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1. Hironaka’s theorem - then and now

Resoution of singularities in characteristic 0 - what a change of fortunes!
Hironaka’s proof [19] appeared 46 years ago. Yet in recent years there is

a sense of excitement about the subject: young geometers are giddy about
learning it; lectures about it are given in regular courses, summer schools,
and conferences; and more people are seriously trying their hands at the
notorious problem of resolution of singularities in positive characteristics.
What is all the fuss about?

Of course the answer has several aspects. Efforts at good exposition in
the last two decades, and the resulting widening of the group of interested
researchers is important. Some publicity certainly helped. These two books
under review are both an outcome of the process and a new driving force for
the excitement. Also essential is new mathematical substance.

The main point, however, is different. Here is a wonderful result of fun-
damental importance in algebraic and complex geometry. Its uses are far
and wide - an impressive list was included already in Grothendieck’s address
at the Nice congress [17] where Hironaka received the Fields Medal. It has
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every right to be included in a basic graduate course on the subject - after
all, our students get to use it right away. Yet for many years it was used
as a black box. Grothendieck admitted in his address that he had not fully
understood the proof, and the embarrassment is palpable. Much later still,
Kollár and Mori [22] referred to the possibility of using weaker results, which
did not make them too happy.

The situation now is dramatically changed. Here are two books you can
use to introduce your student to the subject. Self-contained proofs are given
in Chapter 6 of Cutkosky’s book [11] and in Chapter 3 of Kollár’s book [21].
I used Kollár’s treatment as one topic in a basic graduate course, and it is
truly remarkable. After two weeks of introductory material, the students
took over lecturing. The proof breaks nicely into manageable pieces, each
taking about one hour of lecture. The whole thing took about six weeks, and
left ample time for other topics. Others who lectured on their own covered
this faster. This is finally the way things should be! If you are teaching
algebraic geometry and considering topics for the second term, do consider
this subject - you will enjoy it whether or not you are an algebraic geometer.
You can choose what fits your style: Kollár’s book is in the style of lecture
notes, whereas Cutkosky’s is more of a textbook. In short, there is no excuse
now for using resolution of singularities as a black box - it is well understood
and fully transparent. Certainly if you are an algebraic geometer you had
better learn this stuff before the next time you meet either author.

Let us now introduce the problem:
Consider an algebraic variety X over a field k. The basic problem of

resolution of singularities is the following:

Problem 1.0.1. Find a proper, birational regular map X ′ → X where X ′

is a nonsingular algebraic variety.

Such X ′ → X is a resolution of singularities of X - in essence one
parametrizes the points of X by a nonsingular variety X ′, in such a way
that nothing is missing (the map is proper and dominant, therefore surjec-
tive) and yet not too much is changed (the map is birational).

Hironaka solved this problems for varieties over fields of characteristic 0
in a strong sense:

Theorem 1.0.2. Assume the base field is of characteristic 0. Then there
exists a proper birational regular map X ′ → X where

• X ′ is a nonsingular algebraic variety,
• X ′ → X induces an isomorphism over the smooth locus of X, and
• X ′ → X is obtained by a sequence of blowings up of nonsingular

subvarieties lying over the singular locus of X.

The procedure of blowing up is a standard, explicit way of modifying a
variety, see Hartshorne [18, I.4 p. 28 and II.7 p. 160]. It is a surgery operation
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in which one removes a subvariety Y ⊂ X and replaces its points by the set
of normal directions of Y in X. When X and Y are smooth, Y is replaced
by P(NY/X), the projectivization of the normal bundle. In particular when
Y is a point and X smooth, Y is replaced by Pdim X−1.

In his Nice address, Grothendieck insisted that the fact that blowing up is
used is important for only one reason: it implies that X ′ → X is a projective
morphism; so in particular if X is projective then so is X ′. In hindsight we
know that the use of blowing up is much more important - it allows one to
track the change of geometry in the process.

Hironaka’s original proof is based on defining an invariant of singulari-
ties, whose maximum locus is a smooth subvariety which one can blow up;
then one needs to show that the invariant drops, in a set of values satisfying
the descending chain condition, hence the process must stop. Constructing
the invariant and proving its requisite properties is an extremely compli-
cated process, involving multiple inductions using sequences of operations
like blowing up and products, which might not be evidently related to the
problem.

