configurations are defined
using cartesian diagrams as usual; we denote the the resulting category

W
[n]
π . It is clearly a stack. Composing σi with W → W , we obtain

an object of the fibered power W n
π of W over B, giving a morphism

W
[n]
π → W n

π .

The notation should not be confused with the notation for the degree-
n Hilbert scheme of a surface.
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Proposition 2.6.4. The stack W
[n]
π is smooth and algebraic, and the

morphism W
[n]
π → W n

π is projective. In particular, if W is a scheme,

or a Deligne–Mumford stack, so is W
[n]
π .

The proof of this proposition, as well as the analogous result of [KS],
can be found

in [ACFW]. As before, the construction also applies for a first-order
smoothable variety W0 without a deformation.

3. Stacks of twisted stable maps and their properness

3.1. Conventions on stacks of maps. We will extend Jun Li’s con-
struction [Li1, Section 3] to the case where we degenerate an orbifold
instead of a smooth variety, and we introduce the twisted version of
that stack which allows us to replace predeformable maps by transver-
sal ones. We do the same for pairs as well. In this sections, the ambient
space for both degenerations and pairs will be denoted by the letter W .

We will use data as set in one of the following two conventions:

Convention 3.1.1 (Data for a degeneration). Consider a morphism
π : W → B and W0 = X1 tD X2 as in Section 2.2. We also fix
Γ = (β, g,N, e) where

(1) β is a curve class in the fiber of W → B;
(2) g ≥ 0 is an integer;
(3) N is a finite ordered set, possibly empty, which we may take to

be {1, . . . , n}.
(4) e = (ei)i∈N is a tuple of positive integers such that Iei(Wb) 6= ∅

for all b ∈ B, i ∈ N ; note that if W is a variety, one must have
ei = 1 for all i.

Convention 3.1.2 (Data for a pair). Fix

a smooth pair (W,D) with W a Deligne–Mumford stack. We also
fix Γ = {β, g,N,M, e, f , c} where

(1) β is a curve class on X;
(2) g ≥ 0 is an integer;
(3) N,M are disjoint finite ordered sets, which we may take to be
{1, . . . , n} and {n+ 1, . . . , n+ |M |}.

(4) e = (ei)i∈N as above, and f = (fj)j∈M is similarly a tuple of
positive integers such that Ifj(D) 6= ∅ for all j ∈M .

(5) c = (cj)j∈M are positive integers such that
∑

j∈M cj/fj = (β ·
D)X .

We denote by d = (dj)j∈M the tuple formed by dj = cj/fj.
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Remark 3.1.3. Following Jun Li, we will later find it useful to think
in either case of the data Γ as a weighted modular graph. In the
degenerate case it has one vertex marked with (g, β), no edges or loops,
legs corresponding to the set N and weighted by ei, and no roots. In the
pair case it has again one vertex, no edges or loops, legs corresponding
to the set N and weighted by ei, and roots corresponding to the set M
and weighted by (fj, cj). See definition 4.8.1. Indeed, the degeneration
formula requires working with disconnected graphs. To avoid heavy
notation here we postpone the disconnected case to section 4.8.

Consider the universal families Wtw
univ → Ttw

B,b0
and Wu

univ → Tu
B,b0

of
twisted and untwisted expanded degenerations. They both satisfy the
assumptions in Convention C.1.1 with D = ∅. Similarly consider the
universal families of pairs (Wtw

univ,Dtw
univ) → T tw and (Wu

univ,Duuniv) →
T u. These satisfy the assumptions in C.1.1 with D = Duniv.

Convention 3.1.4 (Shorthand for stacks of maps). The notation Ktw,
Ku, and K(W ) will be used for either one of the following three cases

(1) (Degeneration case) W → B is a degeneration as in 3.1.1, T tw =
Ttw
B,b0

, T u = Tu
B,b0

.

Ktw := KΓ(Wtw
univ/T

tw
B,b0

), Ku := KΓ(Wu
univ/T

u
B,b0

)),

K(W ) := KΓ(W/B).

(2) (Singular case) W = W0 is first-order smoothable, B = Spec C,
T tw = Ttw

0 , T u = Tu
0 .

Ktw := KΓ(Wtw
0univ/T

tw
0 ), Ku := KΓ(Wu

0,univ/T
u
0)),

K(W ) := KΓ(W0).

(3) (Relative case) (W,D) a pair, T tw = T tw, T u = T u.

Ktw := KΓ((Wtw
univ,Dtw

univ)/T tw), Ku := KΓ((Wu
univ,Duuniv)/T u)),

K(W ) := KΓ(W,D).

We follow the notation K,Knd and Knd of C.1.6, adding a superscript
tw or u to denote the corresponding substacks of Ktw or Ku. We will
suppress the superscript tw or u when statements hold for wither one.

In either of the three cases we will write f : (C,Σ)→W → W for a
stable map belonging to K (i.e. Ktw or Ku). We will indicate the divisor
D only when necessary.

Following [Li1], we can characterize points of K belonging to the
Deligne–Mumford locus K using semistable components:
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Definition 3.1.5. Let f : (C,Σ) → W → W be a stable map corre-
sponding to a point in Ktw. Let E ⊂ C be an irreducible component.

We say that E is a semistable component if it is a standard cyclic
cover of a line occuring as a fiber in some P, explicitly if

(1) E is smooth, irreducible, of genus zero, contains no marked
points;

(2) E maps to a fiber F of W → W ;
(3) f |E : E → F is branched at most over the intersection of F

with the singular locus of W ;
(4) E ∩ Csing maps to Wsing.

Lemma 3.1.6. A point of K given by a stable map f : (C,Σ)→W →
W is in K if and only if there is no irreducible component Pi such
that every component of C whose image meets Pi r (D+

i ∪ D−i ) is a
semistable component.

Proof. The point is in K if and only if no positive dimensional sub-
group of the group of automorphisms of the accordion W lifts to an
automorphism of C. Up to the finitely many ghost automorphisms,
such automorphism are given by a copy of Gm for every component Pi.
The Deligne–Mumford condition is equivalent to ensuring that for each
i there is at least one component Xi mapping to Pi to which the Gm

action doesn’t lift. It is easy to see that the only components whose
image meets Pi r (D+

i ∪D−i ) to which the action lifts are exactly the
semistable components. ♣

3.2. Transversal maps and predeformable maps. Recall the nat-
ural morphisms between Ttw

B,b0
and Tu

B,b0
in Proposition 2.2.4 (3), and

the corresponding ones for the singular and relative cases. By the
functoriality of [AV, Corollary 9.1.2], these induce an open embedding
Ku → Ktw and an untwisting morphism Ktw → Ku which is its left in-
verse. These are compatible with the morphisms Ku → K(W ),Ktw →
K(W ).

Definition 3.2.1. Let f : (C,Σ) → W → W be a stable map cor-
responding to a point in Ktw. We say that f is transversal if it is
transversal to both the singular locus and the boundary divisor in the
sense of A.2.

Note that the condition is vacuous when W is nonsingular and D
empty.

Remark 3.2.2. If f is a transversal stable map, then it is nondegen-
erate.
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By Lemma A.2.2 the transversal condition is open. This allows us
to formulate the following:

Definition 3.2.3. We define Ktr ⊂ Ktw to be the open substack of
transversal maps; we write Ktr := Ktw ∩ Ktr.

The main objects we will use are transversal maps. However we find
it appropriate to relate them to predeformable maps, a notion used by
Jun Li and other previous authors. Accordingly, our arguments will go
by way of predeformable maps, even though this detour can be avoided.

Definition 3.2.4. We say that a non-degenerate map C → W is pre-
deformable if it is in the set-theoretic image of Ktr in Ku.

3.2.5. Contact orders and Li’s predeformability. In [Li1, Definition 2.5],
a nondegenerate morphism f : C → W over an algebraically closed field
is defined to be predeformable if at every point p ∈ C mapping to a
singular component D` of W , locally the map is described as

(Spec k[u, v]/(uv))sh −→ (Spec k[x, y, z1, . . . , zm]/(xy))sh

where

x 7→ ucp , y 7→ vcp .

for some positive integer cp, called the contact order at p. Note that
we put no condition at points mapping to the boundary divisor, if
nonempty; however for points p mapping to the boundary divisor we
define a contact order as usual: locally the map is described as

(Spec k[u])sh −→ (Spec k[x, z1, . . . , zm])sh

where x 7→ ucp , and the contact order is again cp.

We now show that the two notions of predeformability coincide in a
precise way. The key is Lemmas 1.3.1 and 1.4.11.

Lemma 3.2.6. (1) Let C → W be a predeformable map in the
sense of Definition 3.2.4. Then C → W is predeformable in the
sense of [Li1, Definition 2.5].

(2) Let f : C → W be predeformable in the sense of [Li1, Definition
2.5]. For any component D of the singular locus of W fix a
positive integer rD divisible by the contact order cp for every
node of C mapping to the given singular component D. Let W
be the root stack of W with index rD over each component D of
the singular locus. Then there is a transversal map f̃ : C → W
mapping to f : C → W ; in particular f is predeformable in the
sense of Definition 3.2.4.



34 D. ABRAMOVICH AND B. FANTECHI (SEPTEMBER 19, 2010)

(3) Any twisted stable map f̃ : C → W, with W as in (2) above,
and lifting f : C → W is transversal.

Proof. (1) Let C → W be a transversal map which lifts C → W .
Consider a point p ∈ C, and a lifting p̃ in C. In local coordinates,
if p is a node the map C → W is given by x 7→ u, y 7→ v and
arbitrary zi 7→ fi(u, v). The coordinates on C are ū = urp and
v̄ = vrp . The coordinates on W are x̄ = xrD , ȳ = yrD , and zi
unchanged. Then x̄(urp) = urD and similarly for ȳ. We thus
have rD = cp · rp for some cp and may take ū = x̄cp , v̄ = ȳcp

as needed. When p maps to boundary divisor the calculation is
similar.

(2) Applying Lemmas 1.3.1 and 1.4.11 a transversal representable
lift exists with C having twisting index rp = rD/cp, locally at
each p mapping to a component D. Since such a lift is unique
away from the union of the D, these local lifts glue to a lift
C → W .

(3) This follows from part (4) of Lemma 1.3.1 and part (3) of
Lemma 1.4.11.

♣

We now consider the scheme structure for stacks of transversal and
predeformable maps. Since there are infinitely many choices for the
twisting index rD in Lemma 3.2.6, we need the following for con-
structibility:

Lemma 3.2.7. (1) (Base change property.) Let C → W → S be a
family of transversal maps over S, and let W̃ → W be a family
of root stacks. Let C̃ = W̃×W C. Then C̃ → S is a twisted nodal
curve and C̃ → W̃ → S is a family of transversal maps.

(2) (Descent property.) Assume C̃ → W̃ → S is a family of
transversal maps with underlying untwisted maps C → W → S.
Assume that there is an integer d, and D ⊂ W , either a compo-
nent of the singular locus or the boundary divisor, such that W̃
is twisted at D with twisting index rD such that for any point
p of C mapping to D`, we have d · cp|rD. Write r = rD

d
and let

W → W be isomorphic to W ( r
√
D) near D and to W̃ elsewhere.

Then the representable map C → W → S obtained by stabilizing
C̃ → W → S is transversal.

Proof. The transversality property is tested on fibers. The base change
property is now a local computation, e.g. in case of a node

(Spec k[u, v]/(uv))sh −→ (Spec k[x, y, z1, . . . , zm]/(xy))sh
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where x 7→ u, y 7→ v and z7 → fi(u, v), the map C̃ → W̃ is given by

(Spec k[ũ, ṽ]/(ũṽ))sh −→ (Spec k[x̃, ỹ, z1, . . . , zm]/(x̃ỹ))sh

where x̃ 7→ ũ, ỹ 7→ ṽ and z7 → fi(u, v) as before.

For the descent property, note that C is obtained as the relative
coarse moduli space of C̃ → W . Its formation commutes with base
change so we can restrict to fibers again. The integer r is divisible by
the contact orders, so Lemmas 1.3.1 and 1.4.11 apply. In particular,
since the map is representable we have r = fpcp, and therefore it is
transversal. ♣

Lemma 3.2.8. The collection of predeformable maps is closed in Ku
nd ⊂

Ku, the open locus of nondegenerate maps.

