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1. Introduction

1.1. Statement of results. One of the main goals of logarithmic Gromov–Witten
theory is to develop new formulas relating the Gromov–Witten invariants of a smooth
variety Xη to invariants of a degenerate variety X0.

Consider a logarithmically smooth and projective morphism X → B, where B is
a logarithmically smooth curve having a single point b0 ∈ B where the logarithmic
structure is nontrivial. In the language of [KKMSD73, AK00], this is the same as say-
ing that the underlying schemes X and B are provided with a toroidal structure such
thatX → B is a toroidal morphism, and {b0} ⊂ B is the toroidal divisor. One defines

as in [GS13], see also [Che10, AC11], an algebraic stack M (X/B, β) parametrizing
stable logarithmic maps f : C → X with discrete data β = (g, A, up1, . . . , upk) from
logarithmically smooth curves to X . Here
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• g is the genus of C,
• A is the homology class f

∗
[C], which we assume is supported on fibers of

X → B and
• up1, . . . , upk are the logarithmic types or contact orders of the marked points
with the logarithmic strata of X .

Writing β = (g, k, A) for the non-logarithmic discrete data, there is a natural mor-
phism M (X/B, β) → M (X/B, β) “forgetting the logarithmic structures”, which
is proper and representable [ACMW14, Theorem 1.1.1]. The map M (X/B, β) →
M (X/B, β) is in fact finite, see [Wis16, Corollary 1.2]. There is also a natural
morphism M (X/B, β)→ B, and we denote its fiber over b ∈ B by Mβ(Xb/b).

Since X → B is logarithmically smooth there is a perfect relative logarithmic
obstruction theory E• → LM (X/B,β) /LogB giving rise to a virtual fundamental class
[M (X/B, β)]virt and to Gromov–Witten invariants.

An immediate consequence of the formalism is the following (this is indicated after
[GS13, Theorem 0.3]):

Th:deformation Theorem 1.1.1 (Logarithmic deformation invariance). For any point {b} jb→֒ B one
has

j!b[M (X/B, β)]virt = [M (Xb/b, β)]
virt.

This implies, in particular, that Gromov–Witten invariants of Xb agree with those
of Xb0 , and it is important to describe invariants of Xb0 in simpler terms.

The main result here is the following:

Th:decomposition Theorem 1.1.2 (The logarithmic decomposition formula). Suppose the morphismXb0 →
b0 is logarithmically smooth , and Xb0 is simple. Then

Eq:decompositionEq:decomposition (1.1.1) [M (X0/b0, β)]
virt =

∑

τ ∈Ω

mτ ·
∑

A⊢A

(iτ,A)∗[Mτ,A(X0/b0, β)]
virt

See Definition 2.1.5 for the notion of simple logarithmic structures. The notation
Mτ,A(X0/b0, β), mτ and iτ,A is briefly explained as follows.

Given discrete data β we define below a finite set Ω = {τ}, which we describe in
several equivalent ways.

First, Ω is the set of isomorphism classes τ of rigid tropical curves of type β in the
polyhedral complex ∆(X).

A second description comes in the proof: an element τ ∈ Ω is a ray in the tropical
moduli space M trop(Σ(X)/Σ(B)) surjecting to Σ(B) = R≥0. Each element τ ∈ Ω
comes with a multiplicity mτ ∈ Z; in terms of the latter description as a ray, mτ is
the index of the lattice of τ inside the lattice N of Σ(B).

The notation A stands for a partition of the curve class A into classes A(v), v ∈
V (G), where G is the graph underlying τ .
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The moduli stack Mτ,A(X0/b0, β) is constructed as a stack quotient Mτ,A(X0/b0, β) =
[Mτ̃ ,A(X0/b0, β)/Aut(τ̃ ,A)], where Mτ̃ ,A(X0/b0, β) parametrizes logarithmic maps
marked by a rigidified version τ̃ of τ , where the dual graph of each curve ad-
mits a contraction to a fixed graph Gτ . Finally, there is a canonical map iτ,A :
Mτ,A(X0/b0, β)→M (X0/b0, β) forgetting the marking by τ .

The following is thus an equivalent formulation of the formula (1.1.1) which is
useful for studying the splitting formula and applications:

[M (X0/b0, β)]
virt =

∑

(τ̃ ,A) : A⊢A

mτ̃

|Aut(τ̃ ,A)|(iτ̃ ,A)∗ [Mτ̃ ,A(X0/b0, β)]
virt

(see Theorem 4.8.1). 1
←1

Remark 1.1.3. In general, the sum over (τ̃ ,A) will be infinite, but because the mod-
uli space is of finite type, all but a finite number of the moduli spaces Mτ̃ ,A(X0/b0, β)
will be empty.

These theorems form the first two steps towards a general logarithmic degeneration
formula. In many cases this is sufficient for meaningful computations, as we show
in section 6. These results have precise analogies with results in [Li02], as explained
in §6.1. Theorem 1.1.1 is a generalization of [Li02], Lemma 3.10, while Theorem
1.1.2 is a generalization of part of [Li02], Corollary 3.13. There, what is written as
M(Yrel

1 ∪Yrel
2 , η) plays the role of what is written here as Mτ,A(X0/b0, β).

What is missing in our more general situation is any implication that Mτ,A(X0/b0, β)
can be described in terms of relative invariants of individual irreducible components
of X0. Indeed, this will not be the case, and we give an example in §6.2 in which X0

has three components meeting normally, with one triple point. We give a log curve
contributing to the Gromov-Witten invariant which has a component contracting to
the triple point, and this curve cannot be broken up into relative curves on the three
irreducible components of X0.

In fact, a new theory is needed to give a more detailed description of the moduli
spaces Mτ,A(X0/b0, β) in terms of pieces of simpler curves. In future work, we will
define punctured curves which replace the relative curves of Jun Li’s gluing formula.
Crucially, we will explain how punctured curves can be glued together to describe
the moduli spaces Mτ,A(X0/b0, β).

The results described here are also analogous to results of Brett Parker proved in
his category of exploded manifolds. Theorem 1.1.1 is analogous to [Par11], Theorem
3.7, while Theorem 1.1.2 is analogous to part of [Par11], Theorem 4.6. The aim in
proving a full gluing formula is a full logarithmic analogy of that theorem.

1(Mark) This should be the formula in the main theorem?
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The structure of the paper is as follows. In §2, we review various aspects of
logarithmic Gromov-Witten theory, with a special emphasis on the relationship with
tropical geometry. While this point of view was present in [GS13], we make it
more explicit here, and in particular discuss tropicalization in a sufficient degree of
generality as needed here.
§3 proves a first version of the degeneration formula. A toric morphism XΣ → A1

from a toric variety XΣ has fibre over 0 easily described in terms of the correspond-
ing map of fans Σ→ R≥0. There is a one-to-one correspondence between irreducible
components of the fibre and rays of Σ mapping surjectively to R≥0, and their mul-
tiplicity is determined by the integral structure of this map of rays, see Proposition
3.1.1. The main point is that the equality of Weil divisors (3.1.1) then generalizes
to “virtually log smooth” morphisms, in this case the morphism M (X/B, β)→ B.
Thus one obtains in Proposition 3.4.1 a first version of a decomposition formula,
decomposing M (X0/B0, β) into “virtual components” Mm(X0/B0, β), which can be
thought of as reduced unions of those components of M (X0/B0, β) appearing with
multiplicity m.
§4 then refines this decomposition. In analogy with the purely toric case, we

obtain a further decomposition in terms of rays (representing “virtual divisors” of
M (X/B, β)) in the tropical version of the moduli space of curves,M trop(Σ(X)/Σ(B)).
These rays are interpreted as parameterizing rigid tropical curves, leading to the proof
of Theorem 1.1.2.

The second part of the paper turns to some simple applications of the theory.
While there are quite a few theoretical papers on log Gromov-Witten invariants,
there is still a hole in the literature as far as explicit calculations are concerned. In
§5 we explain some simple methods for constructing example of logarithmic curves,
building on work of Nishinou and Siebert in [NS06]. This allows us to give some
explicit examples of the decomposition formula in the final section of the paper.

1.2. Acknowledgements. That there are analogies with Parker’s work is not a
surprise: we received a great deal of inspiration from his work and had many fruit-
ful discussions with Brett Parker. We also benefited from discussions with Steffen
Marcus, Ilya Tyomkin, Martin Ulirsch and Jonathan Wise.

Research by D.A. is supported in part by NSF grants DMS-1162367 and DMS-
1500525.

Research by Q.C. was supported in part by NSF grant DMS-1403271 and DMS-
1560830.

M.G. was supported by NSF grant DMS-1262531 and a Royal Society Wolfson
Research Merit Award.
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1.3. Convention. All logarithmic schemes and stacks we consider here are fine and
saturated and defined over the complex numbers. We will usually only consider toric
monoids, i.e., monoids of the form P = PR ∩M for M ∼= Zn, PR ⊆ MR =M ⊗Z R a
rational polyhedral cone. For P a toric monoid, we write

P ∨ = Hom(P,N), P ∗ = Hom(P,Z).

1.4. Notation.
2

←2

k the base field, usually algebraically closed of characteristic zero
M a fine and saturated logarithmic structure
M the characteristic (or ghost) monoid
X → B logarithmically smooth family
LogB stack of fine and saturated logarithmic structures over B
Dm ⊂ LogB corresponding to multipliciation by m, see Definition 3.3.1
b0 ∈ B special point, with induced structure of logarithmic point
X0 ⊂ X fiber X0 = X ×B {b0}
A a curve class A ∈ H2(X,Z)
g genus of a curve
k number of marked points
f : C → X a logarithmic stable map
p marked points on C, p = (p1, . . . , pk)
upi type or contact order at marked point pi
q a node q ∈ C
β discrete data for a usual stable map: β = (g, k, A)
β discrete data for a stable logarithmic map: β = (β, up1, . . . , upk)
β ′ discrete data for a logarithmic map: β ′ = (g, up1, . . . , upk)
M (X/B, β) moduli stack of stable logarithmic maps of X relative to B
M (X/B, β) moduli stack of stable maps of the underlying X relative to B
M (X0/b0, β) moduli stack of logarithmic stable maps of the fiber X0

X the 1-dimensional Artin stack AX ×A B
X0 the fiber X ×B b0 of X
MB,Mb0 moduli of logarithmic curves over B, respectively b0
M(X0/b0, β

′) moduli of logarithmic maps
Mm(X0/b0, β

′) moduli of logarithmic maps with multiplicity m
Σ(X) the cone complex of X
∆(X) the polyhedral complex of X
G a graph
E(G) set of edges of G

2(Qile) Add reference and type-setting for the notations.
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V (G) set of vertices of G
L(G) set of legs of G
ℓ a length function ℓ : E(G)→ R>0

Γ a tropical curve Γ = (G, ℓ)
τ̃ a tropical curve in ∆(X)
τ isomorphism class of τ̃
A ⊢ A a partition of the curve class A
Mτ̃ ,A(X0/b0, β) moduli of stable logarithmic maps marked by τ̃
Mτ,A(X0/b0, β) moduli of stable logarithmic maps marked by the isomorphism class

τ
M (X/B, β, σ) moduli of stable logarithmic maps with with point constraints
p† the standard log point Spec(N→ k)
Y † := Y × p†
M (Y †/b0, β, σ) moduli of stable logarithmic maps with point constraints
Mτ,A(Y

†/b0, β, σ) moduli of marked stable logarithmic maps with point constraints

Part 1. Theory

2. Preliminaries
sec:prelim

2.1. Cone complexes associated to logarithmic stacks.

2.1.1. The category of cones. We consider the category of rational polyhedral cones,
wich we denote by Cones. The objects of Cones are pairs σ = (σR, N) where
N ∼= Zn is a lattice and σR ⊆ NR = N ⊗Z R is a top-dimensional strictly convex
rational polyhedral cone. A morphism of cones ϕ : σ1 → σ2 is a homomorphism
ϕ : N1 → N2 which takes σ1R into σ2R. Such a morphism is a face morphism if it
identifies σ1R with a face of σ2R and N1 with a saturated sublattice of N2. If we need
to specify that N is associated to σ we write Nσ instead.

2.1.2. Generalized cone complexes. Recall from [ACP12] that a generalized cone com-
plex is a topological space with a presentation as the colimit of an arbitrary finite
diagram in the category Cones with all morphisms being face morphisms. If Σ
denotes a generalized cone complex, we write σ ∈ Σ if σ is a cone in the diagram
yielding Σ, and write |Σ| for the underlying topological space. A morphism of gen-
eralized cone complexes f : Σ→ Σ′ is a continuous map f : |Σ| → |Σ′| such that for
each σR ∈ Σ, the induced map σ → |Σ′| factors through a morphism σ → σ′ ∈ Σ′.

Note that two generalized cone complexes can be isomorphic yet not have the
same presentation. In particular, [ACP12, Proposition 2.6.2] gives a good choice of
presentation, called a reduced presentation. This presentation has the property that
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every face of a cone in the diagram is in the diagram, and every isomorphism in the
diagram is a self-map.

2.1.3. Generalized polyhedral complexes. We can similarly define a generalized poly-
hedral complex, where in the above set of definitions pairs (σR, N) live in the category
Poly of rationally defined polyhedra. This is more general than cones, as any cone
σ is in particular a polyhedron (usually unbounded). For example, an affine slice of
a fan is a polyhedral complex.

2.1.4. The tropicalization of a logarithmic scheme. Now let X be a Zariski fs log
scheme of finite type. For the generic point η of a stratum of X , its characteristic
monoid MX,η defines a dual monoid (MX,η)

∨ := Hom(MX,η,N) lying in a group
(MX,η)

∗ := Hom(MX,η,Z), see Section 1.3, hence a dual cone

ση :=
(
(MX,η)

∨
R, (MX,η)

∗
)
.

If η is a specialization of η′, then there is a well-defined generization mapMX,η →
MX,η′ since we assumed X is a Zariski logarithmic scheme. Dualizing, we obtain a
face morphism ση′ → ση. This gives a diagram of cones indexed by strata of X with
face morphisms, and hence gives a generalized cone complex Σ(X). We call this the
tropicalization of X , following [GS13], App. B. 3

This construction is functorial: given a morphism of log schemes f : X → Y ,
one obtains from the map f ♭ : f−1MY →MX an induced map of generalized cone
complexes Σ(f) : Σ(X)→ Σ(Y ).

Def:simple Definition 2.1.5. We say X is monodromy free if X is a Zariski log scheme and for
every σ ∈ Σ(X), the natural map σ → |Σ(X)| is injective on the interior of any face
of σ, see [GS13, Definition B.2]. We say X is simple if the map is injective on every
σ.

Following [Uli15], we can then define the generalized cone complex associated with
a finite type logarithmic stack X , in particular allowing for logarithmic schemes X
in the étale topology. One can always find a cover X ′ → X in the smooth topology
with X ′ a union of simple log schemes, and with X ′′ = X ′ ×X X ′, we define Σ(X)
to be the colimit of Σ(X ′′) ⇒ Σ(X ′). The resulting generalized cone complex is
independent of the choice of cover.

Examples 2.1.6. (1) If X is a toric variety with the canonical toric logarithmic
structure, then Σ(X) is abstractly the fan defining X . It is missing the
embedding of |Σ(X)| as a fan in a vector space NR, and should be viewed as
a piecewise linear object.

3This terminology differs slightly from that of [Uli], where the tropicalization is a canonically
defined tropical subset of the compactified cone complex. Hopefully this will not cause confusion.
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(2) Let k be a field and X = Spec(N → k) the standard log point with MX =
k× × N. Then Σ(X) consists of the ray R≥0.

(3) Let C be a curve with an étale logarithmic structure with the property that
MC has stalk N2 at any geometric point, but has monodromy of the form
(a, b) 7→ (b, a), so that the pull-back of MC to a double cover C ′ → C
is constant but MC is only locally constant. Then Σ(C) can be described
as the quotient of R2

≥0 by the automorphism (a, b) 7→ (b, a). If we use the
reduced presentation, Σ(C) has one cone each of dimensions 0, 1 and 2.

See [GS13, Example B.1] for a further example which is Zariski but not monodromy-
free.

2.2. Artin fans. Let W be a fine and saturated algebraic log stack. We are quite
permissive with algebraic stacks, as delineated in [Ols03, (1.2.4)-(1.2.5)], since we
need to work with stacks with non-separated diagonal. An Artin stack logarithmi-
cally étale over Spec k is called an Artin fan.

The logarithmic structure of W is encoded by a morphism W → Log, see [Ols03].
For many purposes this needs to be refined, since different strata of W may map
to the same point of Log, and we wish to distinguish strata. Following preliminary
notes written by two of us (Chen and Gross), the paper [AW13] introduces a canonical
Artin fan AW associated functorially to a logarithmically smooth fs log scheme W .
This was generalized in [ACMW14, Prop. 3.1.1]:

Theorem 2.2.1. Let X be a logarithmic algebraic stack which is locally connected
in the smooth topology. Then there is an initial factorization of the map X → Log
through a strict étale morphism AX → Log which is representable by algebraic spaces.

