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Introduction

We describe our work in progress on relative Gromov–Witten Theory and its
degeneration counterpart in the case of a smooth variety relative to a normal cross-
ings divisor. Our work follows the algebraic methods of Jun Li, based on expanded
degenerations of the target, and has a symplectic counterpart in work in progress
by Joshua Davis. We note that Bernd Siebert has announced in a lecture another
approach based on endowing the source curves with certain logarithmic structures,
which has the potential advantage for wider and more direct applications, though
that theory has not been developed yet.

0.1. Gromov–Witten theory and relative stable maps. The theory of relative
stable maps was first introduced by Ziv Ran in his paper on the degree of the Severi
variety under a different name; the subject was developed within Gromov-Witten
theory by a number of people, including A.M. Li–Y. Ruan, E. Ionel–T. Parker,
and J. Li. Working in algebraic geometry, we must follow the work of Jun Li.
Related work appeared through the years, including Harris–Mumford, Alexander-
Hirschowitz, Gathmann, Caporaso–Harris, Vakil.

Stable maps were introduced by Kotsevich as a tool in Gromov–Witten theory,
which in particular serves as a tool in enumerative geometry. The main goal from
the enumerative point of view is to count the number of curves of given genus g
and homology class β on a variety X meeting given cycles γ1, . . . , γn.

The formalism is based on the moduli space of stable maps along with its eval-
uation maps:

M := Mg,n(X, β)
evi

// X.
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The moduli space has a virtual fundamental class [M]vir allowing to define the
Gromov–Witten classes

〈γ1, . . . γn〉 =

∫

[M]vir

∏

ev∗i γi .

Tools in Gromov–Witten theory include the famous WDVV equation, but much
more powerful are the methods of localization and degeneration, see discussion in
[?, ?]. We concentrate on the degeneration method.

1. Basic examples

1.1. Plane sections of a quadric surface. As a simple example, consider a pencil
of quadric surfaces degenerating to two planes meeting along a line Σ, and consider
the number of curves of type (1, 1) (i.e. conics) on a quadric passing through three
points in general position. Of course this number is 1, but it is instructive to see
how it is revealed in the degeneration.

Note that the total space of the pencil is singular along the intersection of the
base locus with the line Σ, namely two points. Blowing up one of the two planes
gives a small resolution of the total space, where one component Y1 of the singular
fiber is a plane, and another Y2 is the blowing up of the other plane at two points
on Σ, with two exceptional curves Ei ⊂ Y2.

If of the three chosen points p1, p2, p3 we let p1, p2 specialize to Y1 and p3 to
Y2, the limiting curve through the three points is L1 ∪ L2, where L1 is the unique
line on Y1 through p1, p2, and L2 the unique line on Y2 passing through p3 and the
point of intersection L1 ∩ Σ.

p3

p2

p1

E1 E2

Y1

Y2

If all three points specialize to Y1, the resulting curve is the union of E1, E2, and
the unique conic on Y1 through p1, p2, p3 and meeting E1, E2.

If all three points specialize to Y2, the resulting curve is the unique proper
transform on Y2 of a conic, passing through p1, p2, p3 and meeting E1, E2.

1.2. Rational curves of type (2, 2). It is instructive to do a similar analysis of
the number of rational curves of type (2, 2) through 7 points in general position on
the quadric. Again the number is known classically - it is the number of singular
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curves of genus 1 in a pencil, namely 12. If we let p1, . . . , p4 specialize to Y1 and
the rest to Y2, we get several possible configurations, one of which is the following:

p1

p2

p3

p4

p5 p6

p7

E1 E2

Y1

Y2

There are exactly two conics on Y1 through p1, . . . , p4 tangent to Σ, and for each
there is a unique conic on Y2 through p5, p6, p7 tangent to Σ at the same point.
But the correct number is not 2, but 4, since each such configuration appears with

multiplicity two in the fiber of the degeneration. The verification of this multiplicity
2, and multiplicity 1 otherwise (in general the product of the orders of tangency
of the curve with the singular locus) has been a rather painful component in past
work.

Other configurations that appear, all with multiplicity 1, are as follows:

E1 E2

Y1

Y2

E1 E2

Y1

Y2

E1 E2

Y1

Y2

There are three each of the first two, and the last has a brother with Ei switched.
The total is indeed 12.

1.3. Plane section of a cubic. Consider a cubic surface degenerating to three
planes, and consider the unique plane section through three points p1, p2, p3 in
general poisition degenerating so that p1, p2 are on one plane and p3 on another.
In this case one can easily see the unique configuration of three lines, one on each
plane, going through the points.
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p1

p2

p3

We remark that here as well the formalism requires resolving singularities of the
total space, which again can be done using a small modification, but in this simple
calculation these do not intervene.

