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Statement

Theorem (ℵ-Temkin, after W lodarczyk 03, ℵ-Karu-Matsuki-W l 02)

Let φ : X → Y be a projective birational morphism of regular, noetherian
qe schemes. Assume either char = 0 or strong resolution holds. Then φ
factors as

X = V0
ϕ1 // V1

ϕ2 // . . .
ϕ`−1 // V`−1

ϕ` // V` = Y ,

with Vi regular, projective over Y , and ϕi or ϕ−1i is the blowing up of a
regular Zi (⊂ Xi or Xi+1).
The factorization is functorial for regular surjective Y1 → Y , namely for
X1 = X ×Y Y1 get the factorization with (Vi )1 = Vi ×Y Y1 etc.

Question

What’s a regular morphism? what’s a qe scheme?
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Regular morphisms and qe schemes

Definition

f : Y → X is regular if

flat and

all geometric fibers of f : X → Y are regular.

Definition

X is a qe scheme if:

locally noetherian,

for any Y /X of finite type, Yreg ⊂ Y is open; and

For any x ∈ X , Spec ÔX ,x → X is a regular morphism.

I’ll give examples if you ask.
Lesson: Commutative rings are as bad as you feared.
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Nature

Why?

Qe schemes are the natural world for resolution of singularities.

(Temkin) they show up in “nature”.

IAS nature = C analytic. Can we factor?
consider Y = Cn, and for X blow up

(1, 0) once

(2, 0) twice
. . .

(n, 0) n times at infinitely near points.

There is no way to factor this in finitely many steps.

Problem

The local rings are noetherian, but not the Stein patches.
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Affinoids and germs

Consider closed polydisc D ⊂ Cr (“Stein compact”) and sheaf
OD := OCr |D (overconvergent functions).

Theorem (Frisch 67, Matsumura)

AD := Γ(D,OD) is an excellent regular noetherian ring.
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Correspondences

There is an “algebraization” correspondence: closed complex
subspaces of D correspond to closed subschemes of Dalg := Spec AD

etc. No weird boundary phenomena.

There is an analytification functor from schemes of finite type over
Dalg 7→ complex spaces over D. It preserves regularity.

Use these as patches to build complex geometry of “analytic germs”.

There is a similar picture with affinoids in rigid analytic or Berkovich
spaces, affine formal schemes, etc.
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Analytic factorization

Theorem (ℵ-Temkin, generalizing the compact complex manifold case
(ℵKMW))

Let Y be a compact nonsingular analytic germ. Any X → Y projective
bimeromorphic can be factored into blowings up and down as before.

This requires GAGA.

Theorem (GAGA, Serre’s Théorème 3)

Analytification induces a cohomology-preserving equivalence

Coh(Pn
Dalg )↔ Coh(Pn

D).

Lemma (correspondence)

For an affinoid Y , analytification induces bijections

{Blowings up X/Y alg} ↔ {Blowings up X an/Y },
{Factorizations X 99K99K Y alg} ↔ {Factorizations X an 99K99K Y }.
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Analytic factorization given correspondence Lemma

Write Y = ∪Yi with Yi affinoids so Y alg
i qe schemes.

Write Xi := BlIYi = X ×Y Yi , so X alg
i = BlI alg Y alg

I regular.

Get blowup tX alg
i → tY alg

i .

Apply algebraic factorization tX alg
i 99K99K tY alg

i .

Analytification gives corresponding tXi 99K99K tYi .

The theorem follows from the claim below:

Claim (Analytic Patching)

Let Y∗ ⊂ Y1 ∩ Y2 be affinoid, and X∗ = BlIY∗. Then the restrictions of
X1 99K99K Y1 and X2 99K99K Y2 to X∗ → Y∗ coincide.
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Claim and Lemma

By the Correspondence Lemma, Analytic Patching follows from

Lemma (Algebraic Patching)

Let X alg
∗ = BlI alg Y alg

∗ . Then the restrictions of X alg
1 99K99K Y alg

1 and

X alg
2 99K99K Y alg

2 to X alg
∗ → Y alg

∗ coincide.

Proof.

Let Z = Y alg
1 t Y alg

2 and W = Z t Y alg
∗ . The embeddings Y alg

∗ → Y alg
i

and the identity Z → Z give two maps hi : W → Z . These are regular
(Temkin!) and surjective.