There is a more explicit description of AX in terms of the cone complex Σ(X).
For any cone σ ⊆ NR, let P = σ∨ ∩M be corresponding monoid. We write

APdefinitionAPdefinition (2.2.1) Aσ = AP := [Spec k[P ]/ Speck[P gp]].

This stack carries the standard toric logarithmic structure coming from the global
chart P → k[P ]. We then have:

Artinfanaslimit Proposition 2.2.2. Let X be a logarithmic Deligne-Mumford stack, with cone com-
plex Σ(X) a colimit of a diagram of cones s : I → Cones. Then AX is the colimit
as sheaves over Log of the corresponding diagram of sheaves given by I ∋ i 7→ As(i).

Proof. This follows from the construction of AX in [ACMW14]. ♠
Remark 2.2.3. Unlike Σ(X), the formation of AX is not functorial for all logarith-
mic morphisms Y → X . This is a result of the fact that the morphism Y → Log is
not the composition Y → X → Log, unless Y → X is strict. Note also that not all
Artin fans A are of the form AX , since A → Log may fail to be representable.
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logarithmic maps
2.3. Stable logarithmic maps and their moduli.

2.3.1. Definition. We fix a log morphism X → B with the logarithmic structure on
X being defined in the Zariski topology. Recall from [GS13], [Che10] and [AC11]:

Definition 2.3.2. A stable logarithmic map (C/W,p, f) is a commutative diagram

stablelogmapdiagramstablelogmapdiagram (2.3.1) C
f

//

π
��

X

��

W // B

where

(1) π : C → W is a proper logarithmically smooth and integral morphism of
log schemes together with a tuple of sections p = (p1, . . . , pk) of π such that
every geometric fibre of π is a reduced and connected curve, and if U ⊂ C is
the non-critical locus of π thenMC |U ∼= π∗MW ⊕

⊕k
i=1 pi∗NW .

(2) For every geometric point w̄ → W , the restriction of f to Cw̄ is an ordinary
stable map.

2.3.3. Basic maps. The crucial concept for defining moduli of stable logarithmic
maps is the notion of basic stable logarithmic maps. To explain this in tropical
terms, we begin by summarizing the discussion of [GS13], §1 where more details
are available. The terminology used in [Che10, AC11] is minimal stable logarithmic
maps.

2.3.4. Induced maps of monoids. Suppose given a stable logarithmic map (C/W,p, f)
withW = Spec(Q′ → k), with Q′ an arbitrary sharp fs monoid and k an algebraically
closed field. We will use the convention that a point denoted p ∈ C is always a marked
point, and a point denoted q ∈ C is always a nodal point. Denoting Q′ = π−1Q′,

the morphism π♭ of logarithmic structures induces a homomorphism of sheaves of
monoids ψ : Q′ →MC . Similarly f ♭ induces ϕ : f−1MX →MC .

2.3.5. Structure of ψ. The homomorphism ψ is an isomorphism when restricted to
the complement of the special (nodal or marked) points of C. The sheaf MC has
stalks Q′ ⊕ N and Q′ ⊕N N2 at marked points and nodal points respectively. The
latter fibred sum is determined by a map

N→ Q

1 7→ ρq
Eq:rho_qEq:rho_q (2.3.2)
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and the diagonal map N→ N2 (see Def. 1.5 of [GS13]). The map ψ at these special
points is given by the inclusion Q′ → Q′ ⊕ N and Q′ → Q′ ⊕N N2 into the first
component for marked and nodal points respectively.

Sec:phi
2.3.6. Structure of ϕ. For x̄ ∈ C a geometric point with underlying scheme-theoretic
point x, the map ϕ induces maps ϕx̄ : Px →MC,x̄ for

Px :=MX,f(x̄)

(well-defined independently of the choice of x̄→ x since the logarithmic structure on
X is Zariski). Following Discussion 1.8 of [GS13], we have the following behaviour
at three types of points on C:

(i) x = η is a generic point, giving a local homomorphism4 of monoids

ϕη̄ : Pη → Q′.

(ii) x = p a marked point, giving up the composition

up : Pp
ϕp̄−→Q′ ⊕ N

pr2−→N.

The element up ∈ P ∨
p is called the contact order at p.

(iii) x = q a node contained in the closures of η1, η2. Then there are generization
maps χi : Pq → Pηi , and there exists a homomorphism

uq : Pq → Z

such that

veta1veta2diffeqveta1veta2diffeq (2.3.3) ϕη̄2

(
χ2(m)

)
− ϕη̄1

(
χ1(m)

)
= uq(m) · ρq,

with ρq given in Equation (2.3.2), see [GS13], (1.8). This data completely
determines the local homomorphism ϕq̄ : Pq → Q′ ⊕N N2.

The choice of ordering η1, η2 for the branches of C containing a node is called
an orientation of the node. We note that reversing the orientation of a node q (by
interchanging η1 and η2) results in reversing the sign of uq.

2.3.7. Dual graphs and combinatorial type. As customary when studying nodal curves
and their maps, a graph G will consist of a set of vertices V (G), a set of edges E(G)
and a separate set of legs or half-edges L(G), with appropriate incidence relations
between vertices and edges, and between vertices and half-edges. In order to obtain
the correct notion of automorphisms, we also implicitly use the convention that every
edge E ∈ E(G) of G is a pair of orientations of E or as a pair of half-edges of E
(disjoint from L(G)), so that the automorphism group of a graph with a single loop
is Z/2Z.

4A homomorphism of monoids ϕ : P → Q is local if ϕ−1(Q×) = P×.
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Let GC be the dual intersection graph of C. This is the graph which has a vertex vη
for each generic point η of C, an edge Eq joining vη1 , vη2 for each node q contained in
the closure of η1 and η2, and where Eq is a loop if q is a double point in an irreducible
component of C. Note that an orientation on a node gives rise to an orientation on
the corresponding edge. Finally GC has a leg Lp with endpoint vη for each marked
point p contained in the closure of η.

Definition 2.3.8. Let (C/S,p, f) be a logarithmic stable map. The combinatorial
type of (C/S,p, f) consists of the following data:

(1) The dual graph GC .
(2) The contact data up corresponding to marked points of C.
(3) The contact data uq corresponding to oriented nodes of C.

2.3.9. The basic monoid. Given a combinatorial type of a logarithmic map (C/S,p, f)
we define a monoid Q by first defining its dual

Q∨ =

{
(
(Vη)η, (eq)q

)
∈
⊕

η

P ∨
η ⊕

⊕

q

N

∣∣∣∣∀q : Vη2 − Vη1 = equq

}
.

Here the sum is over generic points η of C and nodes q of C. We then set

Q := Hom(Q∨,N).

It is shown in [GS13], §1.5, that Q is a sharp monoid, necessarily fine and saturated
by construction.

Given a stable logarithmic map (C/W,p, f) over W = Spec(Q′ → k) of the given
combinatorial type, we obtain a canonically defined map

candefmapcandefmap (2.3.4) Q→ Q′

which is most easily defined as the transpose of the map

(Q′)∨ → Q∨ ⊆
⊕

η

P ∨
η ⊕

⊕

q

N,

given by

m 7→
(
(ϕt

η̄(m))η, (m(ρq))q
)
.

where ϕη̄ is defined in Section 2.3.6 and ρq is given in Equation 2.3.2.

Definition 2.3.10 (Basic maps). Let (C/W,p, f) be a stable logarithmic map. If
W = Spec(Q′ → k) for some Q′ and algebraically closed field k, we say this stable
logarithmic map is basic if the above map Q → Q′ is an isomorphism. If W is an
abitrary fs log scheme, we say the stable map is basic if (Cw̄/w̄,p, f |Cw̄) is basic for
all geometric points w̄ ∈ W .
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2.3.11. Degree data and class. In what follows, we will need to make a choice of a
notion of degree data for curves in X ; we will write the group of degree data as
H2(X). This could be 1-cycles on X modulo algebraic or numerical equivalence,
or it could be Hom(Pic(X),Z). If we work over C, we can use ordinary singular
homology H2(X,Z). A key requirement H2(X) must satisfy, which satisfied by any
of the above choices, is that any family of stable maps f : C/W → X should induce
a well-defined class f

∗
[Cw̄] ∈ H2(X) for w̄ ∈ W a geometric point; further, if W is

connected, this class should be independent of the choice of w̄.

Definition 2.3.12. A class β of stable logarithmic maps to X consists of the fol-
lowing:

(i) The data β of an underlying ordinary stable map, i.e., the genus g, the number
of marked points k, and data A ∈ H2(X).

(ii) Integral elements up1, . . . , upk ∈ |Σ(X)|. 5

We say a stable logarithmic map (C/W,p, f) is of class β if two conditions are
satisfied. First, the underlying ordinary stable map must be of type β = (g, k, A).
Second, define the closed subset Z i ⊆ X to be the union of strata with generic
points η such that upi lies in the image of ση → |Σ(X)|. Then for any i we have
im(f ◦ pi) ⊂ Z i and for any geometric point w̄ → W such that pi(w̄) lies in the
stratum of X with generic point η, the composed map

MX,η̄ =MX,f(pi(w̄))
f
♭

−→MC,pi(w̄) =MW,w ⊕ N
pr2−→N,

thought of as an element of ση, maps to upi ∈ |Σ(X)| under the map ση → |Σ(X)|.
In particular, si specifies the contact order upi at the marked point pi(w̄).

We emphasize that the class β does not specify the contact orders uq at nodes.

Definition 2.3.13. Let M (X/B, β) denote the stack of basic stable logarithmic
maps of class β. This is the category whose objects are basic stable logarithmic
maps (C/W,p, f) of class β, and whose morphisms (C/W,p, f)→ (C ′/W ′,p, f ′) are
commutative diagrams

C
g

//

��

C ′ f ′

//

��

X

��

W // W ′ // B

with the left-hand square cartesian, W → W ′ strict, and f = f ′ ◦ g.
5We remark that this definition of contact orders is different than that given in [GS13, Definition

3.1]. Indeed, the definition given there does not work when X is not monodromy free, and [GS13,
Remark 3.2] is not correct in that case. However, [GS13, Definition 3.1] may be used in the
monodromy free case.
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Theorem 2.3.14. If X → B is proper, then M (X/B, β) is a proper Deligne-
Mumford stack. If furthermore X → B is logarithmically smooth, then M (X/B, β)
carries a perfect obstruction theory, defining a virtual fundamental class [M (X/B, β)]virt

in the rational Chow group of the underlying stack M (X/B, β).

Proof. The stack M (X/B, β) is constructed in [GS13] in general for X a Zariski log
scheme and in [Che10], [AC11] with the stronger assumption that there is a monoid
P and a sheaf homomorphism P → MY which locally lifts to a chart. Properness
was proved in the latter two references in those cases, and in [GS13] with a certain
hypothesis, combinatorial finiteness, see [GS13], Def. 3.3. Properness was shown in
general in [ACMW14].

The existence of a perfect obstruction theory when X → B is logarithmically
smooth was proved in [GS13], §5. ♠

We remark that the stack M (X/B, β) with its logarithmic structure defines a
stack in groupoids over the category of logarithmic schemes. As such it parametrizes
all stable logarithmic maps, without requiring them to be basic.

prestablelogcurves
2.4. Stack of prestable logarithmic curves. In [GS13], §5, one constructs a
relative obstruction theory over MB, the Artin stack of all prestable logarithmically
smooth curves defined over B. We recall briefly how this moduli space is constructed,
see [GS13], Appendix A for details.

First, working over a field k, there is a moduli space M of pre-stable basic loga-
rithmic curves over Spec k, essentially constructed by F. Kato in [Kat00]. Of course
M is an algebraic log stack over Spec k.

If B is an arbitrary fs log scheme over Spec k, a morphism W → M ×Spec k B
determines a logarithmic structure on W which has, as direct summand, the basic
logarithmic structure for the family of curves C → W induced by W → M. Thus
M×Spec k B acquires the structure of an algebraic log stack over the log scheme B.

We then set

MB := LogM×B,

Olsson’s stack parametrizing logarithmic structures over M×B. 6

tropicalsubsection
2.5. The tropical interpretation. The precise form of the basic monoid Q came
from a tropical interpretation, which will play an important role here. We review
this in our general setting. Given a stable logarithmic map (C/W,p, f), we obtain

6In [GS13] one explicitly writes MB := Log•→•

B ×LogB
(M×Speck B).
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an associated diagram of cone complexes,

conecomplexdiagramconecomplexdiagram (2.5.1) Σ(C)
Σ(f)

//

Σ(π)
��

Σ(X)

��

Σ(W ) // Σ(B).

This diagram can be viewed as giving a family of tropical curves mapping to Σ(X),
parameterized by the cone complex Σ(W ). Indeed, a fibre of Σ(π) is a graph and
the restriction of Σ(f) to such a fibre can be viewed as a tropical curve mapping to
Σ(X). We make this precise.

First, we need to be a bit careful about the diagram giving a presentation of Σ(X).
To avoid difficulties in notation, we shall assume that in fact X is simple. This is
not a restrictive assumption in this paper, as our results will only apply when X is
log smooth over the trivial point Spec k, and as X is assumed to be Zariski in any
event, it follows that X is simple.

We can then use the reduced presentation of Σ(X) given by [ACP12, Proposition
2.6.2]: every face of a cone in the diagram presenting Σ(X) is in the diagram, and
every isomorphism is a self-map. But since X is in particular monodromy free, all
isomorphisms are identities, and simplicity then implies that if τ, σ ∈ Σ(X) with the
image of τ in |Σ(X)| a face of the image of σ, then there is a unique face map τ → σ
in the diagram.

weightedcurvedef Definition 2.5.1. Let G be a connected graph. A genus-weight function is a func-
tion g : V (G) → N. The pair (G, g) is called a genus-weighted graph, and the value
g(v) is called the genus associated to the vertex v.

tropicalcurvedef Definition 2.5.2. A tropical curve Γ = (G, g, ℓ) of combinatorial type (G, g) is an
assignment

ℓ : E(G)→ R>0

of lengths to each edge of G.
There is an evident geometric realization of Γ as a metric space. We denote it |Γ|.
One imagines a vertex v with weight g(v) representing g(v) infinitesimally small

loops incident to v. The genus of Γ is defined by the expression

Eq:genusEq:genus (2.5.2) g(Γ) = b1(|Γ|) +
∑

v∈V (G)

g(v).

It depends only on the genus-weighted graph (G, g).

tropcurveinsigmaxdef Definition 2.5.3. A tropical curve in Σ(X) consists of the following data:

(1) A tropical curve Γ = (G, g, ℓ) as in Definition 2.5.2.
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(2) A map

σ : V (G) ∪ E(G) ∪ L(G)→ Σ(X)

(viewing Σ(X) as a set of cones). This data must satisfy the condition that
if E is either a leg or edge incident to a vertex v, then there is an inclusion
of faces σ(v) ⊆ σ(E) in the (reduced) presentation of Σ(X).

(3) Leg ordering: writing k = #L(G), we are given a bijection between L(G) and
{1, . . . , k}.

(4) Edge marking: for each edge Eq ∈ E(G) with a choice of orientation, an
element uq ∈ Ngp

σ(Eq)
; reversing the orientation of Eq results in replacing uq

by −uq.
(5) Leg marking: for each leg Ep ∈ L(G) an element up ∈ Nσ(Ep) ∩ σ(Ep).
(6) A map f : |Γ| → |Σ(X)| satisfying conditions

(a) For v ∈ V (G) we have f(v) ∈ Int(σ(v)).
(b) Let Eq ∈ E(G) be an edge with endpoints v1 and v2, oriented from v1 to

v2. Then
(i) f(Int(Eq)) ⊆ Int(σ(Eq)),
(ii) f maps Eq affine linearly to the line segment in σ(Eq) joining f(v1)

and f(v2), with the points f(v1) and f(v2) viewed as elements of
σ(Eq) via the unique inclusions of faces σ(vi) ⊆ σ(Eq).

(iii) we have 7

f(v2)− f(v1) = ℓ(Eq)uq.

(c) For Ep ∈ L(G) a leg with vertex v, then

f(Int(Ep)) ⊆ Int(σ(Ep)),

and f maps Ep affine linearly to the ray

f(v) + R≥0up ⊆ σ(Ep).

The combinatorial type τ̃ = (G, g,σ, u) of a decorated tropical curve in Σ(X) is
the graph G along with data (2)-(5) above. Note that we are suppressing the leg
numbering, viewing the set L(G) as identical with {1, . . . , k}.
2.5.4. Tropical curves from logarithmically smooth curves. Now suppose

W = Spec(Q→ k)

for some monoid Q. Then the diagram (2.5.1) is intepreted as follows. First,

Σ(W ) = Q∨
R := Hom(Q,R≥0).

7Note that uq and ℓ are required data for a tropical map, as they cannot in general recovered
from the image.
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For any point m ∈ Q∨
R, the inverse image Σ(π)−1(m) is a tropical curve. When m lies

in the interior of Q∨
R, then the combinatorial type of the curve is the dual intersection

graph ΓC of C. Explicitly:

(i) If η is a generic point of C, then ση = Q∨
R and Σ(π)|ση is the identity. Thus each

fibre of Σ(π)|ση is a point v. We put the weight g(v) = g(Cη), the geometric
genus of the component with generic point η.