If the points are spread out evenly we again get one configuration

But beware that the naive calculation, in terms of fixed points of the degree 1 map
induced by “monodromy” on one of the lines, gives 2. The offending configuration,
which does not appear in the limit, is the following:
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2. The degeneration scheme: old picture

Previous work considered the case of a family of varieties parametrized by a
curve, with smooth total space and special fiber consisting of two smooth com-
ponents meeting transversally along a divisor Σ (thus not encompassing the last
example above).

0

Σ

Y1

Y2

↓

A major issue is that, although a space of stable map fibered over the base exists,
the formalism of virtual fundamental classes fails in genus > 0 in case there are
components mapping to the singular locus Σ of the fiber.

The solution proposed so far involves expanding the fiber by sticking a chain of
P

1 bundles over Σ between the two original components of the fiber.
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Y1 Y1 Y1

Y2 Y2 Y2

P1

P1

P2

This is introduced in Jun Li’s work by replacing the original base curve B by
something more involved: suppose B has parameter s such that the origin is defined
by s = 0. Suppose also that the total space X of the family has parameters x, y
such that s = xy, and possibly other “free” parameters we’ll ignore.

Consier the smooth surface B(1) with parameters u, v with morphism B(1) → B
defined by uv = s. There is a fiberwise action of C

∗ on B(1) by (u, v) 7→ (t·u, t−1 ·v).

The pullback of X to B(1) has a threefold A1 singularity: xy = uv.

↓

x = u

= 0

Blowing up the Weil divisor x = u = 0 we obtain a small resolution, where the
central fiber over u = v = 0 has a single P

1-bundle inserted.
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↓

Replacing B(1) by similar n + 1-folds B(n) with (C∗)n action and using a small
blowup we obtain a chain of P1-bundles inserted in the fiber.

Everything is C
∗- equivariant, and, in fact, the right base to use is roughly the

Artin stack [B(1)/C∗] (and more generally [B(n)/(C∗)n]. This stack [B(1)/C∗] has
there “origins” - two regular ones and one a copy of BGm, indicated in large red
below. The red point is in the closure of each of the back points.

A slightly better choice is described in [5], where it is noted that the two “regular”
origins parametrize the same thing and can be merged into one:

One then defines degenerate stable maps to the fibers in this new total space,
and similarly relative stable maps to each component Yi, in which no components
of the source curve map entirely into the singular locus. Then one proves a gluing
formula for degenerate stable maps in terms of relative stable maps to each of the
components. 1

←1

3. The case of a normal crossings divisor

The problem we set out to solve is:

1. define relative stable maps to (Y, D), where D is a normal crossings divisor
on a smooth variety Y ,

2. define degenerate stable maps to a variety obtained by gluing such relative
(Yi, Di) appropriately along the divisors, in such a way that Gromov–Witten in-
variants are defined and are deformation invariant, and

3. prove a gluing formula comparing the two.

In the following we consider some of the properties of the theory in the case
of smooth divisors, and see how they extend to the more general case of normal
crossings divisors.

1(Dan) expand here
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3.1. Comparing old and new: a normal crossings divisor has already

appeared. Consider stable maps relative to a surface X with D = D1 + D2 a
normal crossings divisor, with Di smooth.

The first thing we note is that we have indeed already seen such a picture: we
have the total space X of a degeneration over B of a varety with normal crossings
degenerate fiber having two smooth components Y1, Y2.

It seems that this is a great misconception - we have no satisfactory way to relate
even fiberwise relative stable maps for (X , Y1+Y2) with the degenerate stable maps.
We are informed by Joshua Davis that he is investigating a variant of this problem,
but for the time being we must set it aside, and declare that

the new relative picture is different from the old degenerate picture.

3.2. Old picture: the expansions are normal crossings varieties. Here is a
variety with a divisor, along with a stick-figure (or moment map image) version:

X

D1

D2

D2

D1

X

Here is an example of a degeneration of stable configurations of the simplest kind

y

O
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Of course, this last variety is very nice, but it is certainly not a normal crossings
variety! A variety with local equation x1x2 = 0, x3x4 = 0 is a product of normal
crossings varieties, also known as semistable, see [?]. We conclude:

Expanded varieties are semistable, not normal crossings.

3.3. Old picture: curves meet the strata properly. As in the old picture, we
expect to have some marked points on the curves in the complement of D, which
always remain there, and we mark all the points where it meets D, which should
again remain in the smooth locus of D.