Proof. This is a local statement in the étale topology; hence we can use
the proof given by Jun Li, see [Li1, Lemma 2.7].

♣

Given a deformation of a nondegenerate map over a base of finite
type, only finitely many contact orders occur. Lemma 3.2.7 implies
that the following gives a well defined closed substack:

Definition 3.2.9. We define the stack of predeformable maps Ktw
pd to

be the stack-theoretic image of Ktr in Ku. We define Ku
pd, K

u
pd, K

tw
pd as

the intersections of the appropriate sunbstacks of Ktw with Ktw
pd .

Remark 3.2.10. A more precise form of the statement in Lemma
3.2.6, which we do not use in this paper, is the following: if W → B
is a projective morphism of schemes, then the stack Ku

pd is naturally
isomorphic to M(W,Γ) in [Li1].

Set theoretically this is shown in Lemma 3.2.6. The subtle scheme
structure in J. Li’s stack relies on [Li1, Lemmas 2.3], which describes
the scheme structure of a predeformable map over a base scheme, and
[Li1, Lemmas 2.4] which shows that the scheme structure behaves well
under base change and can be glued. One can lift these to the root
stacks described in Lemma 3.2.6 and show that indeed a family of
predeformable maps underlies a family of transversal maps.

Remark 3.2.11. As remarked by Jun Li, Ku
pd is locally closed, but in

general not open, in Ku; this makes it hard to write down a perfect
obstruction theory for it, see [Li2, 1.2-1.3 p. 213-129 and Appendix, p.
284-288].
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3.3. Properness of the stack of predeformable maps. Our goal
is to prove properness for certain stacks of transversal maps, which
can be done directly. However we find it appropriate to relate this to
previous work and go through properness of predeformable maps.

We will need the following lemma, which is a slightly stronger state-
ment of part of Lemma 3.2.8.

Lemma 3.3.1. Let (f : C → W ,Σ) ∈ Ku , and let X ⊂ C be an
irreducible nondegenerate component. Assume there is a point z ∈
X ∩ Csm such that f(z) ∈ Wsing. Then (f : C →W , pi) 6∈ Ku

pd ⊂ Ku.

Proof. We argue by contradiction and assume there exist

• a spectrum ∆ of a discrete valuation ring R with generic point
η and special point s;
• a family (f∆ : C∆ → W∆,Σ∆) in Ku such that (fη : Cη →
Wη,Ση) ∈ Ku

pd and (fs : Cs →Ws,Σs) = (f : C →W ,Σ).

Let z be a point on X which is smooth on C but maps toWsing. The
problem is local at z so we may assume

Wsh
∆ = (SpecR[u, v, w1, . . . , wm]/(uv − a))sh

for some a ∈ R,

Csh
∆ = (SpecR[x])sh ,

and on the central fiber

f ∗u = 0, f ∗v = xr.

Here sh means strict henselization and may be thought of as a choice
of local analytic coordinates.

Consider the homomorphism f ∗∆ : R[u, v, wi]/(uv−a)→ R[x] and let
u∆, v∆ be the images of u and v; they must satisfy u∆v∆ = a, and be
equal to (0, xr) modulo ms. In particular v∆, viewed as a polynomial
in x, has positive degree; therefore the only possibility that its product
with u∆ has degree zero is that u∆ = a = 0, which means that fη is
not predeformable. ♣

Notation 3.3.2. When we use the valuative criterion, we always take
∆ = SpecR for R a discrete valuation ring, with general point η and
closed point s. Given a commutative diagram

η
fη
//

��

X

p

��

∆ g
// Y
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we will view liftings of g to X as a groupoid whose objects are the
two-commutative diagrams

η
fη
//

��

X

p

��

∆

f
>>}}}}}}}

g
// Y

and whose morphisms f ⇒ f ′ are those sending the two-commutative
diagram of f to that of f ′. We will sometimes write “there is a unique
lifting with certain properties” to mean “there exists a lifting with
certain properties, and it is unique up to unique isomorphism”.

Lemma 3.3.3. The commutative diagram

Ku //

��

T u

��

K(W ) // B

induces a proper morphism Ku → K(T )×B T u.

Proof. The fibered product is KΓ(W ′/T u) where W ′ := W ×B T u. The
structure mapWu

univ → W ′ induces the morphism from Ku to the fiber
product, and it is proper by C.1.8. ♣

Theorem 3.3.4. The natural morphism Ku
pd → K(W ) is proper.

The proof of this theorem will be given at the end of this section
3.3. It is closely related to the corresponding proof in [Li1, Lemmas
3.8, 3.9]; the reader who is familiar with both Jun Li’s proof and the
definition of twisted stable maps may well be able to directly modify
Jun Li’s proof to cover the orbifold case treated here.

Notation 3.3.5. To prove properness of the morphism Ku
pd → K(W )

we use the valuative criterion. We will fix from now on a commutative
diagram

η //

��

Ku
pd

��

// T u

��

∆ // K(W ) // B,

and our aim will be showing that, after a base change ∆̃→ ∆, there is a

unique lifting of ∆→ K(W ) to ∆̃→ Ku
pd. We will denote by (C̄, Σ̄, f̄)

the family of stable maps over ∆ corresponding to ∆ → K(π) and by
(Cη,Ση, fη : Cη →W) the family corresponding to η → Ku

pd.
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Remark 3.3.6. From Lemma 3.3.3 it follows that there exists an
equivalence, compatible with base change, between liftings of ∆ → B
to T u and liftings (up to base change) of ∆ → K(W ) to Ku. Given a

lifting a : ∆̃→ T u, we will denote by (Ca,Σa, fa : Ca →W) the family

of stable maps corresponding to the lifting ∆̃→ Ku induced by a.

The key to producing a lifting of ∆→ B to T u is to use an auxiliary
choice of a stable configuration of points as a guide.

Proposition 3.3.7. After a base change ∆̃→ ∆, there exist a positive
integer N and closed subschemes (p̄1, . . . , p̄N) =: P̄ ⊂ C̄ such that

(1) the induced morphisms p̄i → ∆̃ are isomorphisms;
(2) each p̄i is contained in the smooth, nontwisted and not marked

locus of both C̄η and C̄s;
(3) P̄η lifts uniquely to Pη ⊂ Cη;
(4) every irreducible component of C̄s intersects P̄s.

Proof. First assume that the morphism W → B, where W is the coarse
moduli space of W , is quasiprojective. Consider the line bundle

L := (ωC̄/∆(Σ)⊗ f ∗(H⊗3))⊗3,

where H is an ample line bundle on the fibers of W → B. The line
bundle L is very ample for C over ∆; we can choose the p̄i to be the
zero locus of a general section of L, suitably ordered by taking a base
change. In particular, in this case the degree of L, and hence the
number N of added marked points, is given a priori in terms of the
numerical data.

For the general case, we remark that we can replace in the previ-
ous argument W → B with its closed substack which is the scheme
theoretic image of C → W∆. Its coarse moduli space is automatically
quasiprojective because it is a family of curves over a discrete valuation
ring

. ♣

We now replace ∆ by ∆̃, so we may assume sections as in the propo-
sition exist over ∆.

Proposition 3.3.8. (1) The morphism η → WN induced by fη
and Pη ⊂ Cη defines a stable configuration, and hence a mor-

phism η → W
[N ]
π which lifts the morphism ∆ → WN given by

f̄ and P̄ ;
(2) There exists a unique lifting of ∆ → B to a0 : ∆ → T u such

that the induced map s→W [N ] is a stable configuration.
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Proof. (1) If X ⊂ Cη is an irreducible component then X contracts to a
point in C̄η if and only if it contains no pi, if and only if it is semistable.
The result then follows from Lemma 3.1.6.

(2) This follows from the fact W
[N ]
π → WN

B is proper and repre-
sentable. ♣

Proposition 3.3.9. The point (Cs,Σs, fs) ∈ Ku induced by the lifting
a0 is in Ku

nd.

Proof. Step 1: we prove that any connected component of the con-
tracted locus of Cs → C̄s is a chain of semistable components. We
argue by contradiction. Let X be a leaf (i.e., an end component)
which is not part of a semistable chain of the contracted locus. So
X contains exactly one node of Cs and at most one point of P . Since
(Cs → W ,Σs + P ) ∈ Ku, and since the image of X in W maps to
a point in W , it follows that fs|X is a non constant map to a fiber
of W → W and X ∩ f−1

s Wsing is discrete with cardinality ≥ 2. This
contradicts Lemma 3.3.1.

Step 2: Any semistable chain lies over a singular point of C̄. ♣

Proposition 3.3.10. Let a : ∆→ T u be any lifting of ∆→ B. If the
induced point (Ca

s ,Σ
a
s , f

a
s ) ∈ Ku is in Ku

nd, then a is isomorphic to a0.

Proof. Same argument as in Proposition 3.3.8(1).

♣

Proof of Theorem 3.3.4. We use the valuative criterion of properness,
hence we assume that we are in the set-up provided by Notation 3.3.5.
In view of Corollary 3.3.6, it is enough to show that there exists a
unique lifting a of ∆ to T u such that the induced point (Ca,Σa, fa) is
contained in Ku

nd (since Ku
pd is closed in Ku

nd). Hence it is enough to
prove that a lifting a : ∆ → T u induces a map to Ku

pd if and only if
it is isomorphic to a0, where a0 is defined in Part (2) of Proposition
3.3.8. The “if” part is then Proposition 3.3.9 and the “only if” part is
Proposition 3.3.10. ♣

Corollary 3.3.11. Under the assumptions for this section, assume
moreover that W → B is proper and has projective coarse moduli space.
Then Ku

pd is proper over B.

Proof. This follows since by [AV, Theorem 1.4.1] the stack K(W ) is
proper. ♣
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3.4. r–twisted stable maps and their properness.

Definition 3.4.1. A twisting choice is a map r which associates to
every finite multi-set of positive integers c = {c1, . . . , cn} a positive
integer r(c) such that cj|r(c) for all j.

Definition 3.4.2. We define a partial order on twisting choices by
saying that r ≺ r′ if r(c) divides r′(c) for every c.

Note that there is a unique minimal twisting choice, namely

rmin(c) = lcm(c1, . . . , ck).

Similarly, given any two twisting choices we obtain a third larger than
both by laking their least common multiple.

Remark 3.4.3. We find it important to allow choosing a twisting
choice, for two reasons. First, a non-minimal choice is used in [ACW]).
Second, keeping track of the fact that the invariants we define do not
depend on the twisting choice helps make sure that we are doing things
right.

Definition 3.4.4. Let r be a twisting choice. A map f : (C,Σ)→W
is called an r-twisted stable map if it is in Ktr and the following holds.
Let fu : Cu → Wu be the image of f in Ku

pd. Consider any splitting

divisor D` of W , and let c` be the multiset of contact orders of the
nodes in Cu mapping to Du

` . Then the twisting index of D` is r(c`).

Finally we arrive at the main moduli stacks of this paper:

Definition 3.4.5. If r is a twisting choice, we define the substack Kr of
Ktr to be the full substack of families whose points are r-twisted stable
maps. In the following sections we will use case-specific notations for
Kr:

(1) (Degeneration case) Kr
Γ(W/B),

(2) (Singular case) Kr
Γ(W0),

(3) (Pair case) Kr
Γ(X,D).

Lemma 3.4.6. The stack Kr is open in Ktr.

Proof. It is enough to prove that it is stable under generalization. As-
sume we have a family of twisted transversal stable maps over SpecR,
with R a discrete valuation ring, and that the fiber over the special
point is r-twisted. Let D` be a splitting divisor on the general fiber;
then it induces a splitting divisor on the special fiber, and since twisting
indices are locally constant along deformations so long as the node (or
the splitting divisor) doesn’t get smoothed out, all the contact orders
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and the twisting of the splitting divisor are the same at the special
point and at the general point of SpecR. ♣

Theorem 3.4.7. Let r be a twisting choice. Then the canonical mor-
phism Kr → Ku

pd is proper.

