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Lecture 0. Introduction: curves

The goal:

GEOMETRY DETERMINES ARITHMETIC.

Glossary:

Geometry: birational geometry of a variety X over a
number field k

Arithmetic: rational and integral points, at least af-
ter a field extension.

Determines: to be discussed
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0.1. Closed curves.

Degree of KC rational points

2g − 2 ≤ 0 potentially dense

2g − 2 > 0 finite

In other words,

rational points on a curve C of genus
g are potentially dense if and only if
g ≤ 1.

Potentially dense: Zariski-dense after a field exten-
sion.

KC : OC(KC) = Ω1
C = ωC

Case g ≤ 1: explicit construction of points on rational
and elliptic curves

Case g > 1: Faltings’s theorem.

Theorem (Faltings, 1983). Let C be an algebraic curve
of genus > 1 over a number field k. Then C(k) is
finite.



birational geometry for number theorists 3

0.2. Open curves.
On A1 one wants to speak of integral points = x ∈ Z.

Only makes sense on the integral model A1
Z.

Otherwise not invariant!

For open varieties we use integral points
on integral models.

In general: C an affine curve with completion C, com-
plement Σ.

Birational invariant: KC + Σ - “logarithmic differen-
tials”.



4 birational geometry for number theorists

Ring: Ok,S, where S a finite set of primes.

Base scheme: SpecOk,S

Integral model: C = C r Σ over SpecOk,S

S-integral points on C = elements of C(Ok,S)

= sections of C → Spec(Ok,S).

C → SpecOk,S proper: integral points = rational points
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degree of KC + Σ integral points

2g − 2 + n ≤ 0 potentially dense

2g − 2 + n > 0 finite

potentially dense: extend k and S.

2g − 2 + n ≤ 0: Explicit construction

2g − 2 + n > 0: Faltings, plus older

Theorem 0.2.1 (Siegel’s Theorem). If n ≥ 3, or if
g > 0 and n > 0, then for any integral model C of C,
the set of integral points C(Ok,S) is finite.
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0.3. Faltings implies Siegel.

Rational and integral points can be con-
trolled in finite étale covers.

Theorem 0.3.1 (Hermite-Minkowski). Let k be a num-
ber field, S a finite set of finite places, and d a positive
integer. Then there are only finitely many extensions
k′/k of degree ≤ d unramified outside S.

(So “degree + discriminant” is a good measure of the
size of a number field.)

From which one can deduce

Theorem 0.3.2 (Chevalley-Weil). Let π : X → Y be
a finite étale morphism of schemes over Ok,S. Then
there is a finite extension k′/k, with S ′ lying over S,
such that π−1Y(Ok,S) ⊂ X (Ok′,S′).
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On the geometric side we have an old topological result

Theorem 0.3.3. If C is an open curve with 2g− 2 +
n > 0 and n > 0, defined over k, there is a finite
extension k′/k and a finite unramified covering D →
Ck′, such that g(D) > 1.
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0.4. Function field case. If K is the function field of
a complex variety B, then a variety X/K is the generic
fiber of a scheme X/B, and a K-rational point P ∈
X(K) can be thought of as a rational section of X → B.

If dim B = 1 and X → B is proper, then again a
K-rational point P ∈ X(K) is equivalent to a regular
section B → X .

The notion of integral points is similarly defined using
sections, at least when dim B = 1.

Theorem (Manin, Grauert). Assume g(C) > 1. Then
the set of nonconstant points C(K) r C(K)const is fi-
nite.

which implies

Theorem (Faltings). Let C be a curve of genus > 1
over a field k finitely generated over Q. Then the
set of k-rational points C(k) is finite.
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Lecture 1. Kodaira dimension

1.1. Iitaka dimension. k: field of characteristic 0

X/k: a smooth, projective, dim X = d.

L: line bundle on X , specifically interesting

KX : OX(KX) = ∧dΩ1
X = ωX .

Sections of OX(KX) - birational invariant!
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Theorem (Iitaka,Moishezon).
h0(X,Ln) grows polynomially:
if there is a section, there is a unique integer κ =

κ(X, L) with 0 ≤ κ ≤ d such that

lim sup
n→∞

h0(X,Ln)

nκ

exists and is nonzero.

κ(X,L) =: the Iitaka dimension of (X,L).