But what happens when a curve degeneration reaches a point where it passes
the intersection D1 ∩D2?

�
 

Since we consider the points where the curve meets D1 and D2 as a kind of
marked points, they may not coincide, therefore something must break. A natural
attempt to understand this is to blow up the intersection and get a picture of the
following nature:

�
 

(The triangle stands for the exceptional P
2).

If you think about it, once you start blowing up once, you need to blow up again,
and again, with no end in sight to the type of pictures you get. We started looking
into this but abandoned it when it looked unwieldy. It appears that Davis’s original
approach in his thesis followed this path in the case of rational curves, though he
too abandoned this when dealing with curves of higher genus.

Instead, we keep the degenerations of the target simple, and allow the degenerate
curve to pass through a more complicated point in an organized manner:
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�

 

 

There is a principle in moduli spaces - whatever you see in a degeneration, you
should allow its pieces to appear in the relative picture:

99K

This gives us a more or less general picture of a relative stable map
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We conclude:

Curves are allowed to meet any stratum, at marked points.

We can now define relative stable maps:2 ←2

And degenerate stable maps: 3
←3

3.4. Old picture: relative stable maps can be glued. Recall that in the old
picture we have a morphism

M(Y1, D)×Dm M(Y2, D) −→M
deg

(Y1 ⊔
D Y2),

on which the gluing formula for Gromov–Witten invariants relies.

To describe the new situation, it is convenient to use the following slightly sim-
pler “toy model”, which is of interest in its own right, and is covered by our work:
consider a one parameter degeneration (X → S, E) with smooth total space, with

2(Dan) finish this
3(Dan) finish this too
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generic fiber (X, E) a smooth variety with a smooth divisor, and special fiber con-
sisting of two smooth components Yi glued along a smooth divisor D, such that the
reduction of E on each Yi is a smooth divisor Ei meeting D transversally. We then
seek a gluing formula for relative Gromov–Witten invariants of (Yi, D + Ei) giving
relative invariants of (X, E). Underlying this we should have a gluing formula for
maps:

←→

Let us consider the following degeneration of the above picture:

←→

Of course we know how to glue this - the non-degenerate side needs to spawn
a matching P1 bundle, and the curve needs to spawn the appropriate maps of P1

with matching multiplicities:
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←→

The ellipse on the top right should signify a P1-multiple cover totally branched at
the end-points.

But consider now a case where both sides are degenerate, but the curves on the
P1 bundle need no gluing. Should we glue this way?

←→

Or, after acting by Gm on either side, this way?
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←→

↓ ↑

Or maybe break it up this way?

←→

Or this way?
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←→

The answer is, of course, that all are allowed. The point is the following:

First, in the old picture, the gluing data sitting in Dn plus extra data of mul-
tiplicities in which the curves meet D, should be thought of as the space of maps
of a set of points to D. The gluing data in the new picture is based on maps of
a set of points to the universal family of all expanded degenerations of D. The
possible changes by Gm of gluings are accounted for in the automorphisms of such
maps. Let us writeMP(Dexp) to denote the moduli stack of maps of points (with
multiplicity data) to expanded versions of D.

Second, in the old picture we glued stable maps. Now can only glue maps to
expanded degenerations of Yi. It is enough to glue maps which are stable as maps
to each expanded fiber, when the automorphisms of the fiber are not taken into
account. These automorphisms are crucial in the resulting gluing map. Let us
denote these M(Y exp

i ). And now we have a map4
←4

M(Y exp
1 ) ×

MP(Dexp)

M(Y exp
2 ) −→ M

(

(Y1 ⊔
D Y2)

exp
)

.

In summary,

we can only glue “semistable” maps, using “semistable” gluing data.

3.5. Old picture: we can glue two curves to get any degenerate pic-

ture. An unwelcome surprise mentioned in the talk is in describing the gluing
formula: whereas in the previously studied case the Gromov–Witten numbers of a
two-component variety was described in terms of its decomposition to exactly two
components, in our case, where the degenerate variety has at least three intersecting
components, our formalism requires summing over further decompositions, where
each component of the original variety is further “expanded”.

4(Dan) Notation needs much thought.
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which can only decompose to

3.6. Old picture: the horrors of deformation theory. A welcome surprise
mentioned in the talk is the following: much grief was brought on previous writers in
analyzing the so called “predeformability condition”, a closed condition on relative
and degenerate stable maps which is unpleasant to work out. Techniques of stacks
and twisted stable maps of Abramovich–Vistoli and Olsson enable one to transform
this into an open condition on a modified space, thus avoiding much of the grief.
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