Proof. First we claim that the morphism is of finite type locally over
Ku
pd

. Choose an open covering of Ku
pd where in each chart only finitely

many contact orders apear. Then objects in Kr involve maps to targets
with bounded twisting, and the stack of these targets is of finite type
over the base. Since Kr is proper over that stack the claim follows.

It now suffices to use the valuative criterion of properness. We keep
the conventions established in Notation 3.3.2, and assume we are given
a commutative diagram

η //

��

Kr

��

// T tw

��

∆ // Ku
pd

// T u

and we want to find a unique lifting ∆→ Kr. We denote the induced
families of stable maps as (C,Σ, f : C → W) and (C̃η, Σ̃η, f̃η : Cη →
Wη). The stack of twisted stable maps into Wtw

univ is proper over T tw.
Therefore it is enough to show that there is a unique lifting ∆ → T tw

such that the induced family’s central fiber (C̃s, Σ̃s, f̃s) is in Kr.

Consider the set ∆ of multisets of positive integers. We have a
canonical lifting of Ku

pd → T u to a morphism Ku
pd → T∆ to the stack

of ∆-weighted expansions 2.5, where we weigh the expansions by the
contact order at each splitting divisor. Similarly we have a canonical
lifting of Kr → T u to a morphism Kr → T r to the stack of r-twisted
∆-weighted expansions, since the expansions in Kr are by definition
r-twisted ∆-weighted expansions. We obtain he following refinement
of the previous commutative diagram:

η //

��

Kr

��

// T r

��

∆ // Ku
pd

// T∆.

Note that T∆ = T 1 is the stack of 1-twisted (namely untwisted) ∆-
weighted expansions, so by Proposition 2.5.4 the morphism T r → T∆

is proper. Therefore, after a suitable base change we obtain a unique
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lifting ∆ → T r. By Lemma 3.2.6 (3), any lift of {s} → Ku
pd ×Tu T r is

in Kr, in particular the limit (C̃s, Σ̃s, f̃s) is in Kr, as needed. ♣

Corollary 3.4.8. If W/B is proper with projective coarse moduli space,
then the stack Kr is proper for every twisting choice r.

Proof. This follows from Corollary 3.3.11. ♣

Remark 3.4.9. One could put the relative and degeneration cases
together and define invariants for a degeneration with a divisor smooth
over B disjoint from W sing. The degeneration formula still holds, see
[AF]

4. Relative and degenerate Gromov-Witten invariants

4.1. Curve classes and orbifold cohomology on nodal DM stacks.
Intersection conditions for curve classes; transversal part of orbifold co-
homology; issue of monodromy, etc.

4.2. Gromov–Witten invariants for nodal DM stacks. In this
Section 4.2 we fix a nodal, first order smoothable proper DM stack
W0 = X1 tD X1 with a projective coarse moduli scheme. We also fix
data Γ = (β, g,N, e) as in 3.1.1.

We denote by Kr
Γ(W0) stack of transversal, r-twisted stable maps

to expansions of W0. This stack is proper by Theorem 3.4.7. The
structure morphism to Ttw

0 has a relative perfect obstruction theory,
by a standard construction described in Section C.2. Since Ttw

0 has
pure dimension zero, it has a natural fundamental class,

and we can therefore define an induced virtual fundamental class
[Kr

Γ(W0)]vir.

Definition 4.2.1. The stack Kr
Γ(W0) carries a universal family of

twisted stable maps to expansions of W0 denoted as follows:

Σi
� � //

##GGGGGGGGGG Ctw
f tw

//

ptw

��

Wtw
0,univ

Kr
Γ(W0).

We denote the underlying family of predeformable maps as follows:

Σi
� � //

##GGGGGGGGGG Cu
fu
//

pu

��

Wu
0,univ

Kr
Γ(W0).
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Composing with the morphism Wu
0,univ → W0 and stabilizing, we

obtain a diagram

Σi
� � //

$$HHHHHHHHH C //

��

W0

Kr
Γ(W0).

The markings Σi remain the same since the curves Ctw, Cu and C are
isomorphic in a neighborhood of the Σi.

For i ∈ N the morphism Σi → W0 induces an evaluation morphism
evi : Kr

Γ(W0)→ Iei(W0) ⊂ I(W0), where I(W0) is the rigidified inertia
stack of W0. See [AGV, 4.4].

Finally, the family of coarse curves C → Kr
Γ(W0) has sections si :

Kr
Γ(W0)→ C induced by Σi. Following [AGV, 8.3] we denote

ψi = c1

(
s∗iωC/Kr

Γ(W0)

)
.

Definition 4.2.2. Assume for i ∈ N we are given positive integers mi

and cohomology classes

γi ∈ H∗(I(W0)). We define the Gromov–Witten invariant〈∏
i∈N

τmi(γi)

〉W0

Γ

:= deg

(∏
i∈N

(ψmii · ev∗i γi) ∩ [Kr
Γ(W0)]vir

)
.

Remark 4.2.3. Recall that in r-twisted stable maps, the image of
a marked point is never in a splitting divisor. This implies that the
evaluation maps only land in sectors on I(W0) transversal to D. In
particular Gromov–Witten invariants involving a class γi from a sector
supported in I(D) vanish.

4.3. Relative Gromov–Witten invariants. Here we fix a proper
DM smooth pair (X,D) with a projective coarse moduli scheme. We
also fix data Γ = (β, g,N,M, e, f , c) as in 3.1.2.

We denote by Kr
Γ(X,D) stack of transversal, r-twisted stable maps

to expansions of (X,D). Again this stack is proper by Theorem 3.4.7,
and the structure morphism to T tw has a relative perfect obstruction
theory described in Section C.2, with induced virtual fundamental class
[Kr

Γ(X,D)]vir.

Evaluation maps evi : Kr
Γ(X,D) → I(X) and classes ψi for i ∈ N

are defined as in 4.2.1. Note however that for j ∈ M the markings
Σr
j ⊂ Cr and Σj ⊂ Cu are not isomorphic: Σr

j → Σu
j is a gerbe banded

by µr/cj
, where r = r({cj}j∈M) is the twisting of the divisor.
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An additional subtlety is the fact that the stack D → T tw is not
a product, and we are only interested in the relative part of inertia.
Since the root markings Σj map to D and Σr

j map to D we can define
the following:

Definition 4.3.1. We denote by evj : Kr
Γ(X,D)→ Ifj(D) ⊂ I(D) the

evaluation map induced by Σj → D. We denote by evr
j : Kr

Γ(X,D)→
I(D/T tw) the evaluation map induced by Σr

j → D. Note that these

land in Ifjr/cj(D/T tw) ⊂ I(D/T tw).

The maps evr
j will play a role in the proof of the degeneration formula.

Gromov–Witten invarians involve only evj:

Definition 4.3.2. Letmi, i ∈ N be nonnegative integers; γi ∈ H∗(X), i ∈
N and γj ∈ H∗(I(D)), j ∈ M . We define relative Gromov–Witten in-
variants with gravitational descendants by the formula

〈∏
i∈N

τmi(γi)
∣∣ ∏
j∈M

γj

〉(X,D)

Γ

:= deg

((∏
i∈N

ψmii · ev∗i γi

)
·

(∏
j∈M

evj
∗γj

)
∩ [Kr

Γ(X,D)]vir

)
.

Remark 4.3.3. Note that unless the condition

(1)
∑
i∈M

di = β ·D

is satisfied, the moduli stack Kr
Γ(X,D) is empty and hence the invariant

is zero.

4.4. Independence of twisting choice.

Theorem 4.4.1. The Gromov–Witten invariants defined above are in-
dependent of the twisting choice r.

The proof requires some preparation. Let ∆ be the set of multi-
sets c = {c1, . . . , ck} of positive integers, and recall the stack Tr

0 ⊂
T∆

0 of r-twisted, ∆-weighted accordions, defined in section 2.5. There
is a natural morphism Kr

Γ(W0) → T∆
0 mapping each stable map to

the labeling of each divisor by the multiset of contact orders of the
associated predeformable map. Its image is clearly contained in the
open substack Tr

0. Similarly we have Kr
Γ(X,D)→ T r.

Proposition 4.4.2. Assume that r and r′ are twisting choices with
r ≺ r′. Write for brevity K → T for Kr

Γ(W0) → Tr
0 (respectively,



ORBIFOLD TECHNIQUES IN DEGENERATION FORMULAS 45

Kr
Γ((X,D)) → T r) and K′ → T ′ for Kr′

Γ(W0) → Tr′
0 , (respectively,

Kr′
Γ((X,D))→ T r′); similarly for the maps evi, ev′i and classes ψi, ψ

′
i.

(1) There is a natural morphism K′ → K.
(2) This morphism induces a 2–cartesian diagram

K′
φ
//

��

K

��

T r′ // T r,

where the lower arrow is given by Lemma 2.5.3.
(3) There is a natural isomorphism φ∗EK/T r → EK′/T r′ .

(4) We have ψ′i = φ∗ψi, and there is a natural equivalence between
ev′i and evi ◦ φ for i ∈ N tM .

Proof. (1) Let (C ′,Σ′) → W ′ → W be a family of r′-twisted maps
over a base scheme S. By Lemma 2.5.3 there are morphisms
T r′ → T r and correspondingly W ′ → W . Consider the stabi-
lization (C,Σ) → W of the composition (C ′,Σ′) → W ′ → W
(in the sense of [AV, Proposition 9.1.1]). It is easy to see that
this defines a family of r-twisted stable maps over S, and that
this construction commutes with base change; hence, it defines
a morphism K′ → K.

(2) It is easy to check that the diagram is commutative. To con-
struct a morphism from the fiber product to K′, assume that we
are given a family of labeled accordions W ′ → S (correspond-
ing to a morphism S → T r′) and a family of twisted degenerate
stable maps (C,Σ)→W over S, in such a way that W → S is
induced by W ′ → S as a family of labeled twisted accordions.
We then define C ′ :=W ′×W C, and Σ′ the inverse image of Σ;
again, it is easy to check the required properties.

(3) The diagram

C ′ //

��

W ′

��

C //W
is Cartesian. The isomorphism of obstruction theories now fol-
lows directly from their definition.

(4) The untwisted curve (Cu′ ,Σ′) is the pullback of (Cu,Σ). Both
claims easily follow.

♣
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Proof of Theorem 4.4.1. By Remark 3.4.2 we may assume that r ≺ r′.
Using the notation in Proposition 4.4.2 we have that φ∗EK/Tr

0
→ EK′/Tr′

0
.

The morphism Tr′
0 → Tr

0 has degree 1 in the sense of [Co, Section 5] by
Proposition 2.5.4. By [Co, Theorem 5.0.1] we have an equality of the
associated virtual fundamental classes [Kr

Γ(W )]vir = [Kr
Γ(W )]vir. The

equality of invariants follows by the projection formula. ♣

4.5. Invariance under twisting. The following is used in [ACW]:

Proposition 4.5.1. Let X = X( r
√
D) and D = r

√
N/D, and let π :

X → X be the natural map. Then〈∏
i∈N

τmi(γi)
∣∣ ∏
j∈M

γj

〉(X,D)

Γ

=

〈∏
i∈N

τbi(π
∗γi)
∣∣ ∏
j∈M

π∗γj

〉(X ,D)

Γ

Proof. For fixed Γ Let r be a twisting choice giving a constant r0 for
all contact orders appearing in Kpd, and r′ = r · r. Then Kr′

Γ(X ,D) and
Kr

Γ(X,D) are identical.

The result follows by the projection formula.

♣
Remark 4.5.2. A similar result holds for invariants of a singular va-
riety.

4.6. Deformation invariance. Assume we are given a flat proper
family π : W → B such that B is a smooth curve, b0 ∈ B is a point, π
is smooth over B r b0 and W0 := π−1(b0) is as in the previous section

Theorem 4.6.1. The Gromov–Witten invariants of Wb is independent
of b.

Proof. This follows from [BF, Proposition 7.2 (2)], since the obstruc-
tion theory for Kr

Γ(W/B) relative to TB,b0 restricts to that of Kr
Γ(Wb)

relative to T0. ♣
Remark 4.6.2. Deforamtion invairance can be stated more generally
and apply also to relative invatiants. See [AF].