κ(X) := κ(X,KX) =: the Kodaira dimension of X .

if h0(X, Ln) vanishes for all positive integers n, set

κ(X,L) = −∞
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Proposition. Assume κ(X,L) ≥ 0. Then for suffi-
ciently high and divisible n,
the image of the rational map φLn : X 99K PH0(X,Ln)

does not depend on n (up to birational equivalence),
and
dim φLn(X) = κ(X,L).

• The birational equivalence class of φLn0(X) is de-
noted I(X,L).

• The rational map X → I(X,L) is called the Iitaka
fibration of (X,L).

• In case L is the canonical bundle, this is called the
Iitaka fibration of X , written X → I(X)

Definition. The variety X is said to be of general type
of κ(X) = dim X .

κ(X) is a birational invariant
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κ(Pn) = −∞

κ(A) = 0 for an abelian variety A.

κ(C) =


1 if g > 1,

0 if g = 1, and

< 0 if g = 0.

Easy additivity:

κ(X1 ×X2, L1 � L2) = κ(X1, L1) + κ(X2, L2).

so
κ(X1 ×X2) = κ(X1) + κ(X2).
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Easy subadditivity:

X → B dominant morphism with connected fibers.
Then

κ(X) ≤ dim(B) + κ(XηB
)

Definition. We say that X is uniruled if there is a va-
riety B of dimension dim X − 1 and a dominant rational
map B × P1 99K X .

So, if X is uniruled, κ(X) = −∞.

Converse is important, follows from existence of “good
minimal models”:

Conjecture.
Assume X is not uniruled. Then κ(X) ≥ 0.
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Surfaces:
κ description

−∞ P2 or P1 × C

0 a. abelian surfaces
b. bielliptic surfaces
k. K3 surfaces
e. Enriques surfaces

1 many elliptic surfaces
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Here is a central conjecture of birational geometry:

Conjecture (Iitaka). Let X → B be a surjective mor-
phism of smooth projective varieties. Then

κ(X) ≥ κ(B) + κ(XηB
).

Progress: Arakelov, Fujita, Kawamata, Viehweg and
Kollár...

Theorem (Kawamata). Iitaka’s conjecture follows from
the Minimal Model Program:

if XηB
has a good minimal model then

κ(X) ≥ κ(B) + κ(XηB
).

Theorem (Viehweg). Iitaka’s conjecture holds in case
B is of general type, namely:

Let X → B be a surjective morphism of smooth pro-
jective varieties, and assume κ(B) = dim B. Then

κ(X) = dim(B) + κ(XηB
).
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1.2. Uniruled varieties and rationally connected
fibrations.
k: algebraically closed field of characteristic 0.

Definition. A smooth projective variety P is said to be
rationally connected if through any two points x, y ∈ P
there is a morphism from a rational curve C → P having
x and y in its image.
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There are various equivalent ways to characterize ratio-
nally connected varieties.

Theorem (Campana, Kollár-Miyaoka-Mori). Let P be
a smooth projective variety. The following are equiv-
alent:

(1) P is rationally connected.
(2) Any two points are connected by a chain of ratio-

nal curves.
(3) For any finite set of points S ⊂ P , there is a

morphism from a rational curve C → P having
S in its image.

(4) There is a “very free” rational curve on P - if
dim P > 2 this means there is a rational curve
C ⊂ P such that the normal bundle NC⊂P is am-
ple.
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Key properties:

Theorem. Let X and X ′ be smooth projective vari-
eties, with X rationally connected.

(1) If X 99K X ′ is a dominant rational map (in par-
ticular when X and X ′ are birationally equiva-
lent) then X ′ is rationally connected.

(2) If X ′ is deformation-equivalent to X then X ′ is
rationally connected.

(3) If X ′ = Xk′ where k′/k is an algebraically closed
field extension, then X ′ is rationally connected if
and only if X is.

Theorem (Kollár-Miyaoka-Mori, Campana). A Fano
variety is rationally connected.
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Now we can break any X up:

Theorem (C, K-M-M, Graber-Harris-Starr).
Let X be a smooth projective variety.
There is a modification X ′ → X,
a variety Z(X),
and a dominant morphism X ′ → Z(X) with con-

nected fibers, such that

(1) The general fiber of X ′ → Z(X) is rationally con-
nected, and

(2) Z(X) is not uniruled.

Moreover, X ′ → X is an isomorphism in a neigh-
borhood of the general fiber of X ′ → Z(X).