Write XZ = BlI alg Z = X alg
1 t X alg

2 . Note that h∗1XZ = h∗2XZ , since they
are the blowings up of the same ideal sheaf.
Functoriality for regular surjective morphisms gives the Lemma.

♠
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About GAGA

It is magnificent.

You can too:

Lemma (Dimension Lemma)

We have H i (Pn
Dalg ,F) = H i (Pn

D ,Fan) = 0 for i > n and all F .

Lemma (Structure Sheaf Lemma)

We have H i (Pn
Dalg ,O) = H i (Pn

D ,O) for all i .
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Proof of lemmas

Proof of Dimension Lemma.

Use Čech covers of Pn
D = ∪ni=0Dn[1 + ε]× D by closed standard

polydisks. ♠

Proof of Structure Sheaf Lemma.

By proper base change for Pn
D

π

��

// Pn
CPr

$

��
D // CPr

get
R iπ∗OPn

D
= R i$∗OPn

CPr
.

♠

More on GAGA in the appendix.
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Factorization step 1: birational cobordism

We follow W lodarczyk’s original ideas. Much works for schemes.

Claim

There is (functorially) a regular projective (B → Y ,OB(1)), with Gm

action, such that:

Bss
amin

� Gm = X , Bss
amax

� Gm = Y .

Proof.

If X = BlIY , then take the deformation of the normal cone of Z (I ) and
resolve singularities to get B. ♠
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Factorization step 2: VGIT

Claim

The quotient Bss
a → Bss

a � Gm is affine, amin ≤ a ≤ amax,

Claim

There is a functorial factorization of φ into a sequence of

Bss
ai− � Gm → Bss

ai
� Gm ← Bss

ai+
� Gm.

For this, study relatively affine actions of diagonalizable groups on locally
noetherian schemes. The maps result from

Bss
ai− ↪→ Bss

ai
←↩ Bss

ai+
.
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Factorization step 3: torific blowups

Claim

There is (functorially) an invariant ideal Ji on Bss
ai

so that Btor
ai

:= BlJi B
ss
ai

,
with its exceptional divisor, is toroidal and the Gm action is a toroidal
action.

Over a field k, a pair (B,E ) is toroidal if locally it has a regular
morphism to a toric variety (Xσ,D) with its toric divisor D = Xσ −T .
In general there is a criterion by Kato.

The action is toroidal if the map is equivariant for a subgroup of T .

The proof requires studying logarithmically regular schemes. The
ideal is the torific ideal of ℵ-de Jong and ℵKMW.
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Factorization step 4: Luna’s fundamental lemma

Definition (Special orbits)

An orbit Gm · x ⊂ X is special if it is closed in the fiber of X → X � Gm.

Definition (Inert morphisms)

A Gm-equivariant X → Y is inert if (1) it takes special orbits to special
orbits and (2) it preserves inertia groups.

Theorem (Luna’s fundamental lemma, [Luna 73,Bardsley-Richardson
85, Alper 10,ℵ-Temkin])

A regular and inert Gm-equivariant X → Y is strongly regular, namely (1)
X � Gm → Y � Gm is regular and (2) X = Y ×Y�Gm

X � Gm.

Abramovich (Brown) Factorization of birational maps April 14, 2015 15 / 23



Factorization step 5: torification is torific

Claim

The following diagram is toroidal:

Btor
ai−

��

// Btor
ai

��

Btor
ai+

��

oo

Btor
ai− � Gm

// Btor
ai

� Gm Btor
ai+

� Gm
oo

This uses Luna and the properties of torific ideals.
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Factorization step 6: resolving and patching

An argument using canonical resolution of ℵKMW allows one to replace
Btor
ai− � Gm by regular toroidal schemes so that

Btor
ai−1+

� Gm 99K Btor
ai− � Gm is a sequence of blowings down and up of

nonsingular centers. Finally we have

Claim (Morelli 96, W l97, ℵ-Matsuki-Rashid, ℵKMW, ℵ-Temkin)

There is a toroidal factorization of Btor
ai− � Gm 99K Btor

ai+
� Gm, functorial

with respect to regular surjective morphisms.

This requires generalized cone complexes of ℵ-Caporaso-Payne.
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GAGA appendix: Serre’s proof - cohomology

Lemma (Twisting Sheaf Lemma)

We have H i (Pr
A,O(n)) = H i (Pr

D ,O(n)) for all i , r , n.

Proof.