(ii) If q is a node of C, then

σq = Hom(Q⊕N N2,R≥0) = Q∨
R ×R≥0

R2
≥0,

where the mapsQ∨
R → R≥0 and R2

≥0 → R≥0 are given by ρq ∈ Q and (a, b) 7→ a+
b respectively. Thus the fibre of Σ(π)|σq overm ∈ Q∨

R is an interval. This interval
admits an integral affine isomorphism to an interval of affine lengthm(ρq). Since
ρq ∈ Q, this length is non-zero if m ∈ Int(Q∨

R). If the corresponding edge of
Γ = Σ(π)−1(m) is called Eq, then we set ℓ(Eq) = m(ρq).

(iii) If p ∈ C is a marked point, then σp = Q∨
R × R≥0, and Σ(π)|σp is the projection

onto the first component. Thus a fibre of Σ(π)σp is a ray we denote by Ep.

This analysis then makes clear the claim that Γ is the dual intersection graph ΓC

of C whenever m ∈ Int(Q∨
R). However the tropical structure of ΓC , i.e., the lengths

of the edges, depends on m.
Ifm lies in the boundary ofQ∨

R, then Σ(π)−1(m) is obtained from ΓC by contracting
the bounded edges Eq such that m(ρq) = 0. For example, Σ(π)−1(0) consists of
a single vertex with an attached unbounded edge for each marked point of C. In
general, if m ∈ Int(τ), m′ ∈ Int(σ) with τ ⊆ σ faces of Q∨

R, then there is a continuous
map with connected fibres

contractionmapcontractionmap (2.5.3) ξ : Σ(π)−1(m′)→ Σ(π)−1(m)

which contracts precisely those edges of the first graph whose lengths go to zero over
m. This is compatible with the weight g in the sense that for a vertex v ∈ Σ(π)−1(m)
we have g(v) = g(ξ−1(v)), where g(ξ−1(v)) is calculated using Equation (2.5.2).

Sec:maps-to-tropical-maps
2.5.5. Tropical curves in Σ(X) from stable logarithmic maps. Continuing with W =
Spec(Q → κ), the map Σ(f) encodes the map ϕ : f−1MX → MC and defines a
family of tropical curves in Σ(X) in the sense of Definition 2.5.3. The data (1)-(6)
are specified as follows, given m ∈ Int(Q∨

R):

(1) Identify ΓC with Σ(π)−1(m), which we have seen is a tropical curve.
(2) An element x of V (G)∪E(G)∪L(G) corresponds to a point x̄ ∈ C — either

a generic point, a double point, or a marked point. Define

σ(x) := (Px)
∨
R = Hom(MX,f(x̄),R≥0) ∈ Σ(X).
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(3) If the marked points are p1, . . . , pk, the bijection L(G)↔ {1, . . . , k} is Epi ↔
i.

(4) The edge marking data uq are the vectors associated to C → X defined in
§2.3; note uq depends on a choice of orientation of Eq and is replaced by −uq
when the orientation is reversed.

(5) The leg markings up are defined in the same section.
(6) For vη a vertex of ΓC , we have by definition of Σ(f) that with ϕη̄ : Pη → Q,

Σ(f)(vη) = ϕt
η̄(m) ∈ Int(σ(vη)),

the latter since Pη → Q is a local homomorphism. This shows item (6)(a)
of Definition 2.5.3. Property (6)(b) follows from (2.3.3). The remaining
properties of a tropical curve in Σ(X) are easily checked.

2.5.6. Basic maps and tropical universal families. Basicness of the map f can then
be recast as follows. If (C/W, f) is basic, then the above family of tropical curves isal-tropical
universal. Indeed, the definition of the dual of the basic monoid Q∨ precisely encodes
the data of a tropical curve in Σ(X) with the combinatorial type described above.
A tuple ((Vη)η, (eq)q) ∈ Int(Q∨

R) specifies a unique tropical curve Σ(f) : ΓC → Σ(X)
of the given combinatorial type with Σ(f)(vη) = Vη.

Given another stable logarithmic map (C ′/W ′,p, f ′) over W ′ = Spec(Q′ → κ)
coinciding with (C/W,p, f) at the scheme level, the canonically defined map (2.3.4)
can be viewed at the tropical level as a map (Q′)∨R → Q∨

R. This map takes a point
m ∈ Int((Q′)∨R) to the data specifying the map Σ(f ′)|Σ(π)−1(m) : ΓC → Σ(X).

Rk:added-cones Remark 2.5.7. Note that if W is not a log point, the diagram (2.5.1) still exists,
but the fibres of Σ(π) may not be the expected ones. In particular, if w̄ is a geometric
point of W , there is a functorial diagram

Σ(Cw̄) //

��

Σ(C)

��

Σ(w̄) // Σ(W )

but this diagram need not be Cartesian. This might reflect monodromy in the family
W . For example, it is easy to imagine a situation where Cw̄ has two irreducible
components and two nodes for every geometric point w̄, but the nodal locus of
C → W is irreducible, as there is monodromy interchanging the two nodes. Then
a fibre of Σ(C) → Σ(W ) may consist of two vertices joined by a single edge, while
a fibre of Σ(Cw̄) → Σ(w̄) will have two vertices joined by two edges. Similarly,



18 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

there may be monodromy interchanging irreducible components, hence a fibre of
Σ(C)→ Σ(W ) may have fewer vertices than Cw̄ has irreducible components.8

3. From toric decomposition to virtual decomposition
sec:torictovirtual

3.1. The toric picture. There is an underlying fact — a simple decomposition
formula in toric varieties — which makes the decomposition formula possible. The
first ingredient is the following. Let W be a toric variety and π : W → A1 a toric
morphism. We write ΣW and ΣA1 for the associated fans, noting that these can be
abstractly identified with Σ(W ) and Σ(A1) as cone complexes, although the latter do
not naturally lie inside a vector space. Associated to π we have a morphism of fans

Σπ : ΣW → ΣA1 . Prime toric divisors inW correspond to rays in ΣW . Let ΩW := Σ
(1)
W

be the set of these rays, and for each ray τ ∈ ΩW write Dτ for the corresponding toric
divisor. Write MW for the character lattice and NW for the lattice of 1-parameter
subgroups of the torus ofW , and similarly writeMA1 , NA1 . We write Nτ = (N ∩τ)gp
for the lattice of integral points tangent to τ . We denote by τA1 ∈ Σ(A1) the unique
one-dimensional cone. The toric decomposition formula is the following standard
observation:

prop:obvious Proposition 3.1.1. (1) For τ ∈ ΩW , we have isomorphisms τ ∩ Nτ ≃ N and
τA1 ∩ NA1 ≃ N, and the map τ ∩ Nτ → τA1 ∩ NA1 between them is given by
multiplication by a non-negative integer mτ .

(2) The multiplicity of the divisor π∗({0}) along Dτ is mτ .
In other words, we have an equality of Weil divisors

Eq:toricEq:toric (3.1.1) π∗({0}) =
∑

τ

mτDτ .

Proof. (1) follows since τ is a rational ray. The map Σπ is given by a linear function
m : N → Z, and hence π is given by the regular monomial zm. It is standard that
the order of vanishing of zm on the divisor Dτ is the value of m on the generator of
τ ∩Nτ . But this value is precisely mτ , giving the result. ♠
Remark 3.1.2. In fact, the datamτ only depends on the map Σ(π) : Σ(W )→ Σ(A1)
as abstract cone complexes, as the latticeNτ is the lattice giving the integral structure
on cones τ ∈ Σ(W ) corresponding to the codimension one strata of W .

Sec:decomposition-toroidal
3.2. Decomposition in the toroidal case. The proposition immediately applies
to a logarithmically smooth morphism W → B, where B is a smooth curve with
toroidal divisor {b0}: associated to W → B we have a morphism of generalized
cone complexes Σ(W ) → Σ(B). We have again that Σ(B) ≃ R≥0 with the lattice

8We have been informed that forthcoming work Chan, Cavalieri, Ulirsch and Wise redefines
moduli of tropical curves as stacks, in which case this issue will be resolved.
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NB ≃ Z. We have a correspondence between rays τ ∈ Σ(W ) and toroidal divisors
Dτ ⊂W . For a ray τ with integral lattice Nτ , we have τ ∩Nτ ≃ N, and the monoid
homomorphism τ ∩Nτ → τB ∩NB is multiplication by an integer mτ .

Cor:decomposition-toroidal Corollary 3.2.1.

Eq:toroidalEq:toroidal (3.2.1) π∗({b0}) =
∑

τ

mτDτ .

Proof. Fix a geometric point x on the open stratum of Dτ . We may assume that we
have a toroidal chart, namely a commutative diagram

VW

πV

��

UW

��

//oo W

π

��

VB UB
//oo B

where

(1) all the horizontal arrows are étale,
(2) UW →W is an étale neighborhood of x,
(3) πV : VW → VB is a toric morphism of affine toric varieties.

Since B is a curve, VB ≃ A1. Write 0 for its origin. Replacing VW and UW by open
sets we may assume VW contains a unique toric divisor DV . Then the multiplicity
of π∗

W ({b0}) along Dτ coincides with the multiplicity of π∗
V ({0}) along DV . This is

mτ by Equation (3.1.1). ♠

3.3. Decomposition in the stack of logarithmic structures. In this paper we
apply Equation (3.2.1) in the generality of Artin stacks. We continue to work with
(B, b0) a pointed smooth curve. We have LogB, Olsson’s stack of log schemes over B,
the objects of which are log morphisms X → B.9 There is a morphism LogB → B,
the forgetful map which forgets the logarithmic structures. Viewing b0 ∈ B as the
standard log point, we similarly have a morphism Logb0 → b0.

Dmdef Definition 3.3.1. Define the closed substack Dm of LogB as follows. For m ∈ N,
let m : N → N denote the multiplication by m map, inducing AN → AN = A. This
morphism of log stacks induces by projection a morphism of log stacks AN×AB → B,
hence a morphism of stacks m : AN×A B → LogB. We take Dm to be the closure of
the image of [0/Gm]×A B under m with the reduced induced stack structure.

We observe:

9We emphasize that, since we assume all our logarithmic structures are fine and saturated,
this stack LogB parametrizes only fine and saturated logarithmic structures, and is only an open
substack of Olsson full stack of logarithmic structures. Olsson denotes our stack LogB by T orB .
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basicdecompositionfacts Lemma 3.3.2. (1) LogB → B is logarithmically étale.
(2) LogB ×B b0 ∼= Logb0.
(3) For each m ∈ N, Dm ⊂ LogB is a generically reduced prime divisor. When

m > 0 the divisor Dm is contained in Logb0.
(4) For m > 0 write im : Dm → Logb0 for the embedding above. For any finite

type open substack U ⊂ LogB, we have the following identity in the Chow
group A∗(U) of U introduced in [Kre99]:

Eq:Log-p-trueEq:Log-p-true (3.3.1) [Logb0 ∩ U ] =
∑

m

m · im∗[Dm ∩ U ],

For convenience, we denote the above identity formally as follows:

Eq:Log-pEq:Log-p (3.3.2) [Logb0 ] =
∑

m

m · im∗[Dm]

without specifying the specific choice of U .

Remark 3.3.3. In [Kre99], the Chow groups are constructed for Artin stacks of
finite type which admits finite sum of cycles. Note that the stack LogB is not of
finite type, and the summation in (3.3.2) has infinitely many non-zero terms. The
equation (3.3.2) is not an identity of Chow cycles in the sense of [Kre99].

Proof. (1) This is generally true for any scheme B, but to simplify notation and
clarify the structure of LogB, we just show it for the given B. It is sufficient to
restrict to an étale cover of LogB, which is described in [Ols03, Corollary 5.25].
One can cover LogB by stacks indexed by morphisms of monoids N → P . We set
A := AN = [A1/Gm] (following the notation of (2.2.1)). By [Cad07, Lemma 2.1.1],
an object of the category A over a scheme W is a pair (L, s) where L is a line
bundle on W and s is a section of L. In particular, taking a line bundle L on B
corresponding to the divisor b0, and taking a section s of L vanishing precisely once,
at b0, we obtain a strict morphism B → A. (In fact, A is the Artin fan of B and
this is the canonical morphism).

Then a morphism N → P gives the element AP ×A B of the étale open cover
of LogB. Here the morphism AP → A is functorially induced by N → P . The
composition of AP ×A B → LogB with the forgetful morphism LogB → B is just
the projection to B, the base-change of AP → A, which is étale by [Ols03, Corollary
5.23].

(2) is clear since giving a morphism W → LogB ×B b0 is the same thing as giving
a log morphism W → B which factors through the inclusion b0 →֒ B.

For (3), first note that the image of [0/Gm]×A B under the projection to B is b0
except in the case when m = 0, in which case the image is B r {b0}. Thus Dm is
contained in Logb0 for m ≥ 1.
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The divisor Dm can be described in terms of the étale cover of LogB given above.
Fix ϕ : N → P giving AP ×A B → LogB étale. For each toric divisor Dτ of
Spec k[P ], there is a monoid homomorphism P → N given by order of vanishing, i.e.,
p 7→ ordDτ (z

p). The composition N→ N is multiplication by the integermτ , precisely
the order of vanishing of zϕ(1) along Dτ . Also write ϕ for the induced maps ϕ :
Spec k[P ]→ A1 and ϕ : AP → A. At the generic point ξ of Dτ , the mapMA1,ϕ(ξ̄) →
MSpec k[P ],ξ̄ coincides with mτ : N → N if mτ > 0; otherwise it is the map 0 → N.
Thus we see that the pull-back of Dm to AP×AB is

∑
Dτ :mτ=m[Dτ/ Spec k[P

gp]]×AB.
In particular, Dm is generically reduced, and we can write as divisors

Eq:decomp-LogEq:decomp-Log (3.3.3) ϕ∗(b0) =
∑

τ

mτ [Dτ/ Spec k[P
gp]]×A B.

under the induced map ϕ : AP ×A B → B.
Consider a finite type open substack U ⊂ LogB. By [Ols03, Corollary 5.25], there

is a finite set of monoid homomorphisms {φi : N→ Pi} such that U is contained in
the image of ∪φi : ∪iAPi

×A B → LogB. To prove (3.3.1), we may first apply the
identity (3.3.3) to the image of ∪φi, then restrict it to U . This implies (4).

♠
Sec:decomposition-m

3.4. Decomposition for the moduli space: first step. We now fix a proper and
logarithmically smooth morphism X → B with B a smooth curve with divisorial
logarithmic structure given by b0 ∈ B. Fix a class β of stable logarithmic map. The
moduli space M (X/B, β) is neither a toric variety nor logarithmically smooth over
B. Its saving grace is the fact that it has a perfect obstruction theory over MB,
see Section 2.4. For b ∈ B an arbitrary closed point, b 6= b0, we have the following
diagram with all squares Cartesian, as is easily checked with the same argument as
in Lemma 3.3.2, (2):

M (Xb/b, β)

��

� � jb
// M (X/B, β)

��

M (X0/b0, β)

��

? _
jb0

oo

Mb

��

� � // MB

��

Mb0
? _oo

��

Logb
� � //

��

LogB

��

Logb0
? _oo

��

b �
�

// B b0? _oo

Consider the complex E• :=
(
Rπ∗f

∗TX/B

)∨
, where TX/B stands for the logarithmic

tangent bundle and the dual is taken in the derived sense: F∨ := RHom(F,OW ).
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This is a perfect 2-term complex supported in degrees 0 and −1 admitting a mor-
phism to the cotangent complex LM (X/B,β) /MB

. Since MB is pure-dimensional, this
provides a well-defined virtual fundamental class [M (X/B, β)]virt, as shown in [GS13,
§5].

The obstruction theory for M (X/B, β) pulls back to the obstruction theory for
M (Xb/b, β) and M (X0/b0, β), and hence by [BF97, Proposition 7.2], we have:

Proposition 3.4.1.

[M (Xb/b, β)]
virt = j!b[M (X/B, β)]virt

and
[M (X0/b0, β)]

virt = j!b0 [M (X/B, β)]virt.

This allows us to focus on M (X0/b0, β).
Write

Mm := Mb0 ×Logb0
Dm

Mm(X0/b0, β) := M (X0/b0, β)×Logb0
Dm,

which amounts to adding a column on the right of the diagram above

M (X/B, β)

��

M (X0/b0, β)

��

? _
jb0

oo Mm(X0/b0, β)

��

? _oo

MB

��

Mb0
? _oo

��

Mm

��

? _oo

LogB

��

Logb0
? _oo

��

Dm
? _oo

B b0? _oo

Note Mm(X0/b0, β) has a natural perfect obstruction theory over Mm, pulled
back from M (X0/b0, β) → Mb0. There is a natural map we also denote im :
Mm(X0/b0, β) → M (X0/b0, β). Applying a result of Costello, [Cos06] as refined
by Manolache [Man12], gives the following:

Proposition 3.4.2.