The rational map rX : X 99K Z(X) is called the max-
imally rationally connected fibration of X (or
MRC fibration of X), and Z(X), which is well defined
up to birational equivalence, is called the MRC quotient
of X .

The MRC fibration has the universal property of being
“final” for dominant rational maps X → B with ratio-
nally connected fibers.
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The set of rational points on a rational curve is Zariski
dense. The following is a natural extension:

Conjecture (Campana). Let P be a rationally con-
nected variety over a number field k. Then rational
points on P are potentially dense.

This conjecture and its sister below for Kodaira dimen-
sion 0 was implicit in works of many, including Bogo-
molov, Colliot-Thélène, Harris, Hassett, Tschinkel.
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1.3. Geometry and arithmetic of the Iitaka fi-
bration.
Assume κ(X) ≥ 0. Consider the Iitaka fibration X 99K

I(X).

Proposition. Let F be a general fiber of X → I(X).
Then κ(F ) = 0

Conjecture (Campana). Let F be a variety over a
number field k satisfying κ(F ) = 0. Then rational
points on F are potentially dense.
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1.4. Lang’s conjecture. A highly inspiring set of con-
jectures in diophantine geometry is the following:

Conjecture (Lang’s conjecture, weak form). Let X/k
be a smooth projective variety of general type over
finitely generated field. Then X(k) is not Zariski-
dense in X.

Conjecture (Lang’s geometric conjecture). Let X be a
smooth projective variety of general type. There is a
Zariski closed proper subset S(X) ⊂ X, whose irre-
ducible components are not of general type, and such
that every subset T ⊂ X not of general type is con-
tained in S(X).
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Conjecture (Lang’s conjecture, srtong form). Let X/k
be a smooth projective variety of general type over a
finitely generated field. Then for any finite extension
k′/k, the set (X S(X))(k′) is finite.

For application:

Proposition. Assume weak Lang. Let X/k: smooth
projective variety over a number field. Assume given
a dominant rational map X 99K Z, with Z a variety
of general type, dim Z > 0.
Then X(k) is not Zariski-dense in X.
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1.5. Uniformity of rational points. Applying inMg,n

we get

Theorem 1.5.1 (Caporaso, Harris, Mazur).
Assume weak Lang.
Let k = number field, g > 1.
There is N(k, g) so that for every genus g curve C/k,

#C(k) ≤ N(k, g).

Theorem 1.5.2 (Pacelli).
N(k, g) = N(d, g) with d = [k : Q].

Theorem 1.5.3 (Caporaso, Harris, Mazur).
Assume strong Lang. Let g > 1.
There is N(g) so that for every finitely generated k

#C(k) ≤ N(g)

for all but finitely many genus g curves C/k.

More: Hassett, A., Voloch, Matsuki.
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1.6. The search for an arithmetic dichotomy.
Potential density of rational points on curves is deter-
mined by geometry.

Caporaso’s table: rational points on
surfaces

Kodaira dim X(k) potentially dense X(k) never dense

κ = −∞ P2 P1 × C (g(C) ≥ 2)

κ = 0 E × E, many others none known

κ = 1 many examples E × C (g(C) ≥ 2)

κ = 2 none known many examples

κ = −∞: Mordell (and Campana)

κ = 0: the subject of Campana’s Conjecture.

κ = 2: the subject of Lang’s conjecture,

What to do with κ = 1?

Diophantine geometry is not governed by κ(X)
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Example. Take a Lefschetz pencil of cubic curves in P2,
total space S
Take the S1 → S base change t = sk, with k ≥ 3.
• κ(S1) = 1
• S1(k) dense

Existence of maps to varieties of general type not enough:

Example (Colliot-Thélène, Skorobogatov, Swinnerton-Dyer).

C: a hyperelliptic curve with involution φ : C → C.
E: elliptic with a 2-torsion point a.

φ̃: Free action of Z/2Z on Y = E × C given by

(x, y) 7→ (x + a, φ(y)).

S2 := Y/φ̃.

• κ(S2) = 1
• S2(k) not dense by Chevalley-Weil and Faltings.
•S2 → C ′ dominant ⇒ g(C) ≤ 1.
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1.7. Logarithmic Kodaira dimension and Lang-
Vojta conjectures.

X : smooth projective variety,
D: a reduced normal crossings divisor.
X := X r D.