4.7. Comparison with Jun Li’s invariants. An immediate corol-
lary of deformation invariance is the following:

Corollary 4.7.1. If in the situation of the theorem W is a scheme,
then the Gromov–Witten invariants of Wb coincide with those defined
in [Li2].

Proof. The invariants coincide on a smooth fiber. The theorem implies
that they coincide on any fiber. ♣
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The result also holds when W0 is not smoothable, and for relative
invariants. We postpone showing these cases to [AF], as our proof is
roundabout and requires some additional ground work. An outline is
as follows:

4.7.2. One shows that orbifold virtual localization holds for group ac-
tions on moduli spaces induced by actions on W0 and (X,D), as it
holds in Li’s case.

4.7.3. Applying the methods of Maulik-Pandharipande [MP], the de-
generation formula and localization show that invariants of (X,D) are
determined by the absolute invariants of X following precisely the same
formal rules as for Li’s invariants.

4.7.4. It follows that out invariants of (X,D) coincide with those of Li.

4.7.5. Applying the degeneration formula again, it follows that out
invariants of W0 coincide with those of Li.

An alternative and more direct approach goes by way of comparing
our virtual fundamental classes to those defined via logarithmic geom-
etry, and then comparing the logarithmic class with Jun Li’s virtual
fundamental class. The last step - comparing the logarithmic class
with Jun Li’s virtual fundamental class - requires a delicate explicit
computation and has not yet been completed.

4.8. Disconnected maps and invariants. We fix an abelian semi-
group H. In the application we have in mind, H will be the semigroup
of effective curve classes.

Definition 4.8.1. An modular graph Ξ is a collection of vertices V (Ξ),
edges E(Ξ) legs L(Ξ) and roots R(Ξ) with the usual relations and
properties - here we divided the usual set of legs into two disjoint sets
of legs and roots. These are weighted by the following data

(1) each vertex v ∈ V (Ξ) is assigned an integer g(v) ≥ 0 - the genus
- and an element β(v) ∈ H -its weight.

(2) each leg l ∈ L(Ξ) is assigned an integer e(l) > 0 - its index.
(3) each root r ∈ R(Ξ) is assigned two integers f(l), c(l) > 0 - its

index and contact order.

The total weight β(Ξ) of the graph is the sum of the weight of the
vertices. The total genus g(Ξ) is given by the standard formula

2g(Ξ)− 2 =
∑

v∈V (Ξ)

(2g(v)− 2) + 2#E(Ξ).
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Note that we do not assume the graph to be connected or even nonempty.
The letter Ξ is supposed to remind you of that.

A labeling of the legs and roots by disjoint sets M,N is the choice
of a bijection M ↔ L(Ξ) and a bijection N ↔ R(Ξ).

4.8.2. Moduli stacks and their properties. The theory developed in the
last two sections applies to disconnected curves as well. Consider a
possibly disconected twisted curve C = thν=1Cν with Cν its connected
components of arithmetic genera gj, each with marked points with la-
beling in disjoint subsets Nν and Mν forming partitions of given ordered
sets N,M . We assume for simplicity that for each ν the set Mν ∪Nν is
nonempty. There is no loss of generality in assuming N = {1, . . . , n}
and M = {n + 1, . . . , n + |M |}. We assign each Cν with a target
curve class βν and package the data in the notation of a modular graph
Ξ = tΓν consisting of h vertices assigned genera gν and weights βν , no
edges, legs indexed by Nν ⊂ N with weights ei, i ∈ Nν corresponding
to the indices of these markings, and roots indexed by Mν ⊂ M with
similar weights fj, j ∈ Mν . We further assume given contact orders
{cj|j ∈ N}.

An expanded r twisted stable map of type Ξ into (X,D) is a morphism
C → X of type Ξ into a half accordion, with finite automorphism
group over X, which is transversal and r twisted. We again denote by
Kr

Ξ(X,D) the moduli stack of expanded r twisted stable map of type
Ξ. These stacks are algebraic and proper by the same arguments as in
the connected case.

4.8.3. Disconnected Gromov–Witten invariants. The stack Kr
Ξ(X,D)

admits a perfect obstruction theory relative to T tw as before. This
gives rise to a virtual fundamental class. We can use 4.3 to construct

Gromov–Witten invariants
〈∏

i∈N τbi(γi)
∣∣∏

j∈M γj

〉(X,D)

Ξ
with the ex-

act same formula.

4.8.4. Contraction morphisms. Given an r-twisted stable map C → X
of type Ξ, we have for each ν a map Cν → X . This map is not
necessarily stable, since some components of X require other Cν′ to
stabilize them; it is not necessarily r-twisted since some contact orders
are removed. There is a canonical way to stabilize Cν → X as follows:

(1) Let X → X r the canonical partial untwisting associated to the
contact orders appearing in Cν and the twisting choice r. Let
Cr
ν → X r be the associated twisted stable map as in [AV, Corol-

lary 9.1.2].
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(2) By definition, any semistable component P of X r has the same
twisting on its two boundary divisors. It follows from [AV,
Section 9.2] that there is a canonical contraction X r → X̄ r of
all semistable components. We again define C̄r

ν → X̄ r as in [AV,
Corollary 9.1.2].

This defines a contraction morphism Kr
Ξ(X,D)→ Kr

Γν
(X,D). Com-

bining these we obtain a morphism

ε : Kr
Ξ(X,D)→

h∏
ν=1

Kr
Γν (X,D).

Proposition 4.8.5.

ε∗[Kr
Ξ(X,D)]vir =

h∏
ν=1

[Kr
Γν (X,D)]vir.

This immediately implies a result on Gromov–Witten invariants

. Assume all classes γi have homogeneous parity and consider the
sign (−1)ε determined formally by the equality∏

i∈N

γi ·
∏
j∈M

γj = (−1)ε
h∏
ν=1

(∏
i∈Nν

γi ·
∏
j∈Mν

γj

)
Corollary 4.8.6.〈∏

i∈N

τbi(γi)
∣∣ ∏
j∈M

γj

〉(X,D)

Ξ

= (−1)ε
h∏
ν=1

〈∏
i∈Nν

τbi(γi)
∣∣ ∏
j∈Mν

γj

〉(X,D)

Γν

Proof. This follows from the projection formula. ♣

4.8.7. An auxiliary stack of expansions. We prove Proposition 4.8.5 by
applying the main technical result, Theorem 5.0.1 of [Co]. This needs
some preparation.

Let T ′ be the stack defined as follows. T ′(S) = {D × S ⊂ X εν→
Xν

θν→ X × S} where:

(1) D× S → Xi → X × S is a half accordion for each ν = 1, . . . , h;
(2) there is a morphism ρ : X → X × S such that ρ is isomorphic

to θν ◦ εν for each ν = 1 . . . , h;

(3) D × S → X ρ→ X × S is a half accordion;
(4) for each ν = 1, . . . , h the morphism εν is a partial contraction

;
(5) for each Pi in X there exists at least one 1 ≤ ν ≤ h such that

εν |Pi is an isomorphism with its image.
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There is a natural forgetful morphism T ′ → (T tw)h given by

{D × S ⊂ X → Xν → X × S} 7→ {D × S ⊂ Xν→X × S}ν=1,...,h.

This map has degree 1 in the sense of [Co, Section 5], since both source
and target have Spec C as a dense open substack.

Lemma 4.8.8. There is a natural cartesian diagram

KΞ
//

��

∏
KΓν

��

T ′ // T h

Proof. That the diagram is commutative is obvious. To prove that it
is cartesian, let S be a base scheme. Let {(Cν , fν ,D× S → Xν → X ×
S}ν=1...,h be an object of

∏
KΓν (S), and {D×S ⊂ X → Xν → X ×S}

an object in T ′(S). Define curves C ′ν by C ′ν := Cν×XνX ; lift the marked
gerbes of C ′ν to C̃ ′ν in the unique possible way if they do not map to
D × S and respecting the map to D × S otherwise. Let C := tC ′ν
and f : C → X be the morphism such that f |C′ν is induced by the
fiber product. We leave it to the reader to check that this provides
an inverse to the natural map from KΞ to the fiber product of T ′ and∏
KΓν over T h. ♣

Let T ′ → T be the forgetful morphism defined by

{D × S ⊂ X → Xν → X × S} 7→ {D × S ⊂ X→X × S}.

Lemma 4.8.9. The morphism T ′ → T so defined is étale.

Proof. This is identical to [ACW]

. ♣

The construction in Section C give relative obstruction theories for
the morphisms KΓν → T , hence for the morphism

∏
KΓν → T h, and

for KΞ → T ′.

Lemma 4.8.10. The obstruction theory for KΞ/T ′ is the pullback of
the obstruction theory

∏
KΓν → T h.



ORBIFOLD TECHNIQUES IN DEGENERATION FORMULAS 51

Proof. Write K′ for KΞ, and fix an index ν. We consider the commu-
tative diagram

C ′ν
p

��

g
// X

q

��

Cν

��

f
// Xν

K′

where Cν is the pullback to K′ of the universal curve over KΓν and C ′ν is
the corresponding component of the universal curve over K′, together
with the structure maps. Note that C ′ν → Cν is a partial stabiliza-
tion map, i.e. it is locally a base change of some forgetful morphism
M̄ tw

g,n+k → M̄ tw
g,n . This implies that Rπ∗OC′ = OC , and therefore that

Rπ∗ ◦ Lπ∗ : D(C) → D(C) is the identity morphism. On the other
hand, the fact that the square in the diagram is cartesian shows that
the pullback of the complex L from Cν is the corresponding complex
for C ′ν . ♣

Proof of Proposition 4.8.5. This is now immediate from [Co, Theorem
5.0.1], as we have shown that the obstruction theories are compatible
and the map T ′ → (T tw)h is of pure degree 1. ♣

5. Degeneration formula

5.1. Setup. We fix a variety W0 = X1 tD X2 with first-order smooth-
able singularity along D dividing it in two smooth pairs (X1, D) and
(X2, D). We let H be the monoid of curve classes on W0, and H1, H2

the coresponding monoids on X1, X2. We view H1, H2 as submonoids
of H.

We Notice that, although H∗orb(W0) = H∗(I(W0)) has a rational de-
gree shifting, when we consider parity we always refer to the unshifted
grading.

In this section we will keep fixed the notation introduced in Subsec-
tion 4.2. In particular we fix Γ = (g,N, β, e) as in Convention 3.1.1,
which we may view as a modular graph with one vertex with genus g
and weight β, a curve class on W0 and legs labelled by an ordered set
N and marked with indices ei. We will also fix cohomology classes

γi ∈ H∗(I(W0)), i ∈ N
with homogeneous parity, and nonnegative integers m1, . . . ,mn. These
will be used for insertions
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in Gromov–Witten invariants. In this section we may take N =
{1, . . . , n}.

Definition 5.1.1. Asplitting η of Γ is an ordered pair η = (Ξ1,Ξ2)
where

(1) Ξ1 and Ξ2 are modular graphs as in Definition 4.8.1 with no
edges or loops,

(2) The labelling of legs L(Ξ1) ↔ N1 and L(Ξ2) ↔ N2 form a
partition N1 tN2 = N .

(3) The labelling of roots R(Ξ1) ↔ M and R(Ξ2) ↔ M are in the
same ordered set disjoint from N , which can be safely taken as
{n+ 1, . . . , n+ |M |}.

(4) A leg l ∈ L(Ξ1)∪L(Ξ2) corresponding to i ∈ N is assigned the
corresponding index ei.

(5) A root r ∈ R(Ξ1) corresponding to j ∈ M is assigned index fj
and contact order cj. A root r ∈ R(Ξ2) is assigned the same
corresponding index fj and contact order cj.

(6) A vertex v ∈ V (Ξ1) is assigned genus g(v) and weight β(v) ∈
H1; similarly the weight of v ∈ V (Ξ2) is a curve class β(v) ∈ H2.

We define d = (dj, j ∈ M) by dj = cj/fj. These are in general
rational numbers, which we call intersection multiplicities. We denote
the set of roots incident to a vertex v by R(v) and identify it with a
subset of M .

