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Torsion on elliptic curves

Following [Mazur 1977]. . .

Theorem (Merel, 1996)
Fix d ∈Z>0. There is an integer c = c(d) such that:
For all number fields k with [k :Q]= d and all elliptic curves E/k ,

#E (k)tors < c .

Mazur: d = 1.
What about higher dimension?

(Jump to theorem)

Dan Abramovich Vojta and levels May 17, 2018 2 / 24



Torsion on elliptic curves

Following [Mazur 1977]. . .

Theorem (Merel, 1996)
Fix d ∈Z>0. There is an integer c = c(d) such that:
For all number fields k with [k :Q]= d and all elliptic curves E/k ,

#E (k)tors < c .

Mazur: d = 1.
What about higher dimension?

(Jump to theorem)

Dan Abramovich Vojta and levels May 17, 2018 2 / 24



Torsion on elliptic curves

Following [Mazur 1977]. . .

Theorem (Merel, 1996)
Fix d ∈Z>0. There is an integer c = c(d) such that:
For all number fields k with [k :Q]= d and all elliptic curves E/k ,

#E (k)tors < c .

Mazur: d = 1.
What about higher dimension?

(Jump to theorem)

Dan Abramovich Vojta and levels May 17, 2018 2 / 24



Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)
Let k be a field, finitely generated over Q; let p be a prime.

Let A→ S be an abelian scheme over a k-curve S .

There is an integer c = c(A,S ,k ,p) such that

#As(k)[p
∞]≤ c

for all s ∈ S(k).

What about all torsion?
What about all abelian varieties of fixed dimension together?
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Main Theorem

Let A be a g -dimensional abelian variety over a number field k .

A full-level m structure on A is an isomorphism of k-group schemes

A[m]
∼−→ (Z/mZ)g × (µm)

g

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta’s conjecture.
Fix g ∈Z>0 and a number field k .
There is an integer m0 =m0(k ,g) such that:
For any m>m0 there is no principally polarized abelian variety A/k of
dimension g with full-level m structure.

Why not torsion?
What’s with Vojta?
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Mazur’s theorem revisited

Consider the curves πm :X1(m)→X (1).

X1(m) parametrizes elliptic curves with m-torsion.

Observation: g(X1(m)) m→∞ //∞ (quadratically)

Faltings (1983) =⇒X1(m)(Q) finite for large m.
Manin (1969!):1 =⇒X1(p

k)(Q) finite for some k ,
and by Mordell–Weil X1(p

k)(Q)=; for large k .

But there are infinitely many primes >m0 !

(Jump to Flexor–Oesterlé)

1Demjanjenko
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Aside: Cadoret-Tamagawa

Cadoret-Tamagawa consider similarly S1(m)→ S , with components
S1(m)j .

They show g(S j
1(p

k)) //∞ ,. . .

unless they correspond to torsion on an isotrivial factor of A/S .
Again this suffices by Faltings and Mordell–Weil for their pk theorem.

Is there an analogue for higher dimensional base?
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Mazur’s theorem revisited: Flexor–Oesterlé, Silverberg
Proposition (Flexor–Oesterlé 1988, Silverberg 1992)

There is an integer M =M(g) so that: Suppose A(Q)[p] 6= {0}, suppose q is
a prime, and suppose p > (1+p

qM)2g . Then the reduction of A at q is
“not even potentially good”.

p torsion reduced injectively moduo q.
The reduction is not good because of Lang-Weil: there are just too
many points!
For potentially good reduction, there is good reduction after an
extension of degree <M, so that follows too.

Remark:
Flexor and Oesterlé proceed to show that ABC implies uniform
boundedness for elliptic curves.
This is what we follow: Vojta gives a higher dimensional ABC.
Mazur proceeds in another way
Dan Abramovich Vojta and levels May 17, 2018 7 / 24
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Mazur’s theorem revisited after Merel: Kolyvagin-Logachev,
Bump–Friedberg–Hoffstein, Kamienny

The following suffices for Mazur’s theorem:

Theorem
For all large p, X1(p)(Q) consists of cusps.

[Merel] There are many weight-2 cusp forms f on Γ0(p) with analytic
rank ords=1L(f ,s)= 0.
[KL, BFH 1990] The corresponding factor J0(p)f has rank 0.
[Mazur, Kamienny 1982] The composite map X1(p)→ J0(p)f sending
cusp to 0 is immersive at the cusp, even modulo small q.
But reduction of torsion of J0(p)f modulo q is injective.
Combining with Flexor–Oesterlé we get the result.

Is there a replacement for g > 1???????
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Main Theorem

Let A be a g -dimensional abelian variety over a number field k .

A full-level m structure on A is an isomorphism of k-group schemes

A[m]
∼−→ (Z/mZ)g × (µm)

g

Theorem (ℵ, V.-A., M. P. 2017)
Assume Vojta’s conjecture.