κ(X) := κ(X, KX +D) =: logarithmic Kodaira dimen-
sion of X .

Easy: κ(X) independent of completion X ⊂ X.

X is of logarithmic general type if κ(X) = dim X .
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X : a model of X over Ok,S.

S-integral points := X (Ok,S)

The Lang-Vojta conjecture is the following:

Conjecture 1.7.1. If X is of logarithmic general type,
then S-integral points on a model are not Zariski dense
in X.

The Lang-Vojta conjecture is a consequence of Vojta’s
conjecture
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Lecture 2. Campana’s program

THIS SITE IS UNDER CONSTRUCTION
DANGER! HEAVY EQUIPMENT CROSSING

2.1. One dimensional Campana constellations.
Had surface examples with κ = 1:
S1 → P1 and S2 → P1, with κ = 1.
Arithmetic behavior very different.
Campana’s question: is there an underlying structure

on the base P1 from which we can deduce this difference
of behavior?

The key point: S2 has 2g+2 double fibers over a divisor
D ⊂ P1.

S2 → P1 can be lifted to S2 → P ,
P :=

√
(P1, D) =orbifold structure on P1 obtained by

taking the square root of 1D.
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Darmon-Granville: consider the canonical KP of P .

as a Q-divisor, KP = KP1 + (1− 1/2)D.

(with m-fold fiber over a divisor D, take D with coeffi-
cient (1− 1/m).)

Theorem (Darmon-Granville, using Chevalley-Weil and
Faltings).
An orbifold curve P has potentially dense set of in-

tegral points if and only if the Kodaira dimension
κ(P) = κ(P , KP) < 1.

Key property: extend π2 : S2 → P over Ok,S, then

p ∈ S2(k) ⇒ π(p) ∈ P(Ok,S) .

This fully explains our example:

Since integral points on P =
√

(P1, D) are not Zariski
dense, and since rational points on S2 map to integral
points on P , rational points on S2 are not Zariski dense.
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Next key point:

What should we declare the structure to be when we
have a fiber that looks like x2y3 = 0, i.e. has two compo-
nents of multiplicities 2 and 3?

Classical: gcd(2, 3) = 1 ⇒ no new structure.

Campana (Bogomolov sheaves): min(2, 3) = 2.

Definition (Campana).

X,Y : smooth, f : X → Y dominant, dim Y = 1 .

Define ∆f =
∑

δpp: a Q-divisor on Y :

Say f ∗p =
∑

miCi, where Ci distinct integral.

Then set

δp = 1− 1

mp
, where mp = min

i
mi.
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Definition (Campana).
A Campana constellation curve (Y/∆ is:

a curve Y along with a Q divisor ∆ =
∑

δpp,

with each δp = 1− 1/mp for some integer mp.

The Campana constellation base of f : X → Y
is (Y/∆f), with ∆f defined above.

The word used by Campana is orbifold. The analogy
with classical orbifolds is broken in this very definition.

Campana’s definition deliberately does not distinguish
between the structure coming from a fiber of type x2 = 0
and one of type x2y3 = 0.
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Definition (Campana).

The Kodaira dimension of (Y/∆) is:

κ ( (Y/∆) ) := κ(Y,KY + ∆).

We say that (Y/∆) is of general type if it has Kodaira
dimension 1.

We say that it is special if it is not of general type.
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We need to speak about integral points on an integral
model of the structure.

Y : an integral model of Y , say proper over Ok,S,

∆̃: the closure of ∆.

Definition.
x ∈ Y (k), considered as an S-integral point x̄ of Y ,

is said to be a soft S-integral points on (Y/∆̃)

if for any nonzero prime ℘ ⊂ Ok,S where the reduction
x̄℘ of x̄ coincides with the reduction z̄℘ of some z̄ ∈ ∆̃,
we have

mult℘(x̄ ∩ p̄) ≥ mp.
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A key property of this definition is:

Proposition.
Say f : X → Y extends to a good model f̃ : X → Y.

Then the image of a rational point on X is a soft
S-integral point on (Y/∆̃f).

So rational points on X can be investigated using in-
tegral points on (Y/∆). This makes the following very
much relevant:

Conjecture (Campana). If (Y/∆) is of general type
then the set of soft S-integral point on any model Y
is not Zariski dense.
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This conjecture does not seem to follow readily from
Faltings’s theorem.
It does follow from the abc conjecture,
in particular we have the following theorem.