It is thus not surprising Grothendieck did not manage to disentangle the
proof. His Nice address did not serve to encourage many to enter the subject,
which might explain why it took so long to find a simpler one. Grothendieck
did contribute [16, §7] by defining a class of schemes ideally suited for con-
sidering resolution of singularities. The definition of this class - so called
“quasi excellent schemes” - is rather involved. (I cannot explain the choice
of such a tortured name.)

Ironically, the current proof, as given in Chapter 3 of [21], is very much
the type Grothendieck would have liked, and does not involve any heavy
tools not known at the time. No complicated invariants are used, no big
inductions required, everything is natural and based on careful common
sense arguments. It would fit nicely in Grothendieck’s E.G.A. (of which [16]
is but one volume) without making a dent.

On the other hand, it must be said that all the main tools are already
in Hironaka’s work. If you understand current proofs, you can go back to
Hironaka’s work, and it no longer seems so daunting.

2. The current proofs: main ideas

2.1. Embedded resolution. All treatments of Hironaka’s theorem start
by addressing the embedded case: the variety X in question is assumed em-
bedded in a smooth variety M , and one wishes to resolve singularities by
repeatedly blowing up smooth subvarieties of M , replacing M by the blown
up variety and replacing X by the proper transform. Further, one requires
that not just the proper transform, but the whole inverse image of X be-
come nice at the end - all components should be smooth and have normal
crossings.
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Unfortunately there are varieties which do not embed in smooth varieties;
and for those which do, the embedding is not unique. The approach used
by Hironaka and most of his followers requires constructing an invariant
of singularities which does not depend on the embedding, and using it to
determine the center of blowing up. So if you have any variety, locally it
embeds in an affine space, and the resolution of such local patches glues
together because the invariant says so. This is known as Hironaka’s trick.
As we will see, there is now an alternative approach.

2.2. Resolving singularities of ideals. The next idea is to replace ge-
ometry by algebra. Resolving singularities of an embedded variety X ⊂ M
can be essentially reduced to resolving singularities of the associated ideal
sheaf IX of regular functions vanishing along X. This means that after a
sequence of blowings up of “allowable” smooth centers, one gets a modifica-
tion M ′ →M where the lifted ideal sheaf IXOM is locally generated by one
element of the form

∏
xmi

i , where xi are local parameters. This is sometimes
called “principalization of an ideal sheaf”. The actual reduction of resolution
to principalization requires just a little more argumentation, since one must
stop before blowing up a component of X itself, but this is not difficult to
arrange.

2.3. Order reduction. At this point both Kollár and Cutkosky use a com-
promise. One considers marked ideals - namely pairs (I, d) of an ideal sheaf
with a positive integer. If one proves that one can blow up and transform
any (I, d) to (I ′, d) where I ′ is an ideal sheaf whose maximal order of van-
ishing is less than d, then one can principalize any ideal sheaf. However for
resolution of singularities this results in a theorem slightly weaker than Hi-
ronaka’s: the centers of blowing up on M and its transforms are smooth, but
their restriction to the transforms of X are not smooth. This is good enough
for most purposes, the salient exceptions being questions of equisingularity.
More on this below.

With this compromise, resolution of singularities is finally reduced to
order reduction of a marked ideal (I, d) using repeated blowing up of non-
singular centers.

2.4. Maximal contact. It is natural to search for a way to induct on the
dimension of M . The key idea, which works only in characteristic 0, is that of
smooth hypersurfaces of maximal contact: order reduction of a marked ideal
(I, d) on M is equivalent to order reduction of an associated marked ideal
(C(I), d′) - called a coefficient ideal - on a hypersurface of maximal contact
H. The key example of a hypersurface of maximal contact and a coefficient
ideal is explained in [21, 3.14]. In essence, (C(I), d′) is obtained by taking
the coefficients of elements of I with respect to the defining equation of H.
In practice one uses derivatives. Kollár goes one step further: he defines a
notion of D-balanced ideals, and shows that one can replace any (I, d) by a
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D balanced ideal, which has the property that its restriction to H already
serves as a coefficient ideal.

Here we arrive at a major difficulty of Hironaka’s method: in characteristic
0, hypersurfaces of maximal contact exist locally, but rarely globalize. A
related issue is that local hypersurfaces of maximal contact are not unique.
If one is to use local hypersurfaces of maximal contact to resolve singularities,
what is there to guarantee that the resolutions will glue together?