These data must satisfy the following conditions:

A. The graph Γ obtained by gluing Ξ1 and Ξ2 along the legs labeled
by {n+1, . . . , n+nD} is connected of genus g and total weight1

β.
B. For every vertex v ∈ V (Ξ1), one has∑

j∈R(v)

dj = (β(v) ·D)X1 .

Similarly if v ∈ V (Ξ2) then∑
j∈R(v)

dj = (β(v) ·D)X2 .

Remark 5.1.2. Let β1 be the total weight of Ξ1 and β2 the total weight
of Ξ2. Then (B) implies that (β1 ·D)X1 = (β2 ·D)X2 .

Remark 5.1.3. The distinction between intersection multiplicities dj
and contact orders cj is a feature of the orbifold situation, the ratios

1Of course here we are silently identifying H2(Xe) with its image in H2(X).
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fi = ci/di being the indices of the corresponding marked points map-
ping to D. We see in 5.2.3 that one can avoid the need for the ci in
the forumla as stated in 0.4.1, but our proof requires using them.

Definition 5.1.4. An isomorphism of splittings (Ξ1,Ξ2)→ (Ξ′1,Ξ
′
2) is

an isomorphism of modular graphs respecting the labellings, in partic-
ular the orders of N and M .

We denote by Ω(Γ) the set of isomorphism classes of splittings of Γ.

Remark 5.1.5. Passing to isomorphism classes is harmless: since by
assumption the glued graph is connected, every vertex in Ξ1,Ξ2 is inci-
dent to at least one root, and since the roots are labelled by an ordered
finite set, the automorphism group of a splitting is trivial. So the
groupoid of splittings is rigid and therefore equivalent to the set Ω(Γ).

Definition 5.1.6. The symmetric group S(M) acts on Ω by its action
on M . Two splittings are said to be equivalent if they belong to the
same S(M)-orbit. We let Ω be the set of equivalence classes.

Definition 5.1.7. Fix a twisting choice r. For each η ∈ Ω, we define

r(η) := r(c).

Definition 5.1.8. Consider the standard pairing

H∗(I(D))×H∗(I(D)) → Q
(θ1, θ2) 7→

∫
I(D))

θ1 · θ2.

Let F be a basis of H∗(I(D)) of classes with homogeneous parity. For
each δ ∈ F we denote by δ∨ be the dual element in the dual basis with
respect to this pairing. In order to avoid issues of signs we define δ∨

to be dual to δ if
∫
I(D))

δ∨ · δ = 1 in this order - this ensures that the

Poincaré dual class of the diagonal of I(D) is
∑

δ∈F δ × δ∨.

5.2. Statement of the formula. Here is the degeneration formula
the way it naturally arises in our proof:

Theorem 5.2.1. For any choice of nonegative integers m1, . . . ,mn,
and cohomology classes γi ∈ H∗(I(W0)), the following degeneration
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formula holds:〈
n∏
i=1

τmi(γi)

〉Wb0

β,g

=
∑

η∈Ω

Q
j∈M cj

|M |!
∑

δi∈F (−1)ε

〈∏
i∈N1

τmi(γi)
∣∣ ∏
i∈M

δi

〉(X1,D)

Γ1

·

〈∏
i∈N2

τmi(γi)
∣∣ ∏
i∈M

ι∗δ∨i

〉(X2,D)

Γ2

.

The sign (−1)ε is fixed in terms of the parity of the classes so that
formally the following holds:∏

i∈N

γi ·
∏
j∈M

δjδ
∨
j = (−1)ε

∏
i∈N1

γi
∏
i∈M

δi
∏
i∈N2

γi
∏
i∈M

δ∨i .

Remark 5.2.2. In [Li2], one sums over the set of equivalence classes Ω
of splitting types, and therefore the factor |M |! in the denominator is
replaced by |Eq(η)|, the stabilizer of η inside S|M |, introduced in [Li1,
p. 574], [Li2, p. 203].

5.2.3. The Chen–Ruan pairing and Theorem 0.4.1. As in [AGV], Sec-
tion 6.4, or [CR], the formalism becomes a bit more elegant if one
uses the Chen–Ruan pairing. Here one treats the evaluation maps
evj, j ∈ M as if their target is I(D) rather than I(D), and further
includes ι in the pairing. In our situation, if we identify δ ∈ F with its
pullback in H∗(I(D)), the dual element with respect to the standard
pairing of H∗(I(D)) becomes r ·δ∨. Further, we can change this pairing
by applying ι on the right element, namely use

H∗(I(D))×H∗(I(D)) → Q
(θ1, θ2) 7→

∫
I(D))

θ1ι
∗θ2,

equivalently

H∗(I(D))×H∗(I(D)) → Q
(θ1, θ2) 7→

∫
I(D))

1
r
θ1ι
∗θ2,

obtaining the Chen Ruan pairing. Then the dual element of δ with
respect to the Chen–Ruan pairing is δ̃∨ = r · ι∗δ∨. Note again that
the duality is defined so that

∫
I(D))

ι∗δ̃∨δ = 1 to avoid signs in the

decomposition of the class of the diagonal.
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Theorem 0.4.1 follows as a version of the Theorem 5.2.1 above, in
which the contact orders ci are not used but the more invariant inter-
section multiplicities di = cj/fj instead. Indeed the pullback under the
evaluation map evj : Kr

Ξi
(Xi, D) → I(D) of the involution-invariant

locally constant factor r is the index fj. This gives∏
j∈M

cjev∗j ι
∗δ∨j =

∏
j∈M

djev∗j ι
∗δ̃∨j

as required.

5.3. Outline of proof of Theorem 5.2.1. Fix a twisting choice r
and write K for Kr

Γ(W,π)b0 . The proof goes in several steps. These
will be completed in the next sections, as follows:

Sections 5.4, 5.5, 5.6: for η ∈ Ω we define a proper Deligne–
Mumford stack Kη parametrizing maps to a twisted accordion with
a fixed splitting divisor of type η, together with a morphisms stη :
Kη → K. We prove (Proposition 5.6.1)

[K]vir =
∑
η∈Ω

r(η)

|M |!
stη∗[Kη]vir.

Section 5.7: fix η = (Ξ1,Ξ2) ∈ Ω, and let KΞ1 and KΞ2 be the moduli
stacks of relative stable maps corresponding to Ξ1 and Ξ2 respectively.
On KΞ1 × KΞ2 there is a canonical gerbe banded by µr(η), which we
denote uη : K1,2 → KΞ1 × KΞ2 , which parametrizes pairs of twisted
stable maps together with the data of a glued target.

Sections 5.8-5.9: We construct a commutative diagram with carte-
sian square

Kη
qη
//

""FFFFFFFFF
K∗η //

��

K1,2

��

I(D)M
∆
// (I(D)× I(D))M

where the morphism on the right is the product of the two evaluation
maps in M , and ∆ is the diagonal with the second factor composed
with ι; In Proposition 5.9.1 we prove that

qη∗[Kη]vir =

(∏
j∈M

cj

)
·∆![K1,2]vir ∈ A∗(K∗η).

Section 5.10: The degeneration formula follows by another applica-
tion of the projection formula.
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5.4. Splitting the coarse target. We form the following cartesian
diagram:

KQ
s //

��

K

��

Q //

��

Ttw
0

��

Tu,spl
0

// Tu
0

The stack Tu,spl
0 of untwisted accordions with a choice of splitting

divisor is defined in Section 2.4. It is nonsingular, and coincides with
the normalization of Tu

0 .

The stacks Q and KQ are formed as the fibered products making the
diagram cartesian. Therefore the perfect obstruction theory of E•K/Ttw

0

pulls pack to a perfect obstruction theory E•KQ/Q
defining a virtual

fundamental class which we denote [KQ]vir.

Since Tu,spl
0 → Tu

0 is the normalization of a reduced normal crossings
stack, it has pure degree 1 in the sense of [Co, Section 5]. Since Ttw

0 →
Tu

0 is flat, it follows that the morphism Q→ Ttw
0 is of pure degree 1 in

the same sense as well. We have the following:

Lemma 5.4.1.

s∗[KQ]vir = [Kb0 ]vir

Proof. This follows from [Co, Theorem 5.0.1], see also [Ma, Proposition
2, Section 4.3]. ♣

5.5. Splitting the stack target. In Section 2.4 we introduced a nat-
ural decomposition of Q = Tu,spl

0 ×Tu0
Ttw

0 into open and closed loci
according to the twisting index of the twisted accordion along the cho-
sen singular component:

Q =
∐
r≥1

Qr

and accordingly we have a decomposition

KQ =
∐
r≥1

KQr .

The stack Qr is nonreduced. The reduced substack is the smooth
stack Tr,spl

0 , the stack of twisted accordions with splitting divisor of
index r.
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By Lemma 2.4.1 the morphism Tr,spl
0 → Qr is of degree 1/r, in the

sense that the image of [Tr,spl
0 ] is r−1[Qr]. This is sufficient for applying

[Co, Theorem 5.0.1] in Manolache’s version [Ma, Proposition 2, Section
4.3]. We therefore obtain the following:

Lemma 5.5.1. Consider the fiber diagram

Kspl
r

tr //

��

KQr

��

Tr,spl
0

// Qr

Then

[KQr ]
vir = r · (tr)∗[Kspl

r ]vir.

The multiplicity r in this lemma depends on the twisting choice, since
the formation of the moduli spaces does. It is important to notice that
at the end it will be cancelled by that appearing in Lemma 5.7.2 below.

5.6. Decomposing the moduli space with split target. Recall
that we denote by Ω = Ω/∼ the set of equivalence classes of splitting
types under the action of the symmetric group S(M), and by η̄ the
equivalence class of η ∈ Ω.

Given a positive integer r, denote by Ωr the set of isomorphism
classes of types η satisfying r(η) = r, and by Ω̄r the set of equivalence
classes. We can now refine the decomposition as follows:

Kspl
r =

∐
η̄∈Ω̄r

Kspl
η̄ .

Denote by tη̄ : Kspl
η̄ → KQr the restricted morphism. On the level of

virtual fundamental classes, Lemma 5.5.1 gives

[KQr ] = r · (tη̄)∗
∑
η̄∈Ω̄r

[Kspl
η̄ ].

Now denote by Kη → Kη̄ the cover obtained by labeling the dis-
tinguished nodes of the source curve by the set M . This is clearly
an S|M |-bundle, and therefore it has an associated perfect obstruction
theory and virtual fundamental class. Denote by tη : Kη → KQr the
composite map.

Putting Lemmas 5.4.1 and 5.5.1 together we obtain
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Proposition 5.6.1.

[K] =
∑
η∈Ω

r(η)

|M |!
· (s ◦ tη)∗[Kspl

η ].

5.7. Gluing the target. Recall from Definition 2.1.5 that for an in-
teger r (not to be confused by the implicit twisting choice) we denote
by T tw

r ⊂ T tw the substack of relative twisted expanded degenerations
with twisting index r along D. In Lemma 2.4.2 we considered the natu-
ral morphism Tr,spl

0 → T tw
r ×T tw

r corresponding to the two components
of the partial normalization of the universal familyWtw

0,univ and showed
that it is a gerbe banded by µr.

We begin approaching Kspl
η from the other direction, namely from

stacks of relative stable maps to the components of W0. Given η =
(Ξ1,Ξ2) we denote r = r(η), and use the shorthand notation KΞ1 =
Kr

Ξ1
(X1, D) and KΞ2 = Kr

Ξ2
(X2, D).

Definition 5.7.1. We define K1,2 by the following fiber diagram:

K1,2
uη
//

��

KΞ1 ×KΞ2

��

Tr,spl
0

// T tw
r × T tw

r .

The stackK1,2, which depends on η, parametrizes a glued twisted target,
along with a pair of relative stable maps of types Ξ1 and Ξ2 to the two
parts of the twisted target.