Theorem (Campana). If (Y/∆) is a Campana con-
stellation curve of general type defined over the func-
tion field K of a curve B then for any finite set S ⊂
B, the set of non-constant soft S-integral point on any
model Y → B r S is not Zariski dense.
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2.2. Higher dimensional Campana constellations.

Definition. A rank 1 discrete valuation on the function
field K = K(Y ) is a surjective group homomorphism ν :
K× → Z satisfying

ν(x + y) ≥ min(ν(x), ν(y))

with equality unless ν(x) = ν(y). We define ν(0) = ∞.

The valuation ring of ν is defined as

Rν =
{
x ∈ K

∣∣ ν(x) ≥ 0
}

.

Denote by Yν = Spec Rν, and its unique close point sν.

A rank 1 discrete valuation ν is divisorial if there is
a birational model Y ′ of Y and an irreducible divisor
D′ ⊂ Y ′ such that for all x ∈ K(X) = K(X ′) we have

ν(x) = multD′ x.

In this case we say ν has divisorial center D′ in Y ′.
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Definition.
A b-divisor ∆ on Y is an expression of the form

∆ =
∑

ν

cν · ν,

a possibly infinite sum over divisorial valuations ofK(Y )
with rational coefficients, which satisfies the following
finiteness condition:

• for each birational model Y ′ there are only finitely
many ν with divisorial center on Y ′ having cν 6= 0.
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Definition. Let f : X → Y be a dominant morphism.
For each divisorial valuation ν on K(Y ) consider f ′ :

X ′
ν → Yν,

where X ′ is a desingularization of the (main component
of the) pullback X ×Y Yν.

Write f ∗sν =
∑

miCi. Define

δν = 1− 1

mν
with mν = min

i
mi.

The Campana b-divisor on Y associated to a dominant
map f : X → Y is defined to be the b-divisor

∆f =
∑

δνν.

The definition is independent of the choice of desingu-
larization X ′

ν.
This makes the b-divisor ∆f a proper birational invari-

ant of f . In particular we can apply it to a dominant
rational map f .
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Definition. A Campana constellation (Y/∆) consists
of a variety Y with a b-divisor ∆ such that, locally in the
étale topology on Y , there is f : X → Y with ∆ = ∆f .

The trivial constellation on Y is given by the zero b-
divisor.

For each birational model Y ′, define the Y ′-divisorial
part of ∆:

∆Y ′ =
∑

ν with divisorial support on Y ′

δνν.
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Definition. (1) Let (X/∆X) be a Campana constella-
tion, and f : X → Y a dominant morphism. The
constellation base (Y,∆f,∆X

) is defined as follows:
for each divisorial valuation ν of Y and each diviso-
rial valuation µ of X with center D dominating the
center E of ν, let

mµ/ν = mµ ·multD(f ∗E).

Define

mν = min
µ/ν

mµ/ν and δν = 1− 1

mν
.

Then set as before

∆f,∆X
=

∑
ν

δνν.

(2) Let (X/∆X) and (Y/∆Y ) be Campana constella-
tions and f : X → Y a dominant morphism. Then
f is said to be a constellation morphism if ∆Y ≤
∆f,∆X

, in other words, if for every divisorial valua-
tion ν on Y and any µ/ν we have mν ≤ mµ/ν.
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Definition. A rational m-canonical differential ω on Y
is said to be regular on (Y/∆) if for every divisorial val-
uation ν on K(Y ), the polar multiplicity satisfies

(ω)∞,ν ≤ mδν.

In other words, it is a regular section of OY ′(m(KY ′ +
∆Y ′)) on every birational model Y ′.
The Kodaira dimension κ( (Y/∆) ) is defined using reg-

ular m-canonical differentials on (Y/∆).

This is a birational invariant.

Theorem (Campana). There is a birational model Y ′

such that

κ( (Y/∆) ) = κ(Y ′, K ′
Y + ∆Y ′).
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Definition. A Campana constellation (Y/∆) is said to
be of general type if κ( (Y/∆) ) = dim Y .
A Campana constellation (X/∆) is said to be special if

there is no dominant morphism (X/∆) → (Y/∆′) where
(Y/∆′) is of general type.

Definition. (1) A morphism f : (X/∆X) → (Y/∆Y )
of Campana constellation is special, if its generic
fiber is special.