Eq:decomposition-1Eq:decomposition-1 (3.4.1) [M (X0/b0, β)]
virt =

∑

m

m · im∗[Mm(X0/b0, β)]
virt

Proof. First consider the closed substack mDm of Logb0 defined as follows on the étale
cover of Logb0 described in the proof of Lemma 3.3.2. A choice ϕ : N→ P yields an
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element AP×A b0 of the étale cover of Logb0 . Now with b0 → Spec k[N] taking b0 to 0,
this element of the cover is a quotient of Spec k[P ]×Spec k[N] b0 by a torus action. The

latter scheme is Spec k[P ]/(zϕ(1)). The ideal (zϕ(1)) has a primary decomposition in
k[P ], (zϕ(1)) =

⋂
i∈I qi with

√
qi = pi a prime of height one. Let J ⊆ I be the index

set corresponding to those i such that pi corresponds to an irreducible component
of Dm pulled back to Spec k[P ]. Then mDm is the closed substack which pulls back
the closed subscheme of Spec k[P ] defined by the ideal

⋂
i∈J qi.

By Equation (3.3.2) we have that ⊔(mDm)→ Logb0 is of pure degree 1 in the sense
of [Cos06, Theorem 5.0.1] and [Man12, Prop. 5.29]. Consider the cartesian diagram

∐
m

(
M (X0/b0, β)×Logb0

mDm

)
Φ

//

��

M (X0/b0, β)

��∐
m(mDm) // Logb0 .

The pullback of the perfect obstruction theory of M (X0/b0, β) relative to Mb0 is a

perfect obstruction theory of
∐

m

(
M (X0/b0, β)×Logb0

mDm

)
relative to

∐
mMb0×Logb0

(mDm). It follows from [Cos06, Theorem 5.0.1] or [Man12, Propostion 5.29] that

Eq:push-unionEq:push-union (3.4.2) Φ∗

[∐(
M (X0/b0, β)×Logb0

mDm

)]virt
= [M (X0/b0, β)]

virt .

For each m consider the cartesian diagram

Mm(X0/b0, β)
i′m

//

��

M (X0/b0, β)×Logb0
mDm

��

Dm
// mDm.

The morphism Dm → mDm is of pure degree 1/m, in the sense that [Dm] =
(1/m)[mDm]. Again by [Man12, Propostion 5.29]

Eq:push-mEq:push-m (3.4.3) m · i′m∗[Mm(X0/b0, β)]
virt =

[
M (X0/b0, β)×Logb0

mDm

]virt
.

Combining (3.4.2) and (3.4.3) we obtain the result. ♠

As it stands, (3.4.1) is not easy to use: it says that a piece Mm(X0/b0, β) of the
moduli space appears with multiplicity m. We need to describe in a natural, com-
binatorial way what Mm(X0/b0, β) is. The combinatorics of logarithmic structures
provides an avenue to do this. A bridge to that combinatorial picture is provided by
an unobstructed variant Mm(X0/b0, β) of Mm(X0/b0, β).
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4. Tropical moduli spaces and the main theorem
sec:mainth

We now show how to construct the desired set Ω in Theorem 1.1.2. This will be
the set of isomorphism classes of tropical curves mapping to Σ(X) which are rigid,
in a sense we will define below. The integer mτ will be read off immediately from
such a tropical curve.

First we introduce a stack X and prestable logarithmic maps in X /B which serve
as a bridge from geometry to combinatorics.

4.1. Prestable logarithmic maps in X . Define X = AX ×AB
B and X0 = X ×B

{b0} = AX ×AB
{b0}. Associated to any cone σ ∈ Σ(X) is a (locally closed) stratum

Xσ ⊆ X , and we write Xcl
σ for the closure of this stratum. Similarly we write Xσ

and X cl
σ for the correspondeing strata of X . In particular, the map X → X provides

a one-to-one correspondence between logarithmic strata Xcl
σ(v) of X and logarithmic

strata X cl
σ(v) of X . We note that Xcl

σ(v) = X cl
σ(v)×XX , and similarly for the underlying

schemes.
We use the notation β ′ = (g, upi) for discrete data in X /B or X0/b0: these are the

same as discrete data β = (g, A, upi) in X or X0 with the curve class A removed.
Denote by M(X /B, β ′) the stack of basic prestable logarithmic maps in X /B,

with its natural logarithmic structure. By [ACMW14] it is an algebraic stack pro-
vided with a morphism M(X /B, β ′) → M(X/B, β′). Restricting to b0 we obtain a

morphism of algebraic stacks M(X0/b0, β
′)→M(X 0, β

′). Using notation of Section
3.4 we may further restrict and define

Mm(X0/b0, β
′) = M(X , β ′)×LogB Dm = M(X , β ′)×MB

Mm.

Since X → X is strict we obtain natural strict morphisms

M (X/B, β)→M(X /B, β ′)

M (X0/b0, β)→M(X0/b0, β
′)

Mm(X0/b0, β)→Mm(X0/b0, β
′)

The key fact is

Proposition 4.1.1. The morphisms

M(X /B, β ′)→MB

M(X0/b0, β
′)→Mb0

Mm(X0/b0, β
′)→Mm

are strict étale.

Proof. The morphisms are strict by definition.
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Recall that AX → A is logarithmically étale. It follows that X = AX ×A B
is logarithmically étale over B and so X0 → b0 is logarithmically étale. The fact
that M(X /B, β ′) → MB is étale is equivalent to M(X /B, β ′) → Mg,k × B being
logarithmically étale, which is proven in [AW13, Proposition 3.1.2]. The result for
M(X0/b0, β

′) and Mm(X0/b0, β
′) follows by pulling back. ♠

Since MB → B is logarithmically smooth it follows that M(X /B, β ′) → B is a
toroidal morphism. Corollary 3.2.1 says that a meaningful decomposition result for
M(X0/b0, β

′) or Mm(X0/b0, β
′) results from a meaningful description of rays in the

polyhedral cone complex of M(X /B, β ′). This is where Section 2.5 becomes useful.
LetW = Spec(Q→ k) and let (C/W,p, f : C → X ) be an object of M(X0/b0, β

′),
namely a basic prestable logarithmic map to X /B lying over b0. We recall that
in Section 2.5.5 we introduced a family of tropical curves in Σ(X) over the cone
τQ := (Q∨

R, Q
∗), which is universal since (C/W,p, f) is basic, see Section 2.5.6. We

denote by τ̃ = (G, g,σ, u) the combinatorial type underlying this family. We write
τ for the isomorphism class of the combinatorial type τ̃ under graph isomorphisms
fixing g,σ and u.

Prop:prestable-strata Proposition 4.1.2. (1) The basic prestable map

(C/W,p, f : C → X ) ∈M(X0/b0, β
′) (k)

belongs to a codimension-1 stratum of M(X /B, β ′) if and only if Q ≃ N;
equivalently the corresponding tropical moduli space is a ray.

(2) Assume Q ≃ N with generator v, let g : Q∨ → N be the map associated
to τQ → Σ(B) and mτ = g(v). The map (C/W,p, f : C → X ) lies in
M(X0/b0, β

′) if and only if mτ 6= 0, in which case

(C/W,p, f : C → X ) ∈Mmτ (X0/b0, β
′).

Denote by M(X0/b0, β
′)τ ⊂Mmτ (X0/b0, β

′) the divisor corresponding to prestable
maps whose corresponding tropical curve has discrete data τ . Denote also

M (X0/b0, β)τ = M(X0/b0, β
′)τ ×Mmτ (X0/b0,β′) M (X0/b0, β).

Corollary 3.2.1 gives a decomposition

[M(X0/b0, β
′)] =

∑

τ

mτ [M(X0/b0, β)τ ],

and an application of Costello’s theorem to Equation 3.4.1 gives

Eq:decomposition-2Eq:decomposition-2 (4.1.1) [M (X0/b0, β)]
virt =

∑

τ

mτ · imτ ∗[M (X0/b0, β)τ ]
virt.

Below we make this more precise, in a way amenable to immediate computations
and appropriate for our work on the degeneration formula.

We start by explicitly delineating the available combinatorial data.
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Sec:decorated
4.2. Decorated tropical curves. We fix X → B logarithmically smooth over the
one-dimensional base (B, b0) as usual. As in the discussion in §2.5, we can use the
fact that X is Zariski and logarithmically smooth over B to conclude that X is
simple, and hence take the reduced presentation for Σ(X). The cones of Σ(X) are
then indexed by the strata of X .

Let ρ : Σ(X)→ Σ(B) = R≥0 be the induced map on generalized cone complexes.10

We will write ∆(X) = ρ−1(1), which can be thought of as a generalized polyhedral
complex.

Note that just as the cones of Σ(X) are in one-to-one correspondence with strata
of X , the polyhedra of ∆(X) are in one-to-one correspondence with the strata of X
contained in X0. If σ ∈ ∆(X), we write Xσ for the corresponding (locally closed)
strata of X0 and Xcl

σ for its closure.

decoratedef Definition 4.2.1. A decorated tropical curve (Γ → ∆(X),A) in ∆(X) consists of
the following data:

(i) A tropical curve Γ→ Σ(X) as in Definition 2.5.3 factoring through the inclusion
∆(X) →֒ Σ(X).

(ii) Decoration:

A : V (G)→
∐

σ∈∆(X)

H2(X
cl
σ ),

with A(v) ∈ H2(X
cl
σ(v)).

The decorated graph (or combinatorial type) (τ̃ ,A) of a decorated tropical curve
in ∆(X) is the combinatorial type τ̃ = (G, g,σ, u) of a tropical curve (see Definition
2.5.3) in Σ(X) with all ux mapping to 0 under the map N

σ(x) → Z = NΣ(B), along
with the data A in (ii) above.

Recall that given a tropical curve, we have defined its genus as

g(Γ) = b1(Γ) +
∑

v

g(v).

Given a decoration A, we define its curve class as

A(A) =
∑

v

A(v) ∈ H2(X0),

where A(v) is viewed as an element ofH2(X0) via the push-foward map H2(X
cl
σ(v))→

H2(X0). When A = A(A) we say that A is a partition of A and write A ⊢ A. Clearly
both genus g(Γ) and curve class A(A) depend only on the combinatorial type (τ̃ ,A).

10In fact these are cone complexes, since Zariski logarithmically smooth schemes have no mon-
odromy. Find the precise reference for this!
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An isomorphism φ between decorated tropical curves (f1 : Γ1 → ∆(X),A1) and
(f2 : Γ2 → ∆(X),A2) in ∆(X) is an isomorphism φ : Γ1 → Γ2 of tropical curves
(necessarily preserving the genus decoration and ordering of legs), such that

(1) f1 = f2 ◦ φ,
(2) A2(φ(v)) = A1(v) for all v ∈ V (G),
(3) uφ(q) = uq and uφ(p) = up for all edges and legs.

This defines the automorphism group Aut(Γ → ∆(X),A) of a decorated tropical
curve in ∆(X). In the same manner we define isomorphisms of decorated graphs
and the automorphism group Aut(τ̃ ,A) of a decorated graph (τ̃ ,A), and similarly
for Aut(τ̃ ).

4.3. Contractions and rigid curves. Fix the combinatorial type (τ̃ ,A) of a dec-
orated tropical curve in ∆(X). The space M trop

τ̃ ,A (∆(X)) of decorated tropical curves

(f : Γ → ∆(X),A) in ∆(X) with these data is an open, possibly unbounded, poly-
hedron determined by the positions f(v) of vertices of Γ and the lengths ℓ(Eq) of the
compact edges for which uq = 0. Note that we consider maps with the fixed graph
G and do not identify maps differing by an automorphism in Aut(Γ → ∆(X),A).
This polyhedron is rational, since ∆(X) is a complex of rationally defined polytopes
and the equations in Definition 2.5.3(6)(b)(iii) have rational coefficients.

The interior of each face ofM trop
τ̃ ,A (∆(X)) is naturally identified withM trop

τ̃ ′,A′(∆(X)),

where (τ̃ ′,A′), τ̃ ′ = (G′, g′,σ′, u′) is a contraction of the decorated graph (τ̃ ,A),
namely:

(1) π : G → G′ is a graph contraction, preserving the ordering of legs L(G) =
L(G′).

(2) For v′ ∈ V (G′)we have g′(v′) = g(π−1(v′)), the genus of the inverse image
graph with genus function g|π−1(v′).

(3) Whenever π(v) = v′ we have that σ′(v′) is a face of σ(v).
(4) For v′ a vertex of G′ we have A(v′) =

∑
π(v)=v′ A(v). Here A(v) is viewed

as a curve class on the stratum Xcl
σ(v′), which contains Xcl

σ(v) by the previous
condition.

(5) Whenever an edge Eq = Eq′ is not contracted under π we have σ
′(Eq′) is a

face of σ(Eq).
(6) Whenever an edge Eq = Eq′ is not contracted under π we have uq′ = uq.
(7) For every leg Ep = Ep′ we have σ

′(Ep′) is a face of σ(Ep).
(8) For every leg Ep = Ep′ we have up′ = up.

rigiddef Definition 4.3.1. A decorated tropical curve in ∆(X) is rigid if it is not contained
in a non-trivial family of decorated tropical curves of the same decorated graph. In
other words, the relevant polyhedron M trop

τ̃ ,A (∆(X)) is a point. Note that this notion

depends only on the decorated graph (τ̃ , A), or just τ̃ , so it makes sense to say that
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(τ̃ , A) is rigid. Thus when (τ̃ , A) is rigid it uniquely determines a rigid decorated
tropical curve in ∆(X), and we will sometimes refer to (τ̃ , A) as a rigid decorated
tropical curve.

As we saw above, the cells of the tropical moduli space are defined by linear in-
equalities with rational coefficients, therefore a rigid tropical curve must be rationally
defined, i.e., f(vη) are rational points of ∆(X) and ℓ(Eq) ∈ Q. We define the mul-
tiplicity of a rigid decorated tropical curve mτ̃ ∈ Z>0 to be the smallest positive
integer mτ̃ such that mτ̃ℓ(Eq) ∈ Z for all edges Eq and mτ̃f(v) is integral (i.e., lies
in Nσ(v)) for each vertex v of Γ.

We will see in Proposition 4.6.1 that mτ̃ is compatible with the multiplicity mτ of
Proposition 4.1.2.

4.4. Decorated logarithmic maps in X0. Fix a rigid decorated graph (τ̃ ,A) in
∆(X). We explicitly write each edge Eq as a pair of half-edges named Eq,1, Eq,2;
a leg is already considered a half-edge, having only one endpoint. We define the
stratum function on half-edges by σ(Eq,i) := σ(Eq). For each vertex v of Γ we
write Hv for the set of half-edges (of the form Eq,i or Ep) incident to v. We write
βv = (g(v), u|Hv,A(v)).

Def:decorated-map Definition 4.4.1. A stable logarithmic map in X0 over a base scheme S of class β
marked by (τ̃ ,A) is the following data:

(1) An object f : C → X0 of Mmτ̃
(X0/b0, β) := M (X0/b0, β) ×Logb0

Dmτ̃
over

the scheme S.
(2) For each vertex v a stable map f

v
: Cv → Xcl

σ(v), an object of M (Xcl
σ(v), βv

)

over S (with genus g(v), curve class A(v), and markings sE : S → ⊔Cv

labelled by E ∈ Hv) with the marked point corresponding to the half-edge E
landing in the stratum Xcl

σ(E).

These data must satisfy

(i) the underlying curve must coincide with the gluing

C = (⊔Cv) /〈sEq,1 = sEq,2〉,
and

(ii)

f |Cv
= f

v
.

A morphism of stable logarithmic map in X0 over S marked by (τ̃ ,A) is defined as
a fiber square as usual.

We denote by Mτ̃ ,A(X0/b0, β) the category of stable logarithmic maps in X0 over
S marked by (τ̃ ,A) .
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We denote

Mτ̃ (X0/b0, β) :=
∐

A⊢A

Mτ̃ ,A(X0/b0, β).

Prop:decorated-moduli-scheme Proposition 4.4.2. (1) The category Mτ̃ ,A(X0/b0, β) of stable logarithmic maps
in X0 over S marked by (τ̃ ,A) is a proper Deligne-Mumford stack.

(2) The mapping Mτ̃ ,A(X0/b0, β)→Mmτ̃
(X0/b0, β) sending an object of Mτ̃ ,A(X0/b0, β)

to stable logarithmic map f : C → X0 is a morphism of algebraic stacks in-
variant under Aut(τ̃ ,A).

The proof is given below along with the proof of Proposition 4.5.2.

4.5. Decorated logarithmic maps in X0. To define a virtual fundamental class
on Mτ̃ ,A(X0/b0, β) we use prestable maps in X0/b0. As for β ′ we use the notation
β ′
v = (g(v), u|Hv) for discrete data of maps in X

σ(v): these are the same βv with the
curve classes A(v) removed.

Definition 4.5.1. A logarithmic map in X0 over b0 marked by τ̃ is the following
data:

(1) A prestable logarithmic map f : C → X0 which is an object ofMmτ̃
(X0/b0, β

′) :=
M(X0/b0, β

′)×Logb0
Dmτ̃

.

(2) For each vertex v a prestable map f
v
: Cv → X cl

σ(v) over S, which is an object

of M(X cl
σ(v), β

′

v
) with genus g(v) and markings given by Hv. We impose the

additional condition that the marking corresponding to half-edge E lands in
the stratum X cl

σ(E).

These data must satisfy the same conditions (i) and (ii) as in Definition 4.4.1.
We denote by Mτ̃ (X0/b0, β

′) the category of stable logarithmic maps in X0 over S
marked by τ̃ .