This is the point where Kollár’s treatment diverges from that of Cutkosky.
The books are only three years apart, but in the intervening time W lodarczyk
wrote [29], which introduces, in my opinion, a major simplification.

2.5. The gluing problem. Cutkosky follows an approach where one uses
auxiliary operations to construct an invariant (this is called Hironaka’s trick),
and one needs to show that the construction is independent of any choices
of hypersurfaces of maximal contact.

W lodarczyk noticed that any marked ideal (I, d) can safely be replaced by
a marked ideal (W (I), e) - the so called “homogenized ideal” (W lodarczyk)
or “MC-invariant ideal” (Kollár) - which has the following two properties:

(1) Order reduction for (I, d) is equivalent to order reduction for the
marked ideal (W (I), e), and

(2) for any two smooth hypersurfaces of maximal contact H,H ′ for
(W (I), e) at a point p on M , there is a formal automorphism of
M at p which carries H to H ′ and keeps W (I) invariant.

Therefore if one has a procedure for order reduction which is invariant under
all automorphisms, the result for (W (I), e) does not depend on the hyper-
surface of of maximal contact.

W lodarczyk still uses singularity invariants in his proof as a way to keep
track of improving singularities. Kollár avoids such invariants, and in the
process is able to disentangle the proof entirely. There is now a nice third
variant by Mustaţă [25], which combines ideas of both.

2.6. How did we get here?

2.6.1. A quiet period. For some time after Hironaka published his proof,
progress on further understanding the result was not enormous. There was
work of Grothendieck [17] on excellent schemes and the general setup for
resolution of singularities; work of Giraud [15] on maximal contact; work
of Hironaka on idealistic exponents as a formalism underlying the proof.
Lipman wrote the wonderful classic [23] as an effort to introduce the subject.
But he did not touch the proof of the theorem itself. There was of course
much other work - but most of the effort was invested in trying to prove new
results - either in positive and mixed characteristics or strengthening and
generalizing the result in characteristic 0. It must be said that throughout
this period Hironaka made significant efforts to teach about the subject
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around the world, and had students study the subject at Harvard, in Spain
and in other places.

2.6.2. New heros. Things took a turn at the end of the 1980’s, and from
two quite different directions. In a sequence of papers beginning with [4],
Edward Bierstone and Pierre Milman attempted to understand aspects of
resolution of singularities from the bottom up. Taking their motivation from
singularities of complex analytic functions, they started by giving elemen-
tary arguments for results significantly weaker than Hironaka’s, and built up.
Their work culminated in [5], a complete proof of Hironaka’s theorem basi-
cally in its strongest form. During the same period, Orlando Villamayor took
the opposite journey: in the very technical paper [28] he showed that Hiron-
aka’s resolution algorithm is constructive. Ever since he has been involved
in trying to disentangle the result to something understandable, notably the
manuscript [14] with Encinas.

2.6.3. Cutkosky, W lodarczyk and the tenure system. So we arrive around
2000, when resolution of singularities in characteristic 0 is well understood,
but only to a select (but growing) few. There was a growing number of
papers on the subject, but it remained largely unpenetrated by the masses.
It was time for somebody to write a book. This is [11].

As Cutkosky was teaching his course, writing notes and putting together
the book, a new turn was brewing, which in my view was revolutionary.
Jaros law W lodarczyk, like many others in the subject, had - and still has -
his sights on the positive characteristic case. But luckily for the rest of us,
W lodarczyk needed to secure tenure. Thus was born the paper [29]. Appar-
ently this was a small piece in his plan to attack the positive characteristic
case. Here W lodarczyk introduced the notion of a homogenized ideal (or
MC-invariant ideal in Kollár’s version), which does away with Hironaka’s
trick. Kollár goes one step further - he does away with all complicated in-
variants. The price is the addition of one short section on the invariance of
the resolution under automorphisms. Rather natural and not at all difficult,
I contend this section is not much of a price at all.

2.7. Is there more on Hironaka’s theorem? I have two more points.

2.7.1. The really really general case. Remember Grothendieck’s general no-
tion of quasi-excellent schemes? The treatments of resolution of singularities
in characteristic 0 do not apply directly for these. There is much recent
progress by Michael Temkin [27] on this problem, and one can hope for a
complete solution in the near future. I want to stress that this is not just yet
another crazy abstraction - for instance this generality allows one to unify
and combine results in algebraic geometry, complex analytic geometry, p-adic
analytic geometry etc.
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2.7.2. A remaining challenge: Hilbert–Samuel to order reduction. I have
mentioned that both Cutkosky and Kollár make a compromise: the cen-
ters of blowing up on a smooth ambient variety are non-singular, but their
restriction to the proper transforms of X are quite singular. Hironaka’s
centers are smooth, and in fact the proper transform of X satisfies an equi-
singularity property (normal flatness) along the centers. For applications in
singularity theory this is important.