(2) Given a Campana constellation (X/∆X), a mor-
phism f : X → Y is said to have general type
base if (Y/∆f,∆X

) is of general type.
(2’) In particular, considering X with trivial constella-

tion, a morphism f : X → Y is said to have general
type base if (Y/∆f) is of general type.
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Here is the main classification theorem of Campana:

Theorem (Campana). Let (X/∆X) be a Campana con-
stellation.There exists a dominant rational map c :
X 99K C(X), unique up to birational equivalence,
such that

(1) it has special general fibers, and
(2) it has Campana constellation base of general type.

This map is final for (1) and initial for (2).

This is the Campana core map of (X/∆X), the constel-
lation (C(X)/∆c,∆X

) being the core of (X/∆X). The
key case is when X has the trivial constellation, and then
c : X 99K (C(X)/∆c) is the Campana core map of X
and (C(X)/∆c) the core of X .
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2.3. Firmaments supporting constellations and
integral points. Need: combinatorial computational
tool; approach to nondominant morphisms; reduction; in-
tegral points.
Use toroidal geometry (more general: logarithmic),

Definition. (1) A toroidal embedding

U ⊂ X

is
a variety X and
a dense open set U with complement a Weil divisor

D = X r U ,

such that locally near every point, U ⊂ X admits
an isomorphism with T ⊂ V , with T a torus and V
a toric variety.

(2) Let UX ⊂ X and UY ⊂ Y be toroidal embeddings,
then a dominant morphism f : X → Y is said to

be toroidal if locally near every point of X there is a
toric chart for X near x and for Y near f (x) which
is a torus-equivariant morphism of toric varieties.
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To a toroidal embedding U ⊂ X we can attach an
integral polyhedral cone complex ΣX ,
consisting of strictly convex cones, attached to each

other along faces, and in each cone σ a finitely generated,
unit free integral saturated monoid Nσ ⊂ σ generating σ
as a real cone.
The complex ΣX can be pieced together using the toric

charts. for a toric variety V , cones correspont to toric
affine opens Vσ, and the lattice Nσ is the monoid of one-
parameter subgroups having a limit point in Vσ; it is dual
to the lattice of effective toric Cartier divisors Mσ, which
is the quotient of the lattice of regular monomials M̃σ by
the unit monomials.
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Relation with discrete valuations:
let R be a discrete valuation ring with valuation ν, spe-

cial point sR and generic point ηR; let φ : Spec R → X
be a morphism such that φ(ηR) ⊂ U and φ(sR) lying in
a stratum having chart V = Spec k[M̃σ].
One associates to φ the point nφ in Nσ given by the

rule:
n(m) = ν(φ∗m) ∀m ∈ M.

In case R = Rν is a valuation ring of Y , I’ll call this point
nν.

Suppose given toridal embeddings UX ⊂ X and UY ⊂
Y and a morphism f : X → Y carrying UX into UY (but
not necessarily toroidal).
the description above functorially associates a polyhe-

dral morphism fΣ : ΣX → ΣY which is integral, that is,
fΣ(Nσ) ⊂ Nτ whenever fΣ(σ) ⊂ τ .
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2.3.1. Toroidalizing a morphism. While most morphisns
are not toroidal, we have the following:

Theorem (Abramovich-Karu). Let f : X → Y be
a dominant morphism of varieties. Then there ex-
ist modifications X ′ → X and Y ′ → Y and toroidal
structures UX ′ ⊂ X ′, UY ′ ⊂ Y ′ such that the resulting
rational map f ′ : X ′ → Y ′ is a toroidal morphism:

UX ′

��

� � // X ′ //

f ′
��

X
f
��

UY ′
� � // Y ′ // Y

Furthermore, f ′ can be chosen flat.
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We now define firmaments:

Definition. A toroidal firmament on a toroidal em-
bedding U ⊂ X with complex Σ is a finite collection
Γ = {Γi

σ ⊂ Nσ}, where

• each Γi
σ ⊂ Nσ is a finitely generate submonoid, not-

necessarily saturated.
• each Γi

σ generates the corresponding σ as a cone,
• the collection is closed under restrictions to faces τ ≺

σ, i.e. Γi
σ ∩ τ = Γj

τ for some j, and
• it is irredundant, in the sense that Γi

σ 6⊂ Γj
σ for dif-

ferent i, j.
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A morphism from a toridal firmament ΓX on a toroidal
embedding UX ⊂ X to ΓY on UY ⊂ Y is a morphism
f : X → Y with f (UX) ⊂ UY such that for each σ and
i, we have fΣ(Γi

σ) ⊂ Γj
τ for some j.