Prop:decorated-moduli-stack Proposition 4.5.2. (1) The categoryMτ̃ (X0/b0, β
′) of prestable logarithmic maps

in X0 over S marked by τ̃ is an algebraic stack.
(2) The mapping Mτ̃ (X0/b0, β

′)→Mmτ̃
(X0/b0, β

′) sending an object of Mτ̃(X0/b0, β
′)

to a prestable logarithmic map f : C → X0 is a morphism of algebraic stacks
invariant under Aut(τ̃).

(3) The mapping Mτ̃ ,A(X0/b0, β)→Mτ̃ (X0/b0, β
′) composing maps of an object

of Mτ̃ ,A(X0/b0, β) with the projection X0 → X0 is a morphism of algebraic
stacks.

Proof of Propositions 4.4.2 and 4.5.2. Step 1: stacks parametrizing f and f
v
.

By [GS13, AC11, ACMW14] the category M (X0/b0, β) is a proper Deligne–Mumford
stack, see Section 2.3 above. It comes with a morphism M (X0/b0, β)→M (X0, β).
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Similarly, by [ACMW14], M(X0/b0, β
′) is an algebraic stack endowed with a mor-

phism M(X0/b0, β
′)→M(X0, β

′).
Since M (X0/b0, β)→M(X0/b0, β

′) is a morphism of fibered categories, it is a mor-
phism of algebraic stacks. Considering the fibered products we obtain a morphism
Mmτ̃

(X0/b0, β)→Mmτ̃
(X0/b0, β

′).
By [BM96, Theorem 3.14] the stack M (Xcl

σ(v), βv
) is a proper Deligne-Mumford

stack. Similarly, by [Wis14, Corollary 1.1.1] the stack M(X cl
σ(v), β

′

v
) is algebraic.

Again we obtain morphisms of algebraic stacks M (Xcl
σ(v), βv

)→M(X cl
σ(v), β

′

v
).

Step 2: requiring marked points to land in the correct strata. For
each half-edge E ∈ Hv we have an evaluation map eE : M (Xcl

σ(v), βv
)→ Xcl

σ(v).Define

Mv :=
⋂

E e−1
E Xcl

σ(E). This is the proper Deligne–Mumford stack parametrizing maps

where the marked point corresponding to E lands in the stratum σ(E). Replacing
Xcl

σ(v) by X cl
σ(v) we obtain evaluations ǫE : M(X cl

σ(v), β
′

v
) → X cl

σ(v) and an algebraic

stack Mv :=
⋂

E ǫ−1
E X cl

σ(E).

Step 3: requiring maps to glue at nodes. Let M prod =
∏

v Mv. The group
Aut(τ̃ ) acts on this moduli stack. For each edge Eq of Γ we have two evaluation maps
eEq,i

: M prod → Xcl
σ(Eq1 )

= Xcl
σ(Eq2 )

. Define Mq = M prod ×(Xcl
σ(Eq1 )

)2 X
cl
σ(Eq1 )

, where

the map on the left is eEq,1 × eEq,2 and the map on the right is the diagonal. It has

a natural morphism Mq → M prod. Let M glue = Mq1 ×M prod · · · ×M prod Mq|E(Γ)|
be

the fibered prduct of all these. It is a proper Deligne–Mumford stack parametrizing
maps f

v
with gluing data for a stable map. It therefore carries a family of glued

stable maps f : Cglue → X0 by the universal property of pushouts. Hence we have a

morphism M glue →Mβ(X0). The action of Aut(τ̃ ) on M prod clearly lifts to M glue

and the morphism M glue →M (X0, β) is invariant.

Replacing X0 by X0 we obtain an algebraic stack Mglue, parametrizing maps f
v

with gluing data. Hence Mglue carries a family of glued maps f : Cglue → X 0

providing an invariant morphism Mglue →Mβ(X 0).

The morphism M glue →Mglue is canonically Aut(τ̃)-equivariant.
Step 4: compatibility of maps. We have

Mτ̃ (X0/b0, β) = M
glue ×M (X0,β)

Mmτ̃
(X0/b0, β),

hence a proper Deligne-Mumford stack, with morphism to Mmτ̃
(X0/b0, β). The

action of Aut(τ̃) canonically lifts.
Replacing X0 by X0 we have an algebraic stack Mτ̃ (X0/b0) = Mglue ×M(X 0,β)

Mmτ̃
(X0/b0, β

′) with invariant morphism toMmτ̃
(X0/b0, β

′). The resulting morphism
Mτ̃ (X0/b0, β)→Mτ̃ (X0/b0, β

′) is canonically equivariant.
♠



DECOMPOSITION OF DEGENERATE GROMOV-WITTEN INVARIANTS 31

4.6. Costello’s diagram. We denote by τ the isomorphism class of τ̃ , equivalently
the unique isomorphism class of rigid tropical curve with combinatorial type τ̃ under
graph isomorphism fixing the decorations g,σ and u. We also write mτ := mτ̃ .

We denote

Mτ(X0/b0, β
′) :=

[
Mτ̃ (X0/b0, β

′)

/
Aut(τ̃ )

]
,

Mτ (X0/b0, β) :=

[
Mτ̃ (X0/b0, β)

/
Aut(τ̃ )

]

and

Mτ,A(X0/b0, β) :=

[
Mτ̃ ,A(X0/b0, β)

/
Aut(τ̃ ,A)

]
.

It follows that
Mτ (X0/b0, β) =

∐

A⊢A

Mτ,A(X0/b0, β).

Prop:Costello-diagram Proposition 4.6.1. (1) We have a cartesian diagram

Mτ (X0/b0, β) //

��

Mmτ (X0/b0, β)

��

Mτ(X0/b0, β
′) // Mmτ (X0/b0, β

′)

(2) The morphism

Ψ :
∐

τ : mτ=m

Mτ(X0/b0, β
′) → Mm(X0/b0, β

′)

is of pure degree 1 in the sense of Costello [Cos06].

Proof. (1) Both the Aut(τ̃ )-invariant composed morphisms

Mτ̃ (X0/b0, β)→Mmτ̃
(X0/b0, β)→Mmτ̃

(X0/b0, β
′)

and
Mτ̃ (X0/b0, β)→Mτ̃ (X0/b0, β

′)→Mmτ̃
(X0/b0, β

′)

send a decorated logarithmic map C → X to the composite morphism C → X → X ,
hence we obtain an Aut(τ̃)-equivariant morphism

Mτ̃ (X0/b0, β)→Mτ̃ (X0/b0, β
′)×Mmτ̃

(X0/b0,β′) Mmτ̃
(X0/b0, β).

An element of the fibered product consists of
((

f : C → X0, f v
: Cv → X cl

σ(v)

)
, f̃ : C → X0

)
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where the composite C
f̃→ X0 → X0 is f . Since Xcl

σ(v) = X cl
σ(v) ×X 0

X0 we obtain

morphisms f̃
v
: Cv → Xcl

σ(v) which clearly glue together to the given f̃ : C → X0.

These morphisms are stable since f̃ is, giving a morphism

Mτ̃ (X0/b0, β
′)×Mmτ̃

(X0/b0,β′) Mmτ̃
(X0/b0, β)→Mτ̃ (X0/b0, β).

The functorial nature of the two morphisms we have constructed shows they are
inverse to each other, giving that the diagram is cartesian, as required in part (1).

(2) Consider the open locus Mτ(X0/b0, β
′)◦ ⊂Mτ (X0/b0, β

′) where

• the curves Cv are smooth, and
• the image f

v
(Cv) meets the interior X v of X cl

v .

It suffices to show:

Claim. The morphism
∐

Mτ :mτ̃=m(X0/b0, β
′)◦ → Mmτ̃

(X0/b0, β
′) induced by Ψ is

an open embedding, whose image is the union Mmτ̃
(X0/b0, β

′)◦ of open strata of
Mmτ̃

(X0/b0, β
′).

Proposition 4.6.1(2) follows from the claim, since under these conditions, Ψ gives
an isomorphism between the open set

∐

τ :mτ̃=m

Mτ(X0/b0, β
′)◦ = Ψ−1Ψ

(∐
Mτ (X0/b0, β

′)◦
)

and its open dense image in Mm(X0/b0, β
′).

To prove the claim, we first show that

Ψ(
∐

τ :mτ̃=m

Mτ (X0/b0, β
′)◦) ⊂ Mm(X0/b0, β

′).

Indeed the tropical curve of an object

(C/W,p, f) ∈ Ψ (Mτ (X0/b0, β
′)◦) (k)

is the rigid tropical curve τ̃ , and by Proposition 4.1.2 it lies in a codimension-1
stratum of M(X /B, β ′), namely in Mmτ̃

(X0/b0, β
′)◦.

We construct a map in the other direction. For any object (C/W,p, f) ∈Mm(X0/b0, β
′)◦ (k)

the isomorphism class τ of its tropical curve τ̃ is determined uniquely by the tropi-
calization process. Further, since M(X /B, β ′) is log smooth over B, Corollary 3.2.1
gives a one-to-one correspondence between rigid tropical curves and open strata of
M(X0/b0, β

′). In particular, τ must be an isomorphism class of a rigid tropical curve,
which does not depend on the choice of k-point in the stratum. This provides a map
Mm(X0/b0, β

′)◦ →∐
τ Mτ (X0/b0, β

′)◦.
We claim that the multiplicity of τ̃ in this construction coincides with the mul-

tiplicity m, namely the index of Q∨ → N, of the ray corresponding to the stratum
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in Proposition 4.1.2(2). Indeed using the notation of that proposition, note that Q∨
R

parameterizes a family of tropical curves with points of Q∨ corresponding to those
curves whose assigned edge lengths are integral and whose vertices map to integral
points of Σ(X). Thus a primitive generator of τ̃ corresponds precisely to the curve
Ψ(τ̃) rescaled by a factor of mτ̃ .

11
←11

This provides a morphism Mm(X0/b0, β
′)◦ → ∐

τ :mτ
Mτ (X0/b0, β

′)◦. It is not

difficult to show that this is an inverse of Ψ, as needed. 12
←12♠

4.7. Obstruction theories. We note that X0 is logarithmically étale over b0.

Proposition 4.7.1. (1) The complex Rπ∗f
∗TX0/X0 defines a perfect relative ob-

struction theory both on the morphism Mτ (X0/b0, β) → Mτ (X0/b0, β
′) and

on the morphism Mm(X0/b0, β) → Mm(X0/b0, β
′). This perfect obstruction

theory gives rise to virtual fundamental classes

[Mτ(X0/b0)]
virt and [Mm(X0/b0)]

virt .

(2) The resulting virtual fundamental class on Mm(X0/b0, β) coincides with the
virtual fundamental class defined relative to Mm in (3.4.1).

Proof. (1) Since X → LogB is étale we have Rπ∗f
∗TX/X = Rπ∗f

∗TX/LogB , which
is precisely the complex giving rise to the perfect relative obstruction theory for
M (X/B, β) → MB introduced in [GS13]. Since M(X /B, β) → MB is étale this
complex induces a perfect relative obstruction theory for M (X/B, β)→M(X /B, β).
It is a general fact, see [BL00, Proposition A.1] or [Wis11, Proposition 6.2], that this
induces a relative obstruction theory on pullbacks of M (X/B, β) → M(X /B, β ′)
along Mm(X0/b0, β

′)→M(X /B, β ′) or Mτ (X0/b0, β
′)→M(X /B, β ′).

(2) follows since Mm(X0/b0, β
′)→Mm is strict étale. ♠

4.8. Proof of the main theorem. By Costello and Manolache we get
∑

τ : mτ=m

Ψ∗ [Mτ(X0/b0, β)]
virt = [Mm(X0/b0)]

virt,

therefore

∑

τ

mτΨ∗ [Mτ (X0/b0, β)]
virt = [M (X0/b0, β)]

virt

11(Dan) Make this compatibility of multiplicities a separate lemma?
12(Qile) This may be clear on geometric points, but should we be explicit about automorphisms?
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and similarly
∑

(τ,A) : A⊢A

mτΨ∗ [Mτ,A(X0/b0, β)]
virt = [M (X0/b0, β)]

virt.

Writing iτ,A for Ψ acting on Mτ (X0/b0), we obtain Theorem 1.1.2.
Since Mτ̃ ,A(X0/b0, β)→Mτ,A(X0/b0, β) has degree |Aut(τ̃ ,A)|, we have:

Th:main-variant Theorem 4.8.1.

[M (X0/b0, β)]
virt =

∑

(τ̃ ,A) : A⊢A

mτ̃

|Aut(τ̃ ,A)|(iτ̃ ,A)∗ [Mτ̃ ,A(X0/b0, β)]
virt .

where iτ̃ ,A is the composite of iτ,A with the quotient morphism.

Part 2. Practice

5. Logarithmic modifications and transversal maps
calculationalsection

There is a general strategy which is often useful for constructing stable logarithmic
maps. This is the most powerful tool we have at our disposal at the moment; even-
tually, the hope is that gluing technology will replace this construction. However,
we expect it to be generally useful, especially in the examples in the next section.

Suppose we wish to construct a stable logarithmic map to X/B, as usual X log-
arithmically smooth over one-dimensional B with logarithmic structure induced by
b0 ∈ B. Suppose further we wish the stable logarithmic map to map into the fibre
X0 over b0. This construction is accomplished by a two step process.

5.1. Logarithmic modifications. First, we will choose a logarithmic modification
h : X̃ → X , i.e., a morphism which is proper, birational, and log étale. The modi-
fication h is chosen to accommodate a situation at hand — in our applications the
datum of a rigid tropical curve.

Given a modification h, [AW13] constructed a morphism M (h) : M (X̃/B) →
M (X/B) of moduli stacks of basic stable logarithmic maps, satisfying

M (h)∗([M (X̃/B)]virt) = [M (X/B)]virt.

The construction of M (h) is as follows. Given a stable logarithmic map f̃ : C̃/W →
X̃/B, one obtains on the level of schemes the stabilization of h◦f̃ , i.e., a factorization
of h ◦ f̃ given by

C̃/W
g−→C/W−→X

such that C/W → X is a stable map. One gives C a logarithmic structureMC :=

g∗MC̃ , and with this logarithmic structure one obtains a factorization of h◦f̃ through

C at the level of log schemes, giving f : C/W → X/B. If f̃ was basic, there is no
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expectation that f is basic, but by [GS13], Proposition 1.22 or [AC11], Corollary
5.11. there is a unique basic map with the same underlying stable map of schemes
such that the above constructed f is obained from pull-back from the basic map.
This yields the map M (h).

5.2. Transversal maps, logarithmic enhancements, and strata. Second, if
we have a stable map to X0 which interacts sufficiently well with the strata, we
will compute in Theorems 5.4.1 and 5.5.1 the number of log enhancements of this
curve. This generalizes a key argument of Nishinou and Siebert in [NS06]. There
are two differences: our degeneration X → B is only logarithmically smooth and
not necessarily toric; and the fiber X0 is not required to be reduced. The precise
meaning of “interacting well with logarithmic strata” is as follows:

transversaldef Definition 5.2.1. Let X → B be a logarithmically smooth morphism over B one-

dimensional carrying the divisorial logarithmic structure b0 ∈ B as usual. Let X
[d]
0

denote the union of the (open) codimension d logarithmic strata of X0. Suppose
f : C/ Spec k→ X0 is a stable map. We say that f is a transverse map if the image

of f is contained in X
[0]
0 ∪X [1]

0 , and f−1(X
[1]
0 ) is a finite set.

We codify what it means to take a stable map and endow it with a logarithmic
structure:

Definition 5.2.2. Let f : X → B be as above and f : C → X0 a stable map. A
logarithmic enhancement f : C → X is a stable logarithmic map whose underlying
map is f . Two logarithmic enhancements f1, f2 are isomorphic enhancements if
there is an isomorphism between f1 and f2 which is the identity on the underlying
f . Otherwise we say they are non-isomorphic or distinct enhancements.

We also introduce some terminology to help describe the codimension one strata
of X0:

indexandlengthdef Definition 5.2.3. Let X → B be as above and S a codimension one stratum of
X0, and let ȳ ∈ S. Since X is logarithmically smooth over B, there is an étale
neighbourhood Uȳ of ȳ in X , an étale neighbourhood B′ of b0 ∈ B, a lattice N = Z2,
a two-dimensional rational polyhedral cone σ ⊆ NR and a non-zero element ρ ∈M =
Hom(N,Z) along with a commutative diagram

localpicturelocalpicture (5.2.1) Uȳ
//

��

Xσ

zρ

��

B′ // A1

inducing a smooth map Uȳ → B′×A1 Xσ, where Xσ is the toric variety associated to
σ. We define:
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(1) The index Ind(S) of the stratum S is the index of the sublattice of N gener-
ated by the primitive generators of rays of σ.

(2) The length ℓ(S) is the affine length of the interval ρ−1(1), viewing ρ as a map
ρ : σ → R≥0.