Fix g ∈Z>0 and a number field k .

There is an integer m0 =m0(k ,g) such that:

For any prime p >m0 there is no (pp) abelian variety A/k of dimension g
with full-level p structure.
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Strategy

Ãg → SpecZ := moduli stack of ppav’s of dimension g .
Ãg (k)[m] := k-rational points of Ãg corresponding to ppav’s A/k
admitting a full-level m structure.

Ãg (k)[m] =πm(Ãg
[m]

(k)),

where Ãg
[m]

is the space of ppav with full level.

Wi :=
⋃
p≥i

Ãg (k)[p]

Wi is closed in Ãg and Wi ⊇Wi+1.
Ãg is Noetherian, so Wn =Wn+1 = ·· · for some n> 0.
Vojta for stacks ⇒ Wn has dimension ≤ 0.

(Jump to Vojta)
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admitting a full-level m structure.
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Ãg → SpecZ := moduli stack of ppav’s of dimension g .
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Ãg (k)[p]

Wi is closed in Ãg and Wi ⊇Wi+1.
Ãg is Noetherian, so Wn =Wn+1 = ·· · for some n> 0.
Vojta for stacks ⇒ Wn has dimension ≤ 0.

(Jump to Vojta)

Dan Abramovich Vojta and levels May 17, 2018 10 / 24



Strategy
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Dimension 0 case (with Flexor–Oesterlé)

Suppose that Wn =
⋃
p≥n

Ãg (k)[p] has dimension 0.

representing finitely many geometric isomorphism classes of ppav’s.
Fix a point in Wn that comes from some A/k .
Pick a prime q ∈ SpecOk of potentially good reduction for A.
Twists of A with full-level p structure (p > 2; q - p) have good
reduction at q.
p-torsion injects modulo q =⇒ p ≤ (1+Nq1/2)2.

There are other approaches!
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Ãg (k)[p] has dimension 0.

representing finitely many geometric isomorphism classes of ppav’s.
Fix a point in Wn that comes from some A/k .
Pick a prime q ∈ SpecOk of potentially good reduction for A.
Twists of A with full-level p structure (p > 2; q - p) have good
reduction at q.
p-torsion injects modulo q =⇒ p ≤ (1+Nq1/2)2.

There are other approaches!

Dan Abramovich Vojta and levels May 17, 2018 11 / 24



Dimension 0 case (with Flexor–Oesterlé)

Suppose that Wn =
⋃
p≥n
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Towards Vojta’s conjecture

k a number field; S a finite set of places containing infinite places.
(X ,D) a pair with:

Ï X → SpecOk ,S a smooth proper morphism of schemes;
Ï D a fiber-wise normal crossings divisor on X .

(X ,D) := the generic fiber of (X ,D); D =∑
i Di .

We view x ∈X (k) as a point of X (Ok(x)),
or a scheme Tx := SpecOk(x) →X .
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Towards Vojta: counting functions and discriminants

Definition

For x ∈X (k) with residue field k(x) define the truncated counting function

N
(1)
k

(D ,x)= 1
[k(x) : k]

∑
q∈SpecOk ,S

(D |Tx )q 6=;

log |κ(q)|︸ ︷︷ ︸
size of

residue field

.

and the relative logarithmic discriminant

dk(k(x))=
1

[k(x) : k]
log |DiscOk(x)|− log |DiscOk |

= 1
[k(x) : k]

degΩOk(x)/Ok
.
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Vojta’s conjecture

Conjecture (Vojta c. 1984; 1998)
X a smooth projective variety over a number field k .
D a normal crossings divisor on X ; H a big line bundle on X .
Fix a positive integer r and δ> 0.
There is a proper Zariski closed Z ⊂X containing D such that

N
(1)
X

(D ,x)+dk(k(x))≥ hKX+D(x)−δhH(x)−Or (1)

for all x ∈X (k)àZ (k) with [k(x) : k]≤ r .

dk(k(x)) measure failure of being in X (k)

N
(1)
X

(D ,x) measure failure of being in X 0(Ok)= (X \D)(Ok)
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Vojta’s conjecture: special cases

D =;; H =KX ; r = 1; X of general type:
Lang’s conjecture: X (k) not Zariski dense.
H =KX (D); r = 1; S a finite set of places ; (X ,D) of log general type:
Lang–Vojta conjecture: X 0(Ok ,S) not Zariski dense.
X =P1;r = 1;D = {0,1,∞}: Masser–Oesterlé’s ABC conjecture.
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Extending Vojta to DM stacks

Recall: Vojta ⇒ Lang.
Example: X =P2(pC ), where C a smooth curve of degree > 6.
Then KX ∼O(d/2−3) is big, so X of general type, but X (k) is dense.
The point is that a rational point might still fail to be integral: it may
have “potentially good reduction” but not “good reduction”!
The correct form of Lang’s conjecture is: if X is of general type then
X (Ok ,S) is not Zariski-dense.