There is a way to recover Hironaka’s theorem in its full force, but paying
a significant price in clarity. One can replace the integer d by the Hilbert–
Samuel function and use it throughout. Alternatively one can reduce the
situation back to marked ideals, replacing the ideal IX by one whose order
of vanishing “presents” the Hilbert–Samuel function of the original ideal -
see [5, Chapter III]. The origins of this method go back to Hironaka. This
reduction is quite intricate. I propose a challenge to the experts, to produce
a treatment of such reduction which is easy enough to fit the treatments of
either Kollár or Cutkosky. For the time being the compromise remains the
best choice.

3. Other topics of resolution of singularities

From what I have written so far, the reader might get the idea that there
is nothing in the two books under review other than Hironaka’s theorem.
This is not at all the case. And there is more to say about resolution of
singularities which did not make it into the books.

3.1. Curves, surfaces and threefolds. Both books start from some foun-
dational material, and continue to cover a selection of methods on resolution
of singularities of curves. These include: Newton’s method for plane curves
using Puiseux exponents; normalization; Albanese’s method of repeated pro-
jection from a point; and embedded resolution of singularities. Cutkosky has
a chapter covering in detail a method proposed by Hironaka [7] for resolv-
ing surfaces in positive characteristics. Kollár’s treats several other methods
for resolving surfaces: Jung’s method, Albanese’s method (which together
with Jung’s method gives resolution in characteristic > 2), and embedded
resolution in characteristic 0.

There are of course important classic topics which did not make it into
the books. Abhyankar’s difficult work on the subject (see [1] and refer-
ences therein) is not covered. Neither is Lipman’s much more approachable
work [24] on surfaces in mixed characteristics. After publication of his book,
Cutkosky reworked Abhyankar’s proof of resolution of threefolds over alge-
braically closed fields of characteristic > 5 in [13] - this could serve as a nice
additional topic in a course. Cutkosky’s book does treat Zariski’s valuative
method in some detail.
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3.2. De Jong’s Alterations. A major topic not covered here is de Jong’s
Alterations result [20], in which a resolution of singularities X ′ → X is re-
placed by an alteration - namely a proper, generically finite regular map
Y → X. This works in positive and mixed characteristics, and has had
numerous applications in arithmetic and geometry. De Jong’s result also
led to two methods of resolution of singularities in characteristic 0 in arbi-
trary dimension. One is by Bogomolov and Pantev [6], see also Paranjape
[26], which is in some sense a generalization of Jung’s method to arbitrary
dimension, and I believe is still the quickest way to prove resolution of singu-
larities in characteristic 0, albeit significantly weaker than Hironaka’s. The
other, by de Jong and the reviewer [2] led to results on toroidalization and
semistable reduction of families of varieties [3]. On this there are further
quite difficult results by Cutkosky (see overview in [12]), which connect to
largely open problems of resolution of singularities of foliations and differen-
tial equations, but this would lead us too far afield.

3.3. So what about positive characteristics? There are two current
streams of work on positive characteristic: attempts to prove resolution in
arbitrary dimension, and attempts to make progress in low dimensions.

On the arbitrary dimension work there is not much I am qualified to say: it
is no secret that a number of people, including Hironaka, Spivakovsky, Vil-
lamayor, Teissier, and more recently W lodarczyk and Kawanoue-Matsuki,
have been working hard on the problem. My understanding is that new
invariants of singularities have been produced, interesting geometry and al-
gebra discovered, but so far the problem has not found a solution.

There is however definite major progress in low dimensions. Vincent
Cossart and Oliver Piltant have been able to resolve singularities of threefolds
in any characteristic [9, 10] and seem to have made progress on the arithmetic
case. Cossart, Uwe Jannsen and Shuji Saito [8] have rewritten Hironaka’s
resolution of surfaces in positive and mixed characteristic in its most general
and strongest form to date. This paper also provides a thorough history of
the subject.
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