Composing with the projections, we have morphisms uη1 : K1,2 →
KΞ1 and uη2 : K1,2 → KΞ2

Recall (Lemmas C.2.1, C.3.3) that we have perfect obstruction theo-
ries EKΞ1

/T tw
r
→ LKΞ1

/T tw
r

and EKΞ2
/T tw
r
→ LKΞ2

/T tw
r

. These are defined
as follows: consider the universal relative twisted stable map

C1

p1

��

f1 // X1

KΞ1

Denote by P1 ⊂ C the divisor given by the leg markings.

Consider the complex L�1 := [f ∗1 LX1/T tw
r
→ Ω1

C1/KΞ1
(logP1)]. We

have a perfect relative obstruction theory on KΞ1/T tw
r given by taking

the complex
E•KΞ1

/T tw
r

= (Rp1∗(L∨�1
))∨[−1]
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with its natural map to LKΞ1
/T tw
r

. The construction for E•KΞ2
/T tw
r

is

identical.

Combining these, we have a perfect obstruction theory E•KΞ1
/T tw
r
⊕

E•KΞ2
/T tw
r

on KΞ1×KΞ2/T tw
r ×T tw

r . As the morphism Tr,spl
0 → T tw

r ×T tw
r

is étale, so is the morphism K1,2 → KΞ1 ×KΞ2 , and the pullback of the

same complex gives a perfect obstruction theory for K1,2/T
r,spl
0 . We

denote by [K1,2]vir and [KΞ1×KΞ2 ]vir = [KΞ1 ]vir× [KΞ2 ]vir the associated
virtual fundamental classes. Since the degree of uη : K1,2 → KΞ1 ×KΞ2

is r−1 we obtain the following:

Lemma 5.7.2.

[KΞ1 ×KΞ2 ]vir = r · (uη)∗[K1,2]vir.

Notice that the multiplicity r = r(η) obtained here, which depends
on the twisting choice, coincides with the multiplicity appearing in
Lemma 5.5.1. In the comparison of invariants this multiplicity cancels
out.

Denote by D the universal boundary divisor over K1,2. It is a gerbe
banded by µr over the coarse boundary divisor K1,2 ×D.

5.8. Gluing the source. There is a natural morphism

vη : Kη → K1,2

obtained by associating to a map C → Wtw
0 with splitting of type η the

two maps C1 → X1 ↪→Wtw
0 of type Ξ1 and C2 → X2 ↪→Wtw

0 of type Ξ2

with source curves determined by the splitting. We now put this in a
fiber diagram and demonstrate the compatibility of the given perfect
obstruction theories.

Recall from Definition 4.3.1 that the restriction of a stable map
f1 : C1 → X1 to Σ1j gives rise to the evaluation map evr

jΞ1
: KΞ1 →

I(D/T tw).

Composing with uη1 ◦ vη : Kη → KΞ1 denote the product morphisms

evr
η =

∏
j∈M

evr
jΞ1
◦ uη1 ◦ vη : Kη → I(D/T tw)MT tw .

This notation means that we are taking the M -th fibered product over
T tw. Since this notation is cumbersome we use the shorthand

IM := I(D/T tw)MT tw .

Also denote

evr
1,2 =

∏
j∈M

(evr
jΞ1
◦ uη1)× (evr

jΞ2
◦ uη2) : K1,2 → (I × I)M .
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On the right we again use shorthand where I stands for I(D/T tw) and
all products are fibered over T tw. As in [AGV, Section 5], we have a
cartesian diagram

Kη v //

evr
η

��

K1,2

evr
1,2

��

IM
∆̃ // (I × I)M .

Here the map ∆̃ sends I(D/T tw) to itself by the identity map on the
left component, and by the map ι : I(D/T tw) → I(D/T tw) inverting
the band on the right. Indeed an object of the fibered product consists
of a pair of maps to the glued target along with an isomorphism of
the restricted maps on the gerbe with band inverted. Since the glued
curve is a pushout, such a pair of maps with isomorphism is precisely
the data of a map from the glued curve, hence an object of Kη. This
works for arrow as well.

We now have the following:

Proposition 5.8.1.

[Kη]vir = ∆̃![K1,2]vir.

Proof. Recall the perfect obstruction theory E•
Kη/Ttw,spl

0,r

→ L•
Kη/Ttw,spl

0,r

defined in C.2.1. By [BF, Proposition 5.10] it suffices to produce a
diagram of distinguished triangles

v∗E•
K1,2/T

tw,spl
0,r

//

��

E•
Kη/Ttw,spl

0,r

//

��

evr ∗
η L∆̃

[1]
//

id

��

v∗L•
K1,2/T

tw,spl
0,r

// L•
Kη/Ttw,spl

0,r

// evr ∗
η L∆̃

[1]
// .

Since ∆̃ is a regular embedding L∆̃ ' N∨
∆̃

[1].

Consider the cartesian and co-cartesian square

G ι1 //

ι2
��

C1

ν1

��

C1
ν2 // C

where G is the disjoint union of the marking corresponding to the roots
of Ξ1 or Ξ2. Also denote the normalization map ν : C1tC2 → C and the
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embedding ι : G → C. We have the standard normalization triangle

L∨� // ν∗Lν
∗L∨� // ι∗Lι

∗L∨�
[1]
//

and a natural decomposition

ν∗Lν
∗L∨� = ν1∗Lν

∗
1L∨� ⊕ ν2∗Lν

∗
2L∨�.

Lemma 5.8.2.

Lν∗1L∨� = L∨�1
, Lν∗2L∨� = L∨�2

,

and

Lι∗L∨� = (f ◦ ι)∗TD.

Proof of Lemma. The commutative diagram

C1
//

��

X1

��

C //W
induces a canonical arrow Lν∗1L� → L�1 , and similarly for Lν∗2L� →
L�2 . We can check that this is an isomorphism locally. Away from
D nothing is changed. Near D, the complex L� is the conormal to
C → W since f is transversal, and it restricts to L�1 , the conormal to
C1 → X1. For the same reason the conormal to C → W restricts on G
to the conormal of G → D. ♣

The triangle now looks as follows:

L∨� // ν1∗L∨�1
⊕ ν2∗L∨�2

// ι∗(f ◦ ι)∗TD
[1]
//

Since D is a gerbe, the tangent sheaf TD is the pullback of TD, and
it follows from the Tangent Bundle Lemma (see [AGV, Lemma 3.6.1])
that

p∗ι∗(f ◦ ι)∗TD = evr ∗
η N∆̃.

Therefore when applying Rπ∗, dualizing and rotating the above triangle
we get

(Rp1∗L∨�1
)∨ ⊕ (Rp2∗L∨�2

)∨ // (Rp∗L∨�)∨ // evr ∗
η N∨

∆̃
[1]

[1]
//

which is clearly compatible with the triangle of cotangent complexes,
as required. (A detailed verification of such compatibility is found in
[ACW, Appendix].) ♣
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5.9. Comparison with ∆. We now translate Proposition 5.8.1 into

a result involving ∆ : I(D)M → (I(D) × I(D))M instead of IM =
I(D/T tw)MT tw and ∆̃.

We have a cartesian diagram

Kη
qη

//

��

K∗η //

��

K1,2

��

I(D)M
q

// ∗ //

��

(I(D)× I(D))M

��

T tw × I(D)M
Id×∆

//

��

T tw × (I(D)× I(D))M

��

I(D)M
∆ // (I(D)× I(D))M .

The arrow ∆ is again the diagonal composed with ι on the right.

By Lemma 1.3.3, the component Zj of I(D/T tw) where evr
j maps is

a gerbe over the corresponding component Zj of T tw ×I(D), and this
gerbe is banded by µcj

. It follows that the arrows q and qη are étale

surjective of pure degree
∏

j∈M cj: the arrow q is the product of the

étale surjective morphisms Zj → Zj ×Zj Zj = Zj × Bµcj
. Therefore

we have the following:

Proposition 5.9.1.

(qη)∗ [Kη]vir =

(∏
j∈M

cj

)
· ∆![K1,2]vir.

We can now use the projection formula. The composite top mor-
phism in the last diagram is vη : Kη → K1,2. We can compose the
vertical arrow on the right and obtain the “untwisted” evaluation mor-
phism ev1,2 : K1,2 → (I(D) × I(D))M . Denoting by [∆] the class
(∆)∗[I(D)M ], we have that

vη∗ [Kη]vir =

(∏
j∈M

cj

)
· ev∗1,2[∆] ∩ [K1,2]vir.

But [∆] =
∏

j∈M

(∑
δj∈F δj × ι

∗δ∨j

)
. We thus obtain
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Corollary 5.9.2.

vη∗ [Kη]vir =
∏
j∈M

cj ∑
δj∈F

evjΞ1

∗δj × evjΞ2

∗ι∗δ∨j

 ∩ [K1,2]vir;

combining with Lemma 5.7.2, with a slight abuse of notation we have

(vη ◦ uη)∗ [Kη]vir

= r(η) ·
∏
j∈M

cj ∑
δj∈F

evjΞ1

∗δj × evjΞ2

∗ι∗δ∨j

 ∩ [KΞ1 ×KΞ2 ]vir

5.10. End of proof. The stack Kη carries two universal families of
contracted curves: a disconnected family C ′ → Kη pulled back from
C1 t C2 → KΞ1 × KΞ2 inducing evaluations ev′i with coarse curve
C ′ → Kη having sections s′i; and a connected family Cη → Kη com-
ing from C → K inducing evaluations evi, with coarse curve having
sections si. These families differ only where they meet the splitting di-
visor. In particular the pullback of the classes ψi of the sheaves s∗iωC/K
coincides with that of the class ψ′i corresponding to s′∗iωC2tC2/KΞ1

×KΞ2
,

and similarly for the pullbacks of γi via evaluation maps. We compute:

〈∏
i∈N

τmi(γi)

〉W0

Γ

=
∑
η∈Ω

r(η)

|M |!
deg

(
(s ◦ tη)∗

(∏
i∈N

ψmii · ev∗i γi

)
∩ [Kη]vir

)

(by the projection formula and Lemma 5.6.1)

=
∑
η

r(η)

|M |!
deg

(
(u ◦ vη)∗

(∏
i∈N

ψ′
mi
i · ev′

∗
i γi

)
∩ [Kη]vir

)
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(by the discussion above)

=
∑
η∈Ω

r(η)

|M |!

∏
j∈M cj

r(η)

deg

((∏
i∈N

ψ′
mi
i · ev′

∗
i γi

)

·
∏
j∈M

cj ∑
δj∈F

evj
∗
Ξ1
δj × evj

∗
Ξ2
ι∗δ∨j

 ∩ [KΞ1 ]vir × [KΞ2 ]vir


(by the projection formula and Corollary 5.9.2)

=
∑
η∈Ω

∏
j cj

|M |!
∑

δj∈F∀j∈M

(−1)ε

〈∏
i∈N1

τmi(γi)

∣∣∣∣ ∏
j∈M

δj

〉(X1,D)

Ξ1

·

〈∏
i∈N2

τmi(γi)

∣∣∣∣ ∏
j∈M

δ̃∨j

〉(X2,D)

Ξ2

as required.

Appendix A. Pairs and nodes

A.1. Smooth and locally smooth pairs. A smooth pair is a pair
(X,D) where X is a smooth algebraic stack and D is a smooth divisor.
A locally smooth pair is obtained if we only require X to be smooth near
the smooth divisor D. We sometimes call X the ambient scheme/stack
and D the boundary divisor.

Let A := [A1/Gm] - this notation will be kept throughout the paper.
A morphism f : X → A is equivalent to the data (L, s) of a line bundle
L on X with a section s, as explained in [ACW]. The morphism f is
dominant if and only if the section s is nonzero; in particular, every
pair (X,D) with X an algebraic stack and D an effective Cartier divisor
defines such a dominant morphism. The pair is smooth (respectively
locally smooth) if and only if the morphism toA is smooth (respectively
smooth over the divisor BGm = [0/Gm]).

A morphism of locally smooth pairs φ : (X,D) → (X ′, D′) is a
morphism φ : X → X ′ such that φ−1(D′)red ⊂ D. If D′ is empty, every
morphism X → X ′ defines a morphism of pairs (X,D)→ (X ′, ∅).
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A family of locally smooth pairs over a base stack S is the datum
of a flat morphism X → S and an S-flat closed substack D ⊂ X such
that for every point s ∈ S the fiber (Xs, Ds) is a locally smooth pair.