5.3. Necessary conditions for the existence of a logarithmic enhancement.

transprelogdef Definition 5.3.1. Let X → B be as above, and let f : C/ Spec k→ X0 be a trans-
verse map. We say f is a transverse pre-logarithmic map if the following additional
conditions on f hold:

Constrained node condition: If x ∈ C with f(x) ∈ X
[1]
0 a singular point

of (X0)red , then x is a node of C, contained in two distinct irreducible com-
ponents D1, D2 of C. Furthermore, f(Di) ⊂ Yi with Y1, Y2 two irreducible
components of (X0)red . Let wi be the order of tangency of f : Di → Yi along
Y1 ∩ Y2 ⊂ Yi at the point x ∈ Di. Let µi be the multiplicity of Yi in X0. Let

S be the stratum of X
[1]
0 containing f(x). Then

(1) w1/µ1 = w2/µ2 and
(2) the number

prelogconditionsprelogconditions (5.3.1) wq :=
w1µ2ℓ(S)

Ind(S)
=
w2µ1ℓ(S)

Ind(S)

is an integer.

Constrained marking condition: If x ∈ C with f(x) ∈ X [1]
0 a smooth point

of (X0)red , then x is a smooth point of C contained in an irreducible compo-
nent D, with f(D) ⊂ Y an irreducible component of (X0)red . Let w be the

order of tangency of f : D → Y along Y ∩X [1]
0 at x. Let S be the codimension

one stratum of X0 containing f(x). Then

Ind(S)
∣∣ w.

Accordingly, a node x ∈ C is a constrained node if f(x) ∈ X
[1]
0 a singular point

of (X0)red , and otherwise it is a free node. Similarly a marked point x ∈ C with

f(x) ∈ X [1]
0 a smooth point of (X0)red is a constrained marking, otherwise it is a free

marking.

transprelogtheorem Theorem 5.3.2. Let X → B be as above, and let f : C/ Spec k → X0 be a trans-
verse map. Suppose that there is an enhancement of f to a basic stable logarithmic
map f : C/W → X/B. Then

(1) f is a transverse pre-logarithmic map.
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(2) The combinatorial type of f is uniquely determined up to possibly a number
of marked points p with up = 0, and the basic monoid Q is

Q = N⊕
⊕

q a free node

N.

(3) The map W = Spec(Q → k) → B induces the map Mb0 = N → Q given by
1 7→ (µ, 0, . . . , 0), where the multiplicity µ ∈ N is the smallest positive integer
divisible by all multiplicities of irreducible components of X0 intersecting f(C)
and such that µℓ(S)/wq is an integer for every double point q ∈ C with

f(q) ∈ X [1]
0 , with notation as in the Constrained node condition.

Proof. Assume given a log enhancement f of f defined over the standard log point

W = Spec k†; such an enhancement can be obtained by base-change from an arbitrary
enhancement. We write f ♭ : f−1MX → MC for the induced map. We introduce

some general notation for the proof. We fix a two-dimensional lattice N = Z2 with

dual latticeM . If x ∈ C is a point with f(x) ∈ X [1]
0 , then as in Definition 5.2.3, there

is an étale neighbourhood Ux of f(x) in X , an étale neighbourhood B′ of b0 ∈ B,
a two-dimensional rational polyhedral cone σ ⊆ NR and a non-zero element ρ ∈ M
yielding (5.2.1). Thus in particular if m ∈ σ∨ ∩M , then the monomial zm can be
viewed as an element of the logarithmic structure on Xσ; we write its pull-back to
MUx as sm.

Let n1, n2 be the two primitive generators of σ, corresponding to divisors Z1 and
Z2. Then the order of vanishing of zρ on Zi is 〈ρ, ni〉. In particular, if f(x) is a
smooth point of (X0)red , then 〈ρ, ni〉 = 0 for some i, say i = 2, and the multiplicity in
X0 of the irreducible component Y of (X0)red containing f(x) is then 〈ρ, n1〉. If f(x)
is a singular point of (X0)red , then f(x) is contained in two irreducible components
Y1, Y2 of (X0)red , of multiplicities µi = 〈ρ, ni〉 for i = 1, 2.

We will take primitive generators α1, α2 of the rays of σ∨, so that 〈αi, ni〉 = 0,
〈α1, n2〉 > 0, 〈α2, n1〉 > 0. Note that

eq: indexeq: index (5.3.2) 〈α1, n2〉 = 〈α2, n1〉 = Ind(S),

where S is the codimension one stratum of X0 containing f(x).

Step I. Analysis at smooth points of C mapping to X
[1]
0 . Let p ∈ C map

into X
[1]
0 . Using the setup above, we replace X with an étale open neighbourhood Up

of f(p), and C with an étale neighbourhood of p so that we can assume f−1(X
[1]
0 ) =

{p}. Let Y1, Y2 ⊂ Up be the inverse image of the divisors Z1, Z2 of Xσ. We assume
that Y1 is contained in X0 if f(p) is a smooth point of (X0)red ; otherwise Y1, Y2 are
both contained in X0. We can further assume f(C) ⊆ Y1. Note that z

α1 vanishes on

Z2 but not on Z1. Thus αC(f
♭sα1) = f ∗αX(sα1) = f ∗(zα1) (using the notation zα1
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also for the pull-back of the monomial zα1 to Up). Now f ∗(zα1) vanishes precisely at
p, and hence the image of sα1 inMC is a section supported only at p. Thus p must
be a marked point of the curve C, withMC = N⊕ Np.

This immediately shows that f(p) cannot be a singular point of (X0)red . Indeed,
the map Σ(Up)→ Σ(B′) is the map σ → R≥0 given by ρ ∈M . On the other hand, a
fibre of Σ(C) → Σ(W ) (see (2.5.1)) is R≥0, and since the stable logarithmic map f
is defined over B, the induced map R≥0 → Σ(Up) must be constant when composed
with the map to Σ(B′). But if f(p) is a singular point of (X0)red , then necessarily the
fibres of σ → R≥0 are compact, and hence Σ(C) → Σ(Up) must be constant. Thus
up = 0, i.e., the composed mapMX,f(p) = Pp →MC,p = N⊕Np → Np is zero, where
the second map is projection onto the second factor. But we have already seen in
the previous paragraph that this map is non-trivial, a contradiction.

Thus the remaining case is that f(p) is a smooth point of (X0)red . Let w and S
be as in the Constrained marking condition. Then as α1 is a primitive generator of
a ray of σ∨, and zα1 does not vanish on Y1, necessarily z

α1 |Y1 vanishes to order 1 on

Y1 ∩ Y2 = Y1 ∩X [1]
0 . So if we write C = Spec k[x], we must have f ∗(zα1) = ϕxw for

some invertible function ϕ. Hence the map up : Pp → Np satisfies up(α1) = w. Also,
up(ρ) = 0 since f is defined over B. Thus, after choosing a basis for N and the dual
basis for M , we can assume n1 = (a, Ind(S)) with gcd(a, Ind(S)) = 1, n2 = (1, 0), so
that α1 = (Ind(S),−a), α2 = (0, 1), and then ρ is a multiple of α2. We must then
have

up = (w/ Ind(S), 0),

and in particular Ind(S)|w.
This gives the Constrained marking condition, and we have shown that all points

p of f−1(X
[1]
0 ) mapping to smooth points of (X0)red must be marked points of the

logarithmic structure on C.
Step II. Analysis at free marked points of C and free nodes. We have

just seen that given a log enhancement f of f , every smooth point of C mapping to

X
[1]
0 must be marked. Of course, C might contain some additional marked points.

We wish to show up = uq = 0 for p, q free marked points or nodes.
Write {p} for the set of all marked points. Let Γ be the dual intersection graph

of (C, {p}). The log enhancement f of f yields, using (2.5.1), a family of tropical
curves of the form h : Γ → Σ(X). Furthermore, Pη = N for any generic point η
of C by the transversality assumption, so any allowable map h appearing in this
family must take the vertex vη to the ray of Σ(X) corresponding to the unique
irreducible component of X0 containing f(η). Note that such a ray surjects to Σ(B).
Furthermore, the composition Γ

h−→Σ(X) → Σ(B) must be the constant map if f
is to be a stable logarithmic map to X/B. This implies in particular that all edges
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Ep or Eq associated to marked points or free nodes are contracted by h, and thus
up = uq = 0 for free marked points and free nodes respectively.

It is then clear that regardless of the uq for constrained nodes, the tropical map h
is determined entirely by the lengths of the edges Eq for q free and the image of the
curve in Σ(B). This implies that the basic monoid Q is

formofQformofQ (5.3.3) Q = N⊕
⊕

q free

N,

as claimed.
Step III. Analysis of constrained nodes. Fix a constrained node q. Then

f(q) maps into a codimension one stratum of X0. Replacing C with an étale neigh-

bourhood of q, we can assume that f−1(X
[1]
0 ) = {q}. If f(C) ⊆ Yi for i = 1 or 2,

the same argument as in Step I shows that there is a section of MC with support
at q. However, since q is a node, this is a contradiction, and thus C splits into two
components C1, C2 with f(Ci) ⊆ Yi.

Because f is defined over the standard log point, MC,q = Seq for some positive
integer eq, see e.g. [GS13],§1.3. For our purposes, the monoid Se is most easily
described by introducing a lattice N ′ = Z2 with dual lattice M ′, and taking the cone
(after choosing a basis)

σe = 〈n′
1 = (0, 1), n′

2 = (e, 1)〉 ⊂ N ′
R.

Then
Se = σ∨

e ∩M ′.

Let α′
1, α

′
2 be the primitive generators of σ∨

e with 〈α′
i, n

′
i〉 = 0, and let ρ′ ∈ σ∨

e be the
element inducing the logarithmic map C → W , i.e., ρ′ = (0, 1) in the chosen basis.
The map Pq → Seq is then necessarily determined by a map of lattices N ′ → N
inducing a bijection σeq → σ. Since the map is defined over B, there must be a
commutative diagram of cones

sigmaesigmadiagramsigmaesigmadiagram (5.3.4) σeq

��

// σ

��

R≥0
// R≥0

The first vertical map is given by ρ′ ∈ M ′ and the second by ρ ∈ M . The bottom
horizontal map is a rescaling by a factor αq ∈ Q>0. Thus the map is given on the
level of generators of the cones by

sigmasigmamapsigmasigmamap (5.3.5) n′
1 7→ αqn1/µ1, n′

2 7→ αqn2/µ2

where the quotient by µi = 〈ρ, ni〉 is necessary to guarantee commutativity of the
above diagram. Note αq is related to uq via the definition of uq (with a suitable



40 DAN ABRAMOVICH, QILE CHEN, MARK GROSS, AND BERND SIEBERT

choice of orientation of Eq) by

equqeqequqeq (5.3.6) equq = αq(n2/µ2 − n1/µ1).

From this one sees that the dual map Pq → Seq is given by

α1 7→
αq

µ2eq
〈α1, n2〉α′

1, α2 7→
αq

µ1eq
〈α2, n1〉α′

2.

Now zα1 is non-vanishing on Y1 and is zero along on Y2, and zα1 |Y1 has a zero
of order 1 along Y1 ∩ Y2. Thus f ∗(zα1)|C1 has a zero of order w1 at q, where w1 is
the order of tangency of the Constrained node condition. Similarly, f ∗(zα2)|C2 has a
zero of order w2 at q. Locally near q, C is of the form Spec k[x, y]/(xy) and the log
structure has chart Seq → k[x, y]/(xy) given on the generators of Seq by

α′
1 7→ ϕxx, α′

2 7→ ϕyy, ρ′ 7→ 0,

where ϕx, ϕy are invertible functions. Thus in particular,

f ∗(zα1)|C1 = αC(f
♭(sα1))|C1 = ϕ′

xx
αq〈α1,n2〉/(µ2eq),

f ∗(zα2)|C2 = αC(f
♭(sα2))|C2 = ϕ′

yy
αq〈α2,n1〉/(µ1eq),

uvxyequvxyeq (5.3.7)

(again with ϕ′
x, ϕ

′
y some invertible functions) giving

w1w2equationsw1w2equations (5.3.8) w1 =
αq

µ2eq
〈α1, n2〉, w2 =

αq

µ1eq
〈α2, n1〉.

This is only possible if w1/µ1 = w2/µ2 = αq Ind(S)/(µ1µ2eq), keeping in mind (5.3.2).
Multiplying (5.3.6) by Ind(S)/eq then gives

Ind(S)uq = w1µ2(n2/µ2 − n1/µ1) = w2µ1(n2/µ2 − n1/µ1).

This implies that uq is a vector whose affine length is

ℓ(uq) = w1µ2ℓ(S)/ Ind(S) = wq.

This must be an integer, giving the Constrained node condition.

Step IV. The map W → B. Recall that the basic monoid Q is dual to the
monoid Q∨ ⊂ Q∨

R, the latter being the moduli space of tropical curves h : Γ→ Σ(X)
of the given combinatorial type, and Q∨ consists of those tropical curves whose edge
lengths are integral and whose vertices map to integral points of Σ(X).

If η is a generic point of C, denote by µη the multiplicity of the irreducible compo-
nent of (X0)red in X0 containing f(η). Thus the induced map N → Pη coming from
the structure map X → B is multiplication by µη. Write ρ : Σ(X) → Σ(B) for the
tropicalization of X → B. The restriction of ρ to the ray of Σ(X) corresponding
to the irreducible component of X0 containing f(η) is multiplication by µη. Thus if
given a tropical curve h : Γ → Σ(X) and µ the image of ρ ◦ h in Σ(B), we see that
h(vη) is integral if and only if µη|µ.
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The edges of Γ corresponding to free nodes have arbitrary length independent of
µ. But an edge corresponding to a constrained node q mapping to a stratum S must
have length

µℓ(S)/ℓ(uq) = µℓ(S)/wq.

This must also be integral for h to represent a point in Q∨. Thus the map Σ(W )→
Σ(B) must be given by (α, (αq)q) 7→ µα where µ is as given in the statement of the
theorem. Dually, we obtain the stated description of the map W → B. ♠

5.4. Existence and count of enhancements of transverse pre-logarithmic

maps: reduced case.

curveconstruction1 Theorem 5.4.1. Suppose X → B is as above, and suppose given a transverse prelog
map

f : (C, p1, . . . , pn)/ Spec k→ X0

whose image is contained in an open subscheme U ⊆ X0 which is reduced. Suppose

further that the marked points {pi} include all points of f−1(X
[1]
0 ) mapping to non-

singular points of X0. For a constrained node q of C, let wq = w1 = w2 as in (5.3.1),
and let µ ∈ N be the multiplicity as given in Theorem 5.3.2, (3).

Then there are

µ−1
∏

q

wq

distinct enhancements of f to a basic stable logarithmic map, where the log marked
points of the log enhancement are precisely p1, . . . , pn.

Proof. This is only a very minor variation of a result proved in [NS06], Prop. 7.1, so
we give the argument in brief. First, by replacing X0 by U , we can assume X0 is
reduced in what follows.

By Theorem 5.3.2, the combinatorial type is completely determined, and the basic
monoid is Q = N ⊕⊕

q a free node Nq, where the sum is over all free nodes, Nq := N.

In the case that X0 is reduced, it is easy to check that Ind(S) = ℓ(S). Thus the
map N → Q induced by W → B is determined by the smallest integer µ such
that µℓ(Sq)/wq is an integer for all constrained nodes q (where Sq is the stratum
containing f(q)).

Fix now a morphism τ : W = Spec(Q → k) → B inducing the above map
N → Q once and for all. (A different choice of morphism would be related by an
automorphism ofW .) We wish to describe all basic log enhancements f : C/W → X0

of f .
Let C◦ be the complement of the nodes and marked points of C (the marked points

include the non-singular points of C mapping to X
[1]
0 ). Let X◦

0 = X0 rX
[1]
0 , so that
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X◦
0 → B is strict. Then we obtain a unique diagram

uniquediagramuniquediagram (5.4.1) C◦ f
//

π
��

X◦
0

��

W τ
// B

with π strict. We need to understand how many ways there are of extending this
diagram across the marked points and nodes of C. The extension of the logarithmic
structure C◦ across the marked points of C is unique, and it is easy to check that
f : C◦ → X0 then extends across the marked points. The nodes of C need to be
treated with more care.

Following the proof of [NS06], for q a node of C, we can pick u, v ∈ OC,q̄ with
uv = 0 and u, v restricting to local parameters respectively on the two branches of C
through q. We can then describe any logarithmically smooth extension of C◦ → W
across q by giving a chart

Q⊕N N2 →OC,q̄

(
n, (a, b)

)
7→

{
ζauavb n = 0

0 n 6= 0

with ζ ∈ k×. Here the fibred sum is determined by N → N2 the diagonal map and
N → Q taking 1 to ρq ∈ Q the smoothing parameter of the node. If q is free, ρq
is the generator of the summand Nq of Q. If q is not free, then ρq is µℓ(Sq)/wq in
the summand N of Q. Furthermore, the map C → W is induced by the inclusion
Q → Q ⊕N N2. Any choice of C → W in a neighbourhood of q takes this form for
some ζ ∈ k×.

If q is a free node, then for any choice of ζ , the diagram (5.4.1) is easily seen to
extend across q uniquely, with the map f ∗MX →MC factoring through π∗MW ⊂
MC , again using strictness of X◦

0 → B. Thus, given a tuple (ζq)q ranging over the
free nodes q, we obtain an extension of (5.4.1) across the free nodes. However, any
two choices of these parameters yield isomorphic curves. Indeed, let λ : W →W be
the automorphism of W given by

Q× k× →Q× k×

(
(n, (nq)q), r

)
7→

(
(n, (nq)q), r

∏

q

ζ−nq
q

)
.