What about a quantitative version? We need to account that even rational
points may be ramified.

Heights and intersection numbers are defined as usual.
We must define the discriminant of a point x ∈X (k).
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Discriminant of a rational point

X → SpecOk ,S smooth proper, X a DM stack.
For x ∈X (k) with residue field k(x), take Zariski closure and
normalization of its image.
Get a morphism Tx →X , with Tx a normal stack with coarse moduli
scheme SpecOk(x),S .
The relative logarithmic discriminant is

dk(Tx)= 1
degTx/Ok

degΩTx/Ok
.
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Vojta’s conjecture for stacks

Conjecture
k number field; S a finite set of places (including infinite ones).
X → SpecOk ,S a smooth proper DM stack.
X =Xk generic fiber (assume irreducible)
X coarse moduli of X ; assume projective with big line bundle H.
D ⊆X NC divisor with generic fiber D.
Fix a positive integer r and δ> 0.

There is a proper Zariski closed Z ⊂X containing D such that

N
(1)
X

(D ,x)+dk(Tx)≥ hKX+D(x)−δhH(x)−O(1)

for all x ∈X (k)àZ (k) with [k(x) : k]≤ r .
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Vojta is flexible

Proposition (ℵ, V.-A. 2017)
Vojta for DM stacks follows from Vojta for schemes.

Key: Vojta showed that Vojta’s conjecture is compatible with taking
branched covers.

Proposition (Kresch–Vistoli)
There is a finite flat surjective morphism π : Y →X

with Y a smooth projective irreducible scheme
and DY :=π∗D a NC divisor.

Vojta for Y =⇒ Vojta for X .
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Completing the proof of the Main Theorem

Recall:

Wi :=
⋃
p≥i

Ãg (k)[p]

and Wn =Wn+1 = ·· · for some n> 0.
Want to show: dimWn ≤ 0. Proceed by contradiction.
Let X is an irreducible positive dimensional component of Wn.
X ′ →X a resolution of singularities.

X ′ ⊆X
′
smooth compactification with D :=X

′àX NC divisor.

Pick model (X ,D) of (X
′
,D) over SpecOk ,S (Olsson)
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Ãg (k)[p]

and Wn =Wn+1 = ·· · for some n> 0.
Want to show: dimWn ≤ 0. Proceed by contradiction.
Let X is an irreducible positive dimensional component of Wn.
X ′ →X a resolution of singularities.

X ′ ⊆X
′
smooth compactification with D :=X

′àX NC divisor.

Pick model (X ,D) of (X
′
,D) over SpecOk ,S (Olsson)

Dan Abramovich Vojta and levels May 17, 2018 20 / 24



Completing the proof of the Main Theorem

Recall:

Wi :=
⋃
p≥i
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Birational geometry

[Zuo 2000] K
X

′ +D is big.
Remark [Brunebarbe 2017]:
As soon as m> 12g , every subvariety of A

[m]
g is of general type.

Uses the fact that A
[m]
g →Ag is highly ramified along the boundary.

Implies a Manin-type result for full [pr ]-levels.

Can one prove a result for torsion rather than full level?

Taking H =K
X

′ +D get by Northcott an observation on the right hand
side of Vojta’s conjecture

N
(1)
X

(D ,x)+dk(Tx)≥ hK
X
′+D(x)−δhH(x)︸ ︷︷ ︸

large for small δ away from some Z

−O(1)
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Key Lemma

X (k)[p] = k-rational points of X corresponding to ppav’s A/k admitting a
full-level p structure.

Lemma
Fix ε1,ε2 > 0. For all pÀ 0 and x ∈X (k)[p], we have
(1)

N
(1)
X

(D ,x)≤ ε1hD(x)+O(1)

and
(1)

dk(Tx)≤ ε2hD(x)+O(1).

Note: hD ¿ hH outside some Z .
Vojta gives, outside some Z ,
hH(x)¿N

(1)
X

(D ,x)+dk(Tx)¿ εhH(x),
giving finiteness outside this Z by Northcott.
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(1) N (1)(D ,x)¿ ε1hD(x)

x is the image of a rational point on A
[p]
g

πp :A
[p]
g →Ag is highly ramified along D (Mumford / Madapusi

Pera).
So whenever (D|Tx )q 6= ; its multiplicity is À p.

so N(1)(D ,x)¿ hD(x)
1
p︸︷︷︸
∼ε1

.
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(2) dk(Tx)≤ ε2hD(x)

x corresponds to an abelian variety with many p-torsion points.
Flexor–Oesterlé at any small prime ⇒ hD(x)À ps .

x has semistable reduction outside p ⇒ dk(Tx)¿ logp

so dk(Tx)¿ hD(x)
logp
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