Given two families (X,D) and (X ′, D′) of locally smooth pairs over
the same base S, a log morphism is a morphism φ : X → X ′ such that

(1) for every s ∈ S, φs : (Xs, Ds) → (X ′s, D
′
s) is a morphism of

locally smooth pairs;
(2) the morphism φ∗ΩX′ → ΩX induces a morphism φ∗(ΩX′(logD′))→

ΩX(logD).

Note that:

(a) The first condition implies the second if S is reduced, but not
in general;

(b) Assume that S is connected, and that D has connected com-
ponents Di such that Di ∩Ds is also connected for every i and
every s ∈ S (this is true e.g. if S is simply connected). Then
φ : X → X ′ is a log morphism if and only if there exist noneg-
ative integers ci such that φ∗D′ =

∑
ciDi.

Locally smooth pairs their morphisms are classical special cases of
logarithmic structures in the sense of [Ka].

A.2. Transversality for nodal singularities and pairs. A mor-
phism of locally smooth pairs (C,Σ) → (X,D) is transversal to the
boundary divisor (or just transversal) if the scheme theoretic inverse
image of D is smooth (and hence a union of connected components of
Σ).

Let X be a complex algebraic stack; we say that it has nodal codi-
mension one singularities - or just nodal singularities for brevity - if
it is locally isomorphic in the f.p.p.f. topology to {xy = 0} × An; in
particular its singular locus D is smooth. Let ν : X̃ → X be the
normalization and D̃ = ν−1(D). Then (X̃, D̃) is a smooth pair, and
D̃ → D is an étale double cover.

Definition A.2.1. A morphism between nodal algebraic stacks f :
C → X is called transversal to the singular locus if

(1) the induced morphism C̃ → X̃ defines a morphism of locally
smooth pairs which is transversal to the boundary divisor;

(2) for every point p ∈ f−1(D) its two inverse images in C̃ map to

different points of D̃ via f̃ .

This means that we have smooth charts C̃ → C and X̃ → X, lifting
C̃ → X̃ of C → X and smooth morphisms C̃ → {xy = 0} and
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X̃ → {xy = 0} making the following diagram commutative

C̃ //

$$IIIIIIIIII X̃

zzuuuuuuuuuu

{xy = 0},

so on the charts C̃ and X̃ the coordinates x, y with xy = 0 are the
same.

Suppose now (C,Σ)→ S and (X,D)→ S are flat families of locally
smooth pairs with at most nodal singularities and f : C → X a map.
The following is evident:

Lemma A.2.2. The locus Str ⊂ S where the fibers are transversal is
open

A.3. First-order smoothability of nodal singularities. If X is a
stack with codimension-1 singular locus D, we say that X is first-order
smoothable if the line bundle Ext1(ΩX ,OX) on D is trivial. If X is
the union of two smooth components X1 and X2 meeting transversally
along D, then it is first-order smoothable if and only if ND/X1 ⊗ND/X2

is isomorphic to OD. Note that if there is a one-parameter smoothing
of X with smooth total space then X is first-order smoothable, while
the converse is in general not true.

Appendix B. Stack constructions

B.1. Using 2-stacks to define stacks. Occasionally we define a 2–
groupoid X by giving objects, 1-morphisms and 2-morphisms, and then
we show that every 1-morphism in X is rigid (i.e., it has only the
identity as 2-automorphism); equivalently, for any two objects X and
Y of X, the groupoid Mor(X, Y ) is equivalent to a set. In this case
we say that the 2-groupoid X is 1-rigid. We can then consider the
associated groupoid X[1], where objects are unchanged, and morphisms
are isomorphism classes of 1-morphisms of the given 2-groupoid X.
Since X is 1-rigid, it is equivalent to X[1] (in the appropriate lax sense).
We might as well replace X, which may arise naturally but is likely
to intimidate us with its dæmonic 2-arrows, by the more friendly, yet
equivalent, groupoid X[1].

We will use this particularly in the definition of algebraic stacks. In
particular if X is a stack then stacks with a representable morphism
to X form a 1-rigid 2-groupoid, see Lemma 3.3.3 in [AGV]; also, the 2-
groupoid of stacks with a dense open algebraic space and isomorphisms
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as 1-morphisms is also 1-rigid, see Lemma 4.2.3 on page 42 of [AV].
Both cases are generalized using the following lemma.

Lemma B.1.1. Let X be a stack with separated diagonal, and U a
scheme-theoretic dense open substack. Let β : idX → idX be a 2–
morphism such that β|U is the identity of idU . Then β is the identity
2–morphism.

Proof. The fact that the diagonal is separated implies that the natural
projection π : I(X)→ X is separated. The automorphisms of idX are
the sections of I(X) → X. Since we assumed that this section is the
identity on a scheme-theoretically dense substack, it coincides with the
identity on X. ♣

Let p : X → Y be a morphism of stacks, and assume that there is a
scheme-theoretic dense open substack U of X such that p|U : U → p(U)
is an isomorphism. Let g : Y → Y be an isomorphism. A lifting of
g to X is a pair (f, α) such that f : X → X is an isomorphism and
α : p◦f → g ◦p a 2-morphism. A morphism of liftings is a 2-morphism
γ : f → f ′ such that γ and α′ induce

α.

Lemma B.1.2. The groupoid of liftings of g is rigid, i.e., equivalent
to a set.

Proof. Let (f, α) and (f ′, α′) be two liftings of g to X. We want to
show that a 2-morphism γ : f → f ′ such that γ and α′ induce α is
unique if it exists. Let γ and γ′ be two such two-morphisms, and let
β := γ−1 ◦γ′ : f → f . Then β|U : fU → fU is the identity 2–morphism.
Let β̄ : idX → idX be the composition of β with the identity of f−1;
then β̄|U is also the identity 2-morphism of idU . Therefore β̄ must be
the identity 2–morphism by Lemma B.1.1, and hence β must be the
identity 2–morphism, hence γ = γ′. ♣

Convention B.1.3. In this case, we will refer to the liftings of g
as a set, meaning the set of equivalence classes of the corresponding
groupoid.

B.2. Constructing moduli over a base stack. Numerous construc-
tions of stacks have been given over base schemes. For instance, if S is a
scheme, and X → S and Y → S are algebraic stacks satisfying suitable
assumptions, then Olsson constructed an algebraic stack HomS(X ,Y),
see [Ol06]; also if X → S is an algebraic stack satisfying suitable as-
sumptions, then in [AV] the stack Kg,n(X , d) is constructed. However
we will need these constructions when the base S is an algebraic stack
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and not a scheme. The fact that this can be done is well known to ex-
perts and appears time and again in the literature, where the authors
did not find it necessary to justify. What is completely evident in these
situations is that we have a stack (though sometimes an argument as
in Subsection B.1 above is needed). The fact that the stack is algebraic
follows from the following lemma.

Lemma B.2.1. Consider a morphism X → Y of stacks. Assume Y is
algebraic, and assume there is a scheme U and a faithfully flat U → Y
such that the stack XU = U ×Y X is algebraic. Then X is algebraic.

Proof. Step 1: representability of the diagonal. By assumption Y →
Y × Y is representable, therefore X ×Y X → X ×X is representable.
It remains to show that X → X×Y X is representable. By assumption
XU → XU ×U XU is representable. Take a scheme S and a morphism
S → X×Y X. We need to show that X ′ = S×X×YXX is representable.
Consider SU = S ×Y U , which is representable since Y is algebraic.
Then X ′U = SU ×XU×UXU XU is representable. The fiber diagram

X ′U //

��

X ′

��

SU // S

shows that X ′ → S is representable, hence X ′ is representable, as
needed.

Step 2: Existence of a smooth cover. We may assume U → Y is
smooth surjective. Let V be a scheme and V → XU be smooth surjec-
tive. Then the composite V → X is smooth surjective, as required. ♣

B.3. Inertia stacks of various flavors.

B.3.1. The inertia stack. Let X be an algebraic stack. Its inertia stack
I(X) is the stack whose objects over a scheme S are pairs (x, g) with
x ∈ X(S) and g ∈ Aut(x). Arrows are given by pullback diagrams.

The inertia stack can be identified as I(X) = X×X×XX, with both
arrows given by the diagonal. Since the diagonal is representable, the
morphism I(X) → X given by the first projection is representable.
This is simply the forgetful morphisms which sends an object (x, g) to
x.

Let BZ be the classifying prestack of Z. Then we have a canonical
isomorphism of prestacks I(X) ' Hom(BZ, X). This in particular
implies that forming the inertia stack is compatible with fiber products:
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given a fiber product of algebraic stacks X = X1×ZX2 we have I(X ) =
I(X1)×I(Z) I(X2) (an observation due to Tom Bridgeland).

B.3.2. Inertia of Deligne–Mumford stacks. Suppose nowX is a Deligne–
Mumford stack, and let r be a positive integer such that the expo-
nent of any automorphism group in X divides r. In this case we have
I(X) = Hom(B(Z/rZ), X). The stack I(X) has an evident decom-
position I(X) = td|rId(X), where Id(X) is the stack of (x, g) with
g of order d. Then Id(X) = Homrep(B(Z/dZ), X), the substack of
representable morphisms, see [AGV]

.

B.3.3. Rigidified inertia. The automorphism group of an object (x, g)
of Id(X) has the subgroup Z/dZ ' 〈g〉 sitting in its center. We can
therefore rigidify by removing this subgroup and obtain the rigidified
stack Id(X) = Id(X)((( (Z/dZ). It is canonically isomorphic to the
stack whose objects over S are G → X, where G is a gerbe banded
by Z/dZ and G → X is representable. The rigidified inertia stack is
I(X) = td|rId(X). The morphism I(X ) → I(X) is the universal
gerbe, with universal representable morphism I(X) → X. We stress
that the data of the band is important - without it we would get a
different tack, a rigidification of the stack of cyclic subgroups (without
choice of generator) of inertia.

B.3.4. Cyclotomic inertia and rigidified inertia. In the theory of twisted
stable maps, a cyclotomic twist of these stacks arises naturally. Since in
this paper we work over C, it is safe to choose the generator exp(2π i/d)
of µd, so the distinction is not crucial. Let us mention the appropriate
identification of stacks: we have I(X) ' Hom(Bµr, X), the cyclotomic
inertia stack; Id(X) ' Homrep(Bµd, X); and Id(X) ' Id(X)((( (µd) is
canonically isomorphic to the stack whose objects over S are G → X,
where G is a gerbe banded by µd and G → X is representable. The
stack I(X) = td|rId(X) is then identified as the cyclotomic inertia
stack, see [AGV]

B.4. Deformations and obstructions for Artin stacks. A key
technical tool for deformation theory is the cotangent complex of a
morphism: we refer the reader to [Ol07b] for the correct definition of
cotangent complex Lf for a morphism f : X → Y of Artin stacks and
for the relevant results in deformation theory, see also [Ao]. Note that
in [Ol07b] Olsson’s cotangent complex Lf is actually not defined as
an object in the derived category: its right truncations τ≥nLf are for
n ∈ Z, and Lf is defined as an object of a filtered category. This issue
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is removed in [LO, 2.2.ix], specifically the equivalence at the end of
page 119 between the appropriate derived categories of quasi-coherent
sheaves on the stack and on a symplicial resolution.

In particular, to any morphism of Artin stacks f : X → Y we can
after all associate its cotangent complex Lf ∈ D≤1

coh(X). This is func-
torial, in the sense that for any composable morphisms of Artin stacks
f : X → Y and g : Y → Z, there is a distinguished triangle in D−(X):

f ∗Lg → Lg◦f → Lf
+1→ .

The morphism f is étale if and only if Lf = 0; it is smooth if and only
if its cotangent complex Lf is perfect of perfect amplitude contained
in [0, 1].

Recall that f is said to be of Deligne–Mumford type if for any mor-
phism S → Y with S a Deligne–Mumford stack, the stack X ×Y S is
also Deligne–Mumford. Then f is Deligne–Mumford type if and only
if h1(Lf ) is the zero sheaf, or equivalently if Lf ∈ D≤0(X).