Induction on r and 0→ OPr
D

(n − 1)→ OPr
D

(n)→ OPr−1
D

(n)→ 0

H i−1(Pr−1
A

,O(n)) //

��

H i (PrA,O(n − 1)) //

��

H i (PrA,O(n)) //

��

H i (Pr−1
A

,O(n))

��
H i−1(Pr−1

D
,O(n)) // H i (PrD ,O(n − 1)) // H i (PrD ,O(n)) // H i (Pr−1

D
,O(n)).

So the result for n is equivalent to the result for n − 1.
By the Structure Sheaf Lemma it holds for n = 0 so it holds for all n. ♠
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GAGA appendix: Serre’s proof - cohomology

Proposition (Serre’s Théorème 1)

Let F be a coherent sheaf on Pr
A. The homomorphism

h∗ : H i (Pr
A,F)→ H i (Pr

D , h
∗F) is an isomorphism for all i .

Proof.

Descending induction on i for all coherent Pr
A modules, the case i > r

given by the Dimension Lemma.
Choose a resolution 0→ G → E → F → 0 with E a sum of twisting
sheaves. Flatness of h implies 0→ h∗G → h∗E → h∗F → 0 exact.

H i (PrA,G)
//

��

H i (PrA, E)
//

=

��

H i (PrA,F) //

��

H i+1(PrA,G)
//

=

��

H i+1(PrA, E)

=

��
H i (PrD ,G) // H i (PrD , E) // H i (PrD ,F) // H i+1(PrD ,G) // H i+1(PrD , E)

so the arrow H i (Pr
A,F)→ H i (Pr

D , h
∗F) surjective, and so also for G, and

finish by the 5 lemma. ♠
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GAGA appendix: Serre’s proof - Homomorphisms

Proposition (Serre’s Théorème 2)

For any coherent Pr
A-modules F ,G the natural homomorphism

HomPr
A

(F ,G)→ HomPr
D

(h∗F , h∗G)

is an isomorphism. In particular the functor h∗ is fully faithful.

Proof.

By Serre’s Théorème 1, suffices to show that
h∗HomPr

A
(F ,G)→ HomPr

D
(h∗F , h∗G) is an isomorphism.(

h∗HomPr
A

(F ,G)
)
x

= HomOx′ (Fx ′ ,Gx ′)⊗Ox′ Ox

= HomOx (Fx ′ ⊗Ox′ Ox ,Gx ′ ⊗Ox′ Ox)

= HomPr
X

(h∗F , h∗G)x .

by flatness. ♠
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GAGA appendix: Serre’s proof - generation of twisted
sheaves

Proposition (Cartan’s Théorème A)

For any coherent sheaf F on Pr
D there is n0 so that F(n) is globally

generated whenever n > n0.

Proof.

Induction on r .
Suffices to generate stalk at x . Choose H 3 x , and get an exact sequence
0→ O(−1)→ O → OH → 0. This gives F(−1)

ϕ1→ F ϕ0→ FH → 0 which
breaks into

0→ G → F(−1)→ P → 0 and 0→ P → F → FH → 0,

where G and FH are coherent sheaves on H,
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Serre’s proof - generation of twisted sheaves (continued)

Proof of Cartan’s Théorème A, continued.

0→ G → F(−1)→ P → 0 and 0→ P → F → FH → 0,

so right terms in

H1(Pr
D ,F(n − 1))→ H1(Pr

D ,P(n))→ H2(H,G(n))

and
H1(Pr

D ,P(n))→ H1(Pr
D ,F(n))→ H1(H,FH(n))

vanish for large n. So h1(Pr
D ,F(n)) is descending, and when it stabilizes

H1(Pr
D ,P(n))→ H1(Pr

D ,F(n)) is bijective so
H0(Pr

X ,F(n))→ H0(H,FH(n)) is surjective.
Sections in H0(H,FH(n)) generate FH(n) by dimension induction,
and by Nakayama the result at x ∈ H follows.

♠
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GAGA appendix: Serre’s proof - the equivalence

Peoof of Serre’s Théorème 3.

Choose a resolution O(−n1)k1
ψ→ O(−n0)k0 → F → 0.

By Serre’s Théorème 2 the homomorphism ψ is the analytification of an
algebraic sheaf homomorphism ψ′, so the cokernel F of ψ is also the
analytification of the cokernel of ψ′. ♠
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