Then τ ◦ λ = τ , and the pull-back of the curve given by the tuple (1)q is the curve
given by the tuple (ζq)q. We conclude that there is a unique way of extending the
diagram (5.4.1) across the free nodes.
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If q is a constrained node then we are in the situation of the third paragraph of
the proof of [NS06], Prop. 7.1. Fix t a local parameter for B at b0 so that τ ♭(t) =(
(µ, (0)q), 1

)
∈ Q × k×. We write eτ := (µ, (0)q) ∈ Q and ēτ := eτ/µ the generator

of the summand N of Q. Via a toric chart there exists x, y ∈MX,f(q) ⊂ OX,f(q) such

that xy = tℓ(Sq). Furthermore, with appropriate choice of u, v ∈ OC,q̄, we have

f ∗(x) = uwq , f∗(y) = vwq .

A choice of extension of C◦ → W across q is then determined by some ζq ∈ k× as
above, and we need to understand for which values of ζq the morphism f extends as
a log morphism, and how many choices of such extension exist.

Viewing x, y, t as elements of MX,f(q), we write them as sx, sy and st, while

elementsm of Q⊕NN
2 determine via the chart at q germs sm ∈MC,q̄. In particular, if

f extends, we must have su, sv ∈MC,q̄ lifting u and v with f ♭(sx) = s
wq
u , f ♭(sy) = s

wq
v .

Necessarily su = ζ−1
q s(0,(1,0)), sv = s(0,(0,1)). By commutativity of (5.4.1), f ♭(st) =

s(eτ ,(0,0)). Furthermore, since sxsy = s
ℓ(Sq)
t , we have (susv)

wq = s
ℓ(Sq)
(eτ ,(0,0))

= s
µℓ(Sq)
(ēτ ,(0,0))

,

or susv = ξs
µℓ(Sq)/wq

(ēτ ,(0,0))
, where ξ is a wq-th root of unity. We then see that ξ = ζ−1

q .

Thus we only obtain an extension of f across q if ζq is a wq-th root of unity, and
then the above description of f ♭ yields a unique such extension. Hence we have wq

extensions across q.
This gives

∏
q wq extensions over all constrained nodes. However, if λ : W → W

is given by

Q× k× →Q× k×

(
(n, (nq)q), r

)
7→

(
(n, (nq)q), rζ

−n
)
,

then τ ◦λ = τ provided that ζ is a µ-th root of unity. On the other hand, pull-back by
λ replaces the parameter ζq associated with a constrained node q with the parameter
ζqζ

µℓ(Sq)/wq . This gives the final enumeration. ♠

5.5. Existence and count of enhancements: general case. The general situ-
ation, when the image of f is not contained in the reduced locus of X0, is subtler.

Indeed, the morphism X0 r X
[1]
0 → B is not strict on the non-reduced locus, and

hence some of the torsors associated to the logarithmic structure on X0 rX
[1]
0 may

be non-trivial. This produces an obstruction to the existence of a diagram (5.4.1),
which is really a global obstruction. It is perhaps most convenient to describe this
obstruction as follows.

Let µ̄ be a positive integer and B̃ → B be the degree µ̄ cyclic cover branched with
ramification index µ̄ over b0. Let X̄ = X×B B̃, and let X̃ → X̄ be the normalization,

giving a family X̃ → B̃. It is a standard computation that the inverse image of a
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multiplicity µ irreducible component of X0 in X̃ is a union of irreducible components
of X̃0, each with multiplicity µ/ gcd(µ, µ̄).

At the level of log schemes, in fact X̄ carries a fine but not saturated logarithmic
structure via the description X̄ = X ×B B̃ in the category of fine log schemes, while
X̃ carries an fs logarithmic structure via the description X̃ = X×B B̃ in the category
of fs logarithmic structures. Here B̃ carries the divisorial logarithmic structure given
by b̃0 ∈ B̃, the unique point mapping to b0.

Similarly, the central fibres are related as follows. The map B̃ → B induces a map
on standard log points b̃0 → b0 induced by N → N, 1 7→ µ̄. Then X̄0 = X0 ×b0 b̃0
in the category of fine log schemes, and X̃0 = X0 ×b0 b̃0 in the category of fs log
schemes.

Using this notation, we then have:

curveconstruction2 Theorem 5.5.1. Suppose given X → B as above, and let

f : (C, p1, . . . , pn)/ Spec k→ X0

be a transverse pre-logarithmic map. Suppose further that the marked points {pi}
include all points of f−1(X

[1]
0 ) mapping to non-singular points of (X0)red. For a

constrained node q of C mapping to a stratum S, let wq be the integer of (5.3.1). Let
µ̄ be the least common multiple of multiplicities of all irreducible components of X0

which intersect the image of f . This gives rise to X̃ → X as above. Then

(1) there is a log enhancement of f if and only if there is a lift

f̃ : C/ Spec k→ X̃0

of f .
(2) If such a lift exists, then there exist

µ̄

µ

∏

q

wq

distinct enhancements of f to a basic stable logarithmic map.

Proof. If f has a log enhancement f : C → X0, then we can assume f is basic.
If µ is as defined in the statement of Theorem 5.3.2, then µ̄|µ, and the morphism

W → b0 factors through b̃0 → b0. (Note that there are µ̄ such factorizations.) Thus f

induces a morphism C → X̃0 = X0×b0 b̃0 by the universal property of fibre product.
This gives the desired lift. Since the lift is still a stable logarithmic curve, the lift is
torically transverse.

Conversely, if a lift f̃ of f exists, then by definition of µ̄, the image of f̃ only

intersects reduced components of X̃0. We can then apply Theorem 5.4.1: f̃ has a log

enhancement f̃ , provided the lift is also transverse pre-log. So let q be a constrained
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node of C, with f̃ mapping q to a strata S̃ of X̃0, which in turn maps to a strata

S of X0. We can model the morphism X̃ → X in a neighbourhood of these strata
torically via the map of cones σe → σ, as in (5.3.4), where this time the bottom
horizontal map is multiplication by µ̄ and e = ℓ(S̃) = µ̄ℓ(S). Suppose the orders of

tangency of f̃ : C → X̃ at q are w̃1, w̃2 as in (1) of Theorem 5.3.2. Then by (5.3.8),
with αq = µ̄ and eq = e, the corresponding orders of tangency of f : C → X are

w1 = w̃1
µ̄ Ind(S)

µ2e
= w̃1

Ind(S)

µ2ℓ(S)
, w2 = w̃2

Ind(S)

µ1ℓ(S)
.

Thus the prelog condition (5.3.1) for f is equivalent to w̃1 = w̃2, which is the prelog

condition for f̃ . Thus by Theorem 5.4.1, there is a log enhancement f̃ of f̃ . If

p : X̃ → X denotes the projection, then p ◦ f̃ is a log enhancement of f .
To enumerate the number of possibilities, we first note that by Theorem 5.4.1,

given a lift f̃ , there are µ̄
µ

∏
q wq possible choices for basic stable log enhancements

f̃ : C/W → X̃ . For each such enhancement the composition p◦ f̃ is easily seen to be
a basic enhancement of f . There may many different lifts, but the group of µ̄-th roots

of unity acts on X̃ over X , and this will identify any two choices of lift. (Equivalently,

different choices of lift correspond to the µ̄ different factorizations W → b̃0 → b0.)
Thus the total number of basic log enhancements of f is still µ̄

µ

∏
q wq. ♠

6. Examples
examplessectionsec:JunLi

6.1. The classical case. Suppose X → B is a simple normal crossings degeneration
with X0 = Y1 ∪ Y2 a reduced union of two irreducible components, with Y1 ∩ Y2 = D
a smooth divisor in both Y1 and Y2. In this case, Σ(X) = (R≥0)

2 and the map
Σ(X) → Σ(B) is given by (x, y) 7→ x + y, so that ∆(X) admits an affine-linear
isomorphism with the unit interval [0, 1], see Figure 1.

Proposition 6.1.1. In the above situation, let f : Γ→ ∆(X) be a decorated tropical
curve. Then f is rigid if and only if every vertex v of Γ maps to the endpoints of
∆(X) and every edge of Γ surjects onto ∆(X).

Note that necessarily every leg of Γ is contracted, as ∆(X) is compact.

Proof. First note that if an edge Eq is contracted, then uq = 0 and the length of the
edge is arbitrary. By changing the length, one sees f is not rigid, see Figure 2 on the
left.

Next, suppose v is a vertex with f(v) lying in the interior of ∆(X). Identifying
the latter with [0, 1], we can view uq ∈ Z for any q. Let Eq1, . . . , Eqr be the edges of
Γ adjacent to v with lengths ℓ1, . . . , ℓr, oriented to point away from v. We can then
write down a family ft of tropical curves, t a real number close to 0, with f = f0,
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1

Σ(B)

Σ(X)

∆(X)

Figure 1. The cones Σ(X) and Σ(B) and the interval ∆(X) Fig:DeltaX

ft(v
′) = f(v′) for any vertex v′ 6= v, and ft(v) = f(v) + t. In doing so, we also need

to modify the lengths of the edges Eqi, with ℓi,t = ℓi − t
uqi

. Any unbounded edge

attached to v is contracted to ft(v). So f is not rigid, see Figure 2 on the right.
Thus if f is rigid, we see that all vertices of Γ map to endpoints of ∆(X), and any
compact edge is not contracted, hence surjects onto ∆(X). The converse is clear.

v
Γ

Γ

∆(X) ∆(X)

ℓ

Figure 2. A graph with a contracted bounded edge or an interior
vertex is not rigid. Fig:not-rigid

♠
A choice of decorated rigid tropical curve in this situation is then exactly what Jun

Li terms an admissible triple in [Li02]. Indeed, by removing f−1(1/2) from Γ, one
obtains two graphs (possibly disconnected) Γ1,Γ2 with legs and what Jun Li terms
roots (the half-edges mapping non-trivially to ∆(X)). The weights of a root, in Li’s
terminology, coincide with the absolute value of the corresponding uq. The set I in
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the definition of admissible triple indicates which labels occur for unbounded edges
mapping to, say, 0 ∈ ∆(X). An illustration is given in Figure 3.

u = 2

1 3

1 42 3

2 4

∆(X)

u = 2

Figure 3. A rigid tropical curve is depicted with four edges and two
legs, the latter corresponding to marked points with contact order 0.
The corresponding admissible triple of Jun Li is depicted on the right,
with roots corresponding to half-edges and legs corresponding to the
legs of the original graph. The half-edges marked 1 and 3 have u = 2. junlicase2

sec:Cubic
6.2. Rational curves in a pencil of cubics. It is well-known that if one fixes 8
general points in P2, the pencil of cubics passing through these 8 points contains
precisely 12 nodal rational curves. Blowing up 6 of these 8 points, we get a cubic
surface we denoteX ′

1 ⊂ P3, and the enumeration of 12 nodal rational cubics translates
to the enumeration of 12 nodal plane sections of X ′

1 passing through the remaining
two points p1, p2.

We will give here a non-trivial demonstration of the decomposition formula by
degenerating the cubic surface to a normal crossings union H1 ∪ H2 ∪ H3 of three
blown-up planes.

6.2.1. Degenerating a cubic to three planes. Using coordinates x0, . . . , x3 on P3, con-
sider a smooth cubic surface X ′

1 ⊂ P3 with equation

f3(x0, x1, x2, x3) + x1x2x3 = 0.

We then have a family X ′ → B = A1 given by X ′ ⊆ A1×P3 defined by tf3+x1x2x3 =
0. The fibre X ′

0 is the union of three planes H ′
1 ∪ H ′

2 ∪ H ′
3. Pick two sections

p1, p2 : B → X ′ such that pi(0) ∈ H ′
i. This can be achieved by choosing two

appropriate points on the base locus f3(x0, x1, x2, x3) = x1x2x3 = 0.

6.2.2. Resolving to obtain a normal crossings family. The total space of X ′ is not a
normal crossings family: it has 9 ordinary double points over t = 0, assuming f3 is
chosen generally: these are the points of intersection of the singular lines H ′

i ∩ H ′
j

with f3 = 0. One manifestation is the fact that H ′
i are Weil divisors which are not
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Cartier. By blowing up H ′
1 followed by H ′

2, we resolve the ordinary double points.
We obtain a family X → B, which is normal crossings, hence logarithmically smooth,
in a neighbourhood of t = 0, as depicted on the left in Figure 4. Denote by Hi the
proper transform of H ′

i.
We identify Σ(X) with (R≥0)

3, so that ∆(X) is identified with the standard simplex
{(x1, x2, x3) | x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}, as depicted on the right in Figure 4.

H1

H2

H3

H1
H2

H3

∆(X)

p1

p2

Figure 4. The left-hand picture depicts X0 as a union of three copies
of P2, blown up at 6, 3 or 0 points. The right-hand picture depicts
∆(X). cubiccentralfibre

6.2.3. Limiting curves: triangles. Since the limit of plane curves on X ′
t = Xt should

be a plane curve on X ′
0, limiting curves on X0 would map to plane sections of X ′

0

through p1, p2. This greatly limits the possible limiting curves — in particular the
image in each of H ′

i is a line.
General triangles do not occur. It is easy to see that a plane section of X ′

0 passing
through p1, p2 whose proper transform in X0 is a triangle of lines cannot be the image
of a stable logarithmic curve of genus zero. This follows from Theorem 5.3.2.

Triangles through double points. On the other hand, consider the total transform
of a triangle in X ′

0 passing through p1, p2, and one of the 9 ordinary double points
of X ′. The resulting curve will be a cycle of 4 rational curves, one of the curves
being part of the exceptional set of the blowup of H ′

1 and H ′
2. We can partially

normalize this curve at the node contained in the smooth part of X0, getting a stable
logarithmic curve of genus 0. See Figure 5 for one such case.

Tropical picture. We depict to the right the associated rigid tropical curve. Here
the lengths of each edge are 1, and the contact data uq take the values (−1, 1, 0),
(0,−1, 1) and (1, 0,−1). This accounts for 9 curves.

Logarithmic enhancement and logarithmic unobstructedness. Note that the above
curves are transverse pre-logarithmic curves, and hence by Theorem 5.4.1, each of
these curves has precisely one basic logarithmic enhancement. Since the curve is
immersed it has no automorphisms. One can use a natural absolute, rather than
relative, obstruction theory to define the virtual funamental class, which is governed
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∆(X)
C2

C3

C4
C1C2

C3

C4C1

Figure 5. Proper transform of a triangle through a double point.
The curve is normalized where C1 and C4 meet. cubiccase1

by the logarithmic normal bundle. In this case each curve is unobstructed: since it
is transverse with contact order 1, the logarithmmic normal bundle coincides with
the usual normal bundle. The normal bundle restricts to OP1, OP1(1), OP1(1), and
OP1(−1) on the respective four components C1, C2, C3 and C4, hence it is non-special.
We note that this does not account for the incidence condition that the marked points
land at pi. This can be arranged, for instance, using (6.3.1) in Section 6.3.2.

It follows that indeed each of these nine curves contributes precisely once to the
desired Gromov-Witten invariant.

6.2.4. Limiting curves: the plane section through the origin. The far more interesting
case is when the plane section of X ′

0 passes through the triple point. Then one has
a stable map from a union of four projective lines, with the central component
contracted to the triple point, see Figure 6 on the left.

C2

C3

C4

C1 C2

C3

C4

C3

C1 C1

C2

Figure 6. A curve mapping to a plane section through the origin,
and its tropicalization. cubiccase2

There is in fact a one-parameter family W of such stable maps, as the line in H3

is unconstrained and can be chosen to be any element in a pencil of lines. Only one
member of this family lies in a plane, and we will see below that indeed only one
member of the family admits a logarithmic enhancement.

Tropical picture. To understand the nature of such a logarithmic curve, we first
analyze the corresponding tropical curve. The image of such a curve will be as
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depicted in Figure 6 on the right, with the central vertex corresponding to the con-
tracted component landing somewhere in the interior of the triangle. However, the
tropical balancing condition must hold at this central vertex, by [GS13], Proposi-
tion 1.14. From this one determines that the only possibility is that the values of uq
of (−2, 1, 1), (1, 1,−2) and (1,−2, 1), all lengths are 1/3, and the central vertex is
(1/3, 1/3, 1/3). This rigid tropical curve Γ then has multiplicity mΓ = 3.

6.2.5. Logarithmic enhancement using a logarithmic modification. We now show that
only one of the stable maps in the familyW has a logarithmic enhancement. To do so,
we use the techniques of §5, first refining Σ(X) to obtain a logarithmic modification
of X . The subdivision visible in Figure 6 gives a refinement of Σ(X), the central
star subdivision of Σ(X). This corresponds to the ordinary blow-up h : X̃ → X at

the triple point of X0. We may then identify logarithmic curves in X̃ and use the
induced morphism M (X̃/B)→M (X/B).