For any stack X we write LX for LX→Spec k; the complex LX is perfect
of perfect amplitude in [−1, 0] if and only if X is a Deligne–Mumford
stack with l.c.i. singularities.

If f : X → Y is a morphism of Deligne–Mumford type, an obstruc-
tion theory for f is a morphism φ : E→ Lf in D≤0(X) such that h0(φ)
is an isomorphism, and h−1(φ) is surjective. We say that it is a perfect
obstruction theory if E is a perfect complex, of perfect amplitude con-
tained in [−1, 0] (i.e., locally isomorphic to a morphism E−1 → E0 of
locally free sheaves).

We define the cotangent complex of a locally smooth pair (X,D) to
be LX/A (where X → A is the morphism associated to the pair, see
§A.1); we sometimes denote it by LX(logD). Note that if (X,D) is a
smooth pair with X a scheme, or, more generally, a smooth DM stack,
then LX(logD) is concentrated in degree zero and isomorphic to the
classically defined locally free sheaf ΩX(logD). It is easy to see that a
morphism of locally smooth pairs induces a morphism of log cotangent
complexes, which has the usual deformation-theoretic properties (see
[Ol05]).

Appendix C. Stacks of maps and their obstruction theory

C.1. Stacks of maps. We define a relative obstruction theory on cer-
tain algebraic stacks parametrizing stable maps. This includes the
obstruction theories needed in the singular and in the relative case, see
Section C.2; in fact, a common generalization is possible.
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Convention C.1.1. In this section, we will fix an algebraic stack T ,
and a family of locally smooth pairs (W,D) → T such that W → T
is of Deligne-Mumford type (note that the case D = ∅ is possible, in
which case we are just assuming W → T to be flat). Fix nonnegative
integers g, n and a curve class β in the fibers of W → T . Fix n-tuples
e of positive integers ei and c of nonnegative integers ci such that∑
ci · ei−1 = β · D. In particular if D = ∅, we must have ci = 0. We

combine the data under the shorthand notation Γ = (g, n, e, c, β)

Definition C.1.2. Let K̃Γ((W,D)/T ) be the stack

of representable maps f from a twisted prestable n-pointed curve
(C,Σ) to fibers of (W,D)→ T such that f ∗D =

∑
ciΣi and such that

Σi is twisted with index ei. If D is empty, we write K̃Γ(W/T ).

Remark C.1.3. The condition on f ∗D can be rephrased as saying that
we consider the stack of log morphisms; see section A.1 for details.

Convention C.1.4. We will write just K̃ for K̃Γ((W,D)/T ) within this
section.

Lemma C.1.5. The stack K̃ is an algebraic stack in the sense of Artin.

Proof. We first do the case D = ∅. Consider the stack of twisted curves
M := Mtw

g,n and its universal family C→M. Over M× T we have two
families, C′ := C × T → M × T and W ′ := M ×W → M × T . We
first prove that Homrep

M×T (C′,W ′) is algebraic. By [Ol06], the pullback

of K̃ to a scheme by any arrow S → M × T is an algebraic stack in

the sense of Artin. Also K̃ is a stack, since this property is tested over

a base scheme. By Lemma B.2.1, the stack K̃ is an algebraic stack, as
required.

If D is nonempty, let K̃′ be the stack obtained by assuming D empty.

The stack K̃ is obtained by first passing to the open substack where
f ∗D is a divisor on C, and then to the closed substack where the two
divisors

∑
ciΣi and f ∗D coincide. ♣

Notation C.1.6. Let us now denote by K ⊂ K̃ the maximal open

substack of K̃ such that the morphism K → T is of Deligne–Mumford
type. We will reserve the notation K for the substack which is Deligne–
Mumford in the absolute sense.

C.1.7. Base change. The construction of K̃ and K behaves well under
base change in the following sense. Assume that (W,D)→ T satisfies
the assumption in Convention C.1.1. Let aT : T ′ → T be any mor-
phism, and write W ′ := W ×T T ′ and D′ := D ×T T ′. Let β′ be the
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homology class in the fibers of W ′ → T ′ induced by β, let Γ′ e obtained
by replacing β by β′ in Γ, and aW : W ′ → W the natural morphism.
Then (W ′, D′) → T ′ satisfies the same assumptions, and there is a
natural cartesian diagram

K̃Γ′((W
′, D′)/T ′)

aeK //

��

K̃Γ((W,D)/T )

��

T ′ aT
// T

where aeK is given by mapping an object (C,Σ, f ′) to ((C,Σ, aW ◦ f).
Since the property of being of DM type is stable under base change,

one gets an analogous cartesian diagram by replacing K̃ by K.

C.1.8. Change of family. Assume that we are given a proper morphism
θ : W1 → W and a closed substack D1 ⊂ W1 such that

(1) the composite morphism (W1, D1)→ T satisfies the assumption
in Convention C.1.1;

(2) one has θ−1(D) = D1 as a closed subscheme, and θ|D1 : D1 → D
is an isomorphism.

Let β1 be a class in the fibers of W1 → T , and β = θ∗β1, and Γ1,Γ
the corresponding discrete data. If β1 = 0, assume moreover that
2g − 2 + n > 0. Then there is a natural induced proper morphism of
T–stacks

K̃Γ1((W1, D1)/T )→ K̃Γ((W,D)/T )

defined by (C,Σ, f) 7→ (C,Σ, θ ◦ f)stab. This follows by applying [AV],
Corollary 9.1.3, where we replace the base scheme S by T using Lemma
B.2.1.

C.2. Obstruction theory on stacks of maps. For simplicity we
now restrict to the open substack Kt ⊂ K parametrizing maps which
are transversal to the boundary divisor in the sense of A.2. One can
avoid this simplifying assumption using logarithmic structures, but we
will not need this generality in this paper.

The aim of this section is to define a relative obstruction theory for
Kt → T , and to give conditions so that it is perfect in [−1, 0]. The

construction works for K̃t instead of Kt if we allow obstruction theories
for morphisms which are not of Deligne–Mumford type using the work
[No], requiring EeKt/T → LeKt/T to also be an isomorphism in degree
+1.
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Consider the structure commutative diagram

C
f

((QQQQQQQQQQQQQQQQ

p

��
111111111111111

  BBBBBBBB

WK

��

u
// W

��

K // T

where C → Kt is the universal curve, f is the universal map and Σ :=
∪Σi is the union of the marked gerbes. Also denote Σ′ = Σ r f−1D.
Since we are assuming the maps are transversal to D, deforming f :
(C,Σ)→ (W,D) is equivalent to deforming f : (C,Σ′)→ W , which is
in turn equivalent to deforming the diagonal map f̄ : (C,Σ′)→ WKtw .

Let L� be the cotangent complex to the morphism f̄ : (C,Σ′) →
WKt): it is canonically isomorphic in the derived category to the cone
of the canonical morphism of cotangent complexes

f ∗LW/T −→ LC(log Σ′)/K

induced by the structure morphisms u∗LW/T → LW
Kt/Kt - which is an

isomorphism since W → T is flat - and f̄ ∗LW
Kt/Kt → LC(log Σ′)/Kt . See

[Ol07b, Theorem 8.1].

By the same argument, the object L� is also isomorphic to the cone
of the morphism

p∗LKt/T −→ LC(log Σ′)/W

and therefore there is a natural morphism

L�[−1] −→ p∗LK/T .

The morphism p is proper. It is also l.c.i., therefore Gorenstein, and
its dualizing complex ωp is a line bundle positioned in degree −1. By
[LN]

the functor Rp∗ : D(C) → D(K) has a right adjoint p! which is
isomorphic to the functor F 7→ Lp∗(F)⊗ ωp.

We denote by EK/T the object Rp∗(L� ⊗ ωp); there is a natural
morphism EK/T → LK/T induced by adjunction from the morphism
L�[−1] → p∗LK/T defined above. Note that we have a canonical iso-
morphism EK/T ' (Rp∗L∨�)∨[−1].

Lemma C.2.1. (1) The morphism EK/T → LK/T is an obstruction
theory.

(2) Its formation commutes with base change on T in the sense of
Remark C.1.7.
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Proof. We first give a proof in the case where Σ = ∅. (1) We use the
criterion in [BF], Lemma 4.5, see also p. 85 there for the relative case
- a detailed proof is available in [ACW]

. The result than follows from [Il], Theorem

III 2.1.7.

(2) Given a morphism φ : K′ → K with C ′ → K′ the pullback of
C → K, we have a canonical isomorphism Lφ∗EK/T ' EK′/T , such that
the composite morphism Lφ∗EK/T → Lφ∗LK/T → LK′/T coincides with
the composition Lφ∗EK/T → EK′/T → LK′/T . In particular, given a
morphism ψ : T ′ → T we can pull back the entire diagram. Denote
by φ : K′ → K the pullback via φ. Again we have an isomorphism
Lφ∗EK/T ' EK′/T ' EK′/T ′ , and the compatibility above lifts to LK′/T ′ .

For the general case, we remark that the above proof remains valid
by replacing the cotangent complex of C by the logarithmic cotangent
complexes. Treatment of this can be found in [La, Ra89]. This also
follows from [Il, III, SS2.3 and §4] by using the cotangent complex of
the topos Σ′C, or by using the morphism C → A associated to Σ′. ♣

C.3. Perfect amplitude.

Definition C.3.1. Let t be a geometric point of T , Wt the fiber of W
over t. We say that a prestable map f : (C,Σi) → Wt (i.e., a point in
K) is nondegenerate if

no irreducible component of C maps to the singular locus of Wt. An
irreducible component which does map to the singular locus of Wt is
callled degenerate.

Remark C.3.2. The points corresponding to nondegenerate maps
form an open substack Knd of K, which commutes with base change
in the sense of Remark C.1.7.

Lemma C.3.3. Assume that the morphism W → T is l.c.i.

(1) The obstruction theory EKt/T is perfect in [−2, 0];

(2) It is perfect in [−1, 0] over the open substack Ktnd.

Proof. (1) SinceW → T and C → K are l.c.i., both LW/T and LC(log Σ′)/K

are perfect in [−1, 0]. Therefore L� is perfect in [−2, 0]; hence L� ⊗
ωπ[−1] is also perfect in [−2, 0], and since p is proper and flat of rel-
ative dimension 1, one has that EKt/T = Rp∗(L� ⊗ ωp[−1]) is perfect
in [−2, 1]. Since EKt/T is an obstruction theory, it has vanishing h1,
hence it is perfect in [−2, 0].

(2) It is enough to prove that, for each point x ∈ Ktnd, h
−2(x∗EKt

nd/T
) =

0. Assume the point x corresponds to a prestable map f : (C,Σ)→ W .
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We want to show that Ext2(L�|C ,OC) = 0; by the local-to-global spec-
tral sequence of Ext, we reduce to showing that H1(C, h1((L�|C)∨)) =
0. Remark that L�|C is the mapping cone of the morphism f ∗LW/T →
LC(log Σ). Note that the support of h1((L�|C)∨) is contained in the locus
of points in C which map to the singular locus of W → T (i.e., the sup-
port of h1((f ∗LW/T )∨)) which by assumption is zero-dimensional. ♣

Remark C.3.4. In fact, both in this subsection and in the following
one we could replace the moduli stack of twisted prestable curves with
any other moduli stack of d-dimensional proper Deligne–Mumford lo-
cally smooth pairs; Lemma C.2.1 would still hold, and Lemma C.3.3
would hold with [−2, 0] (respectively [−1, 0]) replaced by [−(d + 1), 0]
(respectively [−d, 0]).
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Appendix D. Things to do

(1) Add details on curve classes and cohomology classes in invariant
section 4. This includes some data on cohomology of types of
inertia and the way we identify; the part of cohomology of a
nodal stack that is relevant; etc.

(2) Transform degeneration formula (and final steps in proof) to a
result in terms of push forward of fundamental classes.

(3) Explicitly explain the reason for the appearance of contact or-
der or intersection multiplicities in the degeneration formula.
Maybe this goes in a more expository article?

(4) Rejuvenate notation table.
(5) Pictures - maybe in an expository article?
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