We say that the toroidal firmament ΓX is induced by
f : X → Y from ΓY if for each σ ∈ ΣX such that
fΣ(σ) ⊂ τ , we have Γi

σ = f−1
Σ Γi

τ ∩Nσ.
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Given a proper birational equivalence φ : X1 99K X2,
then two toroidal firmaments ΓX1 and ΓX2 are said to be
equivalent if there is a toroidal X3, and a commutative
diagram

X3
f1

}}{{
{{

{{
{{ f2

""D
DD

DD
DD

D

X1
φ

//________ X2,
where fi are modifications, such that the two firmaments
on X3 induced by fi from ΓXi

are identical.

A firmament on an arbitrary X is an equivalence class
represented by a modification X ′ → X with a toroidal
embedding U ′ ⊂ X ′ and a toroidal firmament Γ on ΣX ′.
The trivial firmament is defined by Γσ = Nσ for all σ in

Σ.
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Definition. (1) Let f : X → Y be a flat toroidal mor-
phism of toroidal embeddings. The base firmament
Γf associated to X → Y is defined by the images
Γτ

σ = fΣ(Nτ) for each cone τ ∈ ΣX over σ ∈ ΣY .
(2) Let f : X → Y be a dominant morphism of varieties.

The base firmament of f is represented by any Γf ′,
where f ′ : X ′ → Y ′ is a flat toroidal birational model
of f .

(3) If X is reducible, decomposed as X = ∪Xi, but
f : Xi → Y is dominant for all i, we define the base
firmament by the (maximal elements of) the union
of all the firmaments associated to Xi → Y .
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Definition. Let Γ be a firmament on Y . Define the
Campana constellation (Y/∆) hanging from Γ (or sup-
ported by Γ) as follows: say Γ is a toroidal formament on
some birational model Y ′. Let ν be a divisorial valuation.
We have associated to it a point nν ∈ σ for the cone σ
associated to the stratum in which sν lies. Define

mν = min{k | k · nν ∈ Γi
σ for some i }.

An absolutely important result is:

Proposition. This is independent of the choice of
representative in the equivalence class Γ, and is a
constellation, i.e. always induced, locally in the étale
topology, from a morphism X → Y .
Also, the Campana constellation supported by the

base firmament of a dominant morphism X → Y
is the same as the base constellation associated to
X → Y .
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We need to talk about integral points on integral models.
I’ll restrict to the toroidal case.

Definition. An S-integral model of a toroidal firmament
Γ on Y consists of an integral toroidal model Y ′ of Y ′.

Definition. Consider a toroidal firmament Γ on Y/k,
and a rational point y such that the firmament is trivial
in a neighborhood of y. Let Y be a toroidal S-integral
model.
Then y is a firm integral point of Y with respect to Γ if

the section SpecOk,S → Y is a morphism of firmaments,
when SpecOk,S is endowed with the trivial firmament.
Explicitly, at each prime ℘ ∈ SpecOk,S where y reduces

to a stratum with cone σ, consider the associated point
ny℘ ∈ Nσ. Then y is firmly S-integral if for every ℘ we
have ny℘ ∈ Γi

σ for some i.
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Theorem. Let f : X → Y be a proper dominant mor-
phism of varieties over k. There exists a toroidal bi-
rational model X ′ → Y ′ and an integral model Y ′,
and the image of a rational point on X ′ is a firm

S-integral point on Y ′ with respect to Γf .

Conjecture (Campana). Let (Y/∆) be a smooth pro-
jective Campana constellation supported by firmament
Γ. Then integral points are potentially dense if and
only if (Y/∆) is special.

Proposition (Campana). Assume the conjecture holds
true. Let X be a smooth projective variety. Then ra-
tional points are potentially dense if and only if X is
special.
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Lecture 3. The minimal model program

3.1. Cone of curves.

3.2. Bend and break.

3.3. Cone theorem.

3.4. The minimal model program.

Lecture 4. Vojta, Campana and abc

4.1. Heights: local and global.

4.2. Vojta’s conjecture.

4.3. Vojta and abc.

4.4. Campana and abc.

4.5. Vojta and Campana.