Lifting the map to X̃0. The central fibre X̃0 is now as depicted in Figure 7. We
then try to build a transverse pre-logarithmic curve in X̃ lifting one of the stable
maps of Figure 6. Writing C = C1 ∪ C2 ∪ C3 ∪ C4, with C4 the central component,
we map C1 and C2 to the lines L1 and L2 as depicted in Figure 7, while C3 maps to
some line L3 inH3. On the other hand, by the definition of transverse pre-logarithmic
maps, C4 must map to the exceptional P2 = E in such a way that it is triply tangent
to ∂E precisely at the points of intersection with Li, i = 1, 2, 3.

Uniqueness of liftable map. We claim that there is precisely one such map, neces-
sarily with image a curve of degree 3 in P2, with image as depicted in Figure 7. First,
since L1∩E, L2∩E are fixed, one can apply the tropical vertex [GPS10] to calculate
the number of such maps as 1. One can also deduce this explicitly by considering
linear series as follows. The three contact points on C4 ≃ P1 can be taken to be 0, 1
and ∞, and the map C4 → P2 corresponds, up to a choice of basis, to the unique
linear system on P1 spanned by the divisors 3{0}, 3{1} and 3{∞}. Since these points
map to the coordinate lines, the choice of basis is limited to rescaling the defining
sections. The choice of scaling of the defining sections results in fixing the images of
0 and 1, and the image point of ∞ is then uniquely determined.13

13→
This determines uniquely the point L3∩E, in particular the line L3 is determined.

Thus we see that there is a unique transverse prelogarithmic map f : C → X̃0 such
that h ◦ f lies in the family W of stable maps to X .

Logarithmic enhancement. We check that this transverse pre-logarithmic curve
satisfies the lifting criterion of Theorem 5.5.1: using a base change of degree 3 one
replaces the non-reduced P2 by its triple cover, the cubic w3 = xyz, which is only
singular over the intersection points of the axes of P2. The inverse image of our

13(Dan) The middle of figure 7 could be nicer
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C4

C1

C2

C3

C4

C1 C2

C3

C4

C1

C3

C2

Figure 7. cubicblownup

curve consists of three distinct rational curves, each smooth and transverse to the
boundary and lying in the smooth locus. Hence the map we denoted f lifts (in 3
different ways) to the branched cover, as required by Theorem 5.5.1.

Thus there is precisely 3/3 = 1 basic log enhancement of this transverse preloga-
rithmic curve. This gives a basic stable logarithmic map h ◦ f .

Unobstructedness. Once again we check that h ◦ f is unobstructed, if one makes
use of an absolute onbstruction theory: the logarithmic normal bundle has degree
0 on each line, hence degree 1 on C4, and is non-special. Again the map has no
automorphisms, which accounts for 1 curve, with multiplicity 3, because mΓ = 3.
Hence the final accounting is

9 + 3× 1 = 12,

which is the desired result.

6.2.6. Impossibility of other contributions. Note our presentation has not been thor-
ough in ruling out other possibilities for stable logarithmic maps, possibly obstructed,
contributing to the total. For example, W includes curves where L3 falls into the
double point locus of X0, but a more detailed analysis of the tropical possibilities
rules out a possible log enhancement. We leave it to the reader to confirm that we
have found all possibilities.

pointdegensection
6.3. Degeneration of point conditions. We now consider a situation which is
common in applications of tropical geometry; this includes the work of Mikhalkin
on tropical curve counting [Mik05]. We fix a pair (Y,D) where Y is a variety over a
field k and D is a reduced Weil divisor such that the divisorial logarithmic structure
on Y is logarithmically smooth over the trivial point Spec k. We then consider the
trivial family

X = Y × A1 → A1 = B,
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where now X is given the divisorial logarithmic structure with respect to the divisor
(D ×B) ∪ (Y × {0}).

6.3.1. Evaluation maps and moduli. Fix a type β of stable logarithmic maps to X
over B, getting a moduli space M (X/B, β). We assume now that the curves of type
β have n marked points p1, . . . , pn with upi = 0 — and possibly some additional
marked points x1, . . . , xm with non-trivial contact order with D. Given a stable map
(C/W,x,p, f), a priori for each i we have an evaluation map evi : (W, p

∗
iMC)→ X

obtained by restricting f to the section pi. Noting that upi = 0, the map ev♭i :
(f ◦ pi)−1MX → MW ⊕ N factors through MW , and thus we have a factorization
evi : (W, p∗iMC) → W → X . In a slight abuse of notation we write evi for the
morphism W → X also, and thus obtain a morphism

ev : M (X/B, β)→ Xn := X ×B ×X ×B × · · · ×B X.

If we choose sections σ1, . . . , σn : B → X , we obtain a map

σ :=
n∏

i=1

σi : B → Xn.

This allows us to define the moduli space of curves passing through the given sections,

M (X/B, β, σ) := M (X/B, β)×Xn B,

where the two maps are ev and σ.14

Sec:VFC-points
6.3.2. Virtual fundamental class on M (X/B, β, σ). We note that the moduli space
M (X/B, β, σ) of curves passing through the given sections carries a virtual funda-
mental class. The perfect obstruction theory is defined by

Eq:point-conditionEq:point-condition (6.3.1) E• =
(
Rπ∗[f

∗ΘX/B →
n⊕

i=1

(f ∗ΘX/B)|pi(W )]
)∨
,

for the stable map (π : C → W,x,p, f). Here the map of sheaves above is just
restriction.

6.3.3. Choice of sections and ∆(X). We can now use the techniques of previous sec-
tions to produce a virtual decomposition of the fibre over b0 = 0 of M (X/B, β, σ)→
B. However, to be interesting, we should in general choose the sections to interact
with D in a very degenerate way over b0. In particular, restricting to b0 (which is
now the standard log point), we obtain maps

σi : b0 → Y †,

14Recall that all fibre products are in the category of fs log schemes.
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where Y † = Y × p† is the product with the standard logarithmic point. Note that

Σ(Y †) = Σ(X) = Σ(Y )× R≥0,

with Σ(X) → Σ(B) the projection to the second factor. So ∆(X) = Σ(Y ) and
Σ(σi) : Σ(B) → Σ(X) is a section of Σ(X) → Σ(B) and hence is determined by a
point Pi ∈ ∆(X), necessarily rationally defined.

6.3.4. Tropical fibered product. We wish to understand the fibre product M (X/B, β, σ) :=
M (X/B, β)×Xn B at a tropical level. We observe

tropicalproduct Proposition 6.3.5. Let X, Y and S be fs log schemes, with morphisms f1 : X → S,
f2 : Y → S. Let Z = X×S Y in the category of fs log schemes, p1, p2 the projections.
Suppose z̄ ∈ Z with x̄ = p1(z̄), ȳ = p2(z̄), and s̄ = f1(p1(z̄)) = f2(p2(z̄)). Then

Hom(MZ,z̄,N) = Hom(MX,x̄,N)×Hom(MS,s̄,N)
Hom(MY,ȳ,N)

and

Hom(MZ,z̄,R≥0) = Hom(MX,x̄,R≥0)×Hom(MS,s̄,R≥0)
Hom(MY,ȳ,R≥0).

Proof. The first statement follows immediately from the universal property of fibred
product applied to maps z̄† → Z, where z̄† denotes the geometric point z̄ with
standard logarithmic structure. The second statement then follows from the first. ♠

6.3.6. Tropical moduli space. We now see a simple interpretation for the tropical-
ization of W := M (X/B, β, σ). If w̄ ∈ W is a geometric point, let Q be the basic
monoid associated with w̄ as a stable logarithmic map to X . Then by Proposition
6.3.5, we have

Hom(MW,w̄,R≥0) = Hom(Q,R≥0)×∏
i Hom(Ppi ,R≥0) R≥0.

Here as usual Ppi = MX,f(pi). The maps defining the fibre product are as follows.
The map Hom(Q,R≥0)→

∏
iHom(Ppi,R≥0) can be interpreted as taking a tropical

curve Γ→ Σ(X) to the point of Hom(Ppi,R≥0) which is the image of the contracted
edge corresponding to the marked point pi. The map R≥0 →

∏
i Hom(Ppi,R≥0) is∏

i Σ(σi) and hence takes 1 to (P1, . . . , Pn).
This yields:

Proposition 6.3.7. Let m ∈ ∆(W ), and let ΓC = Σ(π)−1(m). Then Σ(f) : ΓC →
∆(X) is a tropical curve with the unbounded edges Epi being mapped to the points Pi.
Furthermore, as m varies within its cell of ∆(W ), we obtain the universal family of
tropical curves of the same combinatorial type mapping to ∆(X) and with the edges
Epi being mapped to Pi.
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6.3.8. Restatement of the decomposition formula. Denote

M (Y †/b0, β, σ) := M (X0/b0, β)×Xn B

and for A ⊢ A

Mτ,A(Y
†/b0, β, σ) := Mτ,A(X0/b0, β)×Xn B.

Theorem 1.1.2 now translates to the following:

Th:decomposition-points Theorem 6.3.9 (The logarithmic decomposition formula for point conditions). Suppose
Y is logarithmically smooth. Then

[M (Y †/b0, β, σ)]
virt =

∑

τ ∈Ω

mτ ·
∑

A⊢A

(iτ,A)∗[Mτ,A(Y
†/b0, β, σ)]

virt

Example 6.3.10. The above discussion allows a reformulation of the approach of
[NS06] to Mikhalkin’s formula for tropical counts of curves in toric varieties. Take
Y to be a toric variety with the toric logarithmic structure, and fix a homology class
β of curve and a genus g. By fixing an appropriate number n of points in Y , one
can assume that the moduli space of curves of genus g and class β passing through
these points has expected dimension 0. Then after choosing suitable degenerating
sections σ1, . . . , σn, one obtains points P1, . . . , Pn ∈ Σ(Y ), the fan for Y . Then the
question of understanding M (X/B, β, σ) is reduced to an analysis for each rigid
tropical curve in Σ(Y ) with the correct topology. In particular, the domain curve
should have genus g (taking into account the genera assigned to each vertex) and
should have Dρ · β unbounded edges parallel to a ray ρ ∈ Σ(Y ), where Dρ ⊆ Y is
the corresponding divisor. The argument of [NS06] essentially carries out an explicit
analysis of possible logarithmic curves associated with each such rigid curve.

6.4. An example in F2. We now consider a very specific case of the previous sub-
section. This example deliberately deviates slightly from the toric case mentioned
above and exhibits new phenomena.

6.4.1. A non-toric logarithmic structure on a Hirzebruch surface. Let Y be the Hirze-
bruch surface F2. Viewed as a toric surface, it has 4 toric divisors, which we write
as f0, f∞, C0 and C∞. Here f0, f∞ are the fibres of F2 → P1 over 0 and ∞, C0 is the
unique section with self-intersection −2, and C∞ is a section disjoint from C0, with
C∞ linearly equivalent to f0 + f∞ + C0.

We will give Y the (non-toric) divisorial logarithmic structure coming from the
divisor D = f0 + f∞ + C∞.



DECOMPOSITION OF DEGENERATE GROMOV-WITTEN INVARIANTS 55

6.4.2. The curves and their marked points. We will consider rational curves repre-
senting the class C∞ passing through 3 points y1, y2, y3. Of course there should be
precisely one such curve.

A general curve of class C∞ will intersect D in four points, so we will set this up
as a logarithmic Gromov-Witten problem by considering genus 0 stable logarithmic
maps

f : (C, p1, p2, p3, x1, x2, x3, x4)→ Y,

imposing the condition that f(pi) = yi, and f is constrained to be transversal to
f0, f∞, C∞ and C∞ at xi for i = 1, . . . , 4 respectively. This transversality determines
the vectors uxi

, while we take the contact data upi = 0.
Since the maps have the points x3 and x4 ordered, we expect the final count to

amount to 2 rather than 1.

6.4.3. Choice of degeneration. We will now see what happens when we degenerate
the point conditions as in §6.3, by taking X = Y × A1 and considering sections
σi : A1 → X , 1 ≤ i ≤ 3. We choose these sections to be general subject to the
condition that

σ1(0) ∈ f0, σ2(0) ∈ f∞, σ3(0) ∈ C0.

Since C0 ∩ C∞ = ∅, any curve in the linear system |C∞| which passes through this
special choice of 3 points must contain C0, and hence be the curve f0 + f∞ + C0.

6.4.4. The complex ∆(X) and the tropical sections. Note that ∆(X) is as depicted
in Figure 8, an abstract gluing of two quadrants, not linearly embedded in the plane.
The choice of sections σi determines points Pi ∈ Σ(X) as explained in §6.3. For
example, if, say, the section σ1 is transversal to f0 × A1, then P1 is the point at
distance 1 from the origin along the ray corresponding to f0. Since C0 is not part of
the divisor determining the logarithmic structure, P3 is in fact the origin.

6.4.5. The tropical curves. One then considers rigid decorated tropical curves passing
through these points.

• The curves must have 7 unbounded edges, Epi , Exj
.

• The map contracts Epi to Pi.
• Each Exj

is mapped to an unbounded ray going to infinity in the direction
indicating which of the three irreducible components of D the point xj is
mapped to.

6.4.6. Rigid tropical curves. It is then easy to see that to be rigid, the tropical curve
must have three vertices, v1, v2, v3, with the edge Epi attached to vi and vi necessarily
being mapped to Pi.

The location of the Exi
is less clear. One can show using the balancing condition

[GS13], Proposition 1.15, that Ex1 must be attached to v1 and Ex2 must be attached
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v1 v3 v2

P1 P3 P2

Ex3 Ex4

Figure 8. The polyhedral complex ∆(X) = Σ(Y ). DeltaF2

to v2. There remains, however, some choice about the location of Ex3 and Ex4 .
Indeed, they may be attached to the vertices v1, v2 or v3 in any manner. Figure 8
shows one such choice.

6.4.7. Decorated rigid tropical curves. We must however consider decorated rigid
tropical curves, and in particular we need to assign curve classes β(v) to each vertex
v. Let ni be the number of edges in {Ex3, Ex4} attached to the vertex vi. Since
Ex3 and Ex4 indicate which “virtual” components of the domain curve have marked
points mapping to C∞, it then becomes clear that the class associated to v1 and v2
must be n1f and n2f respectively, while the class associated to v3 must be C0+n3f ,
where n1 + n2 + n3 = 2.

6.4.8. The seeming contradiction. In fact, as we shall see shortly, there are logarith-
mic curves whose tropicalization yields any one of the curves with n1 = n2 = 1,
and there is no logarithmic curve over the standard logarithmic point whose tropi-
calization is the tropical curve with n3 = 2. Suprisingly at first glance, in fact the
only decorated rigid tropical curve which provides a non-trivial contribution to the
Gromov-Witten invariant is the one which can not be realised, with n3 = 2. We will
also see that the case n1 = 2 or n2 = 2 plays no role.

6.4.9. Curves with n1 = n2 = 1 contribute 0. To explain this seemingly contradictory
conclusion, first recall the standard fact that there is a flat family X → A1 such that
X 0
∼= F2 and X t

∼= P1×P1 for t 6= 0. Furthemore, the divisor f0∪f∞∪C∞ extends to a
normal crossings divisor on X with three irreducible components: {0}×P1, {∞}×P1,
and a curve of type (1, 1). This endows X with a divisorial logarithmic structure,
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logarithmically smooth over A1 with the trivial logarithmic structure. However, no
curve of class C0 or C0+f in X0 deforms to Xt for t 6= 0. Hence no curve representing
a point in the moduli space Mτ for τ one of the decorated rigid tropical curves with
n3 ≤ 1 deforms. The usual deformation invariance of Gromov-Witten invariants then
implies that the contribution to the Gromov-Witten invariant from such a τ is zero.

The fact that this contribution is 0 can also be deduced from our formalism of the
gluing formula using punctured maps in [ACGS16].

6.4.10. Expansion and description of moduli space. To explore the existence of the
relevant logarithmic curves, we again turn to §5. First let us construct a curve whose
decorated tropical curve has n1 = n2 = 1. The image of this curve in ∆(X) yields a
subdivision of ∆(X) which in turn yields a refinement of Σ(X), and hence a log étale

morphism X̃ → X . It is easy to see that this is just a weighted blow-up of f0 × {0}
and f∞ × {0} in X = Y × A1; the weights depend on the precise location of P1 and
P2, but if they are taken to have distance 1 from the origin, the subdivision will
correspond to an ordinary blow-up. The central fibre is now as depicted in Figure
9, with the proper transforms of the sections meeting the central fibre at the points
p1, p2, p3 as depicted.

The logarithmic curve then has three irreducible components, one mapping to
C0 and the other two mapping to the two exceptional divisors, each isomorphic to
P1 × P1. These latter two components each map isomorphically to a curve of class
(1, 1) on the exceptional divisor, and is constrained to pass through pi and the point
where C0 meets the exceptional divisor. There is in fact a pencil of such curves.
We remark that all 7 marked points are visible in Figure 9, but the curves in the
exceptional divisors meet the left-most and right-most curves transversally, and not
tangent as it appears in the picture. By Theorem 5.4.1, any such stable map then has
a log enhancement, and composing with the map X̃ → X gives a stable logarithmic
map over the standard log point whose tropicalization is one of the rigid curves with
n1 = n2 = 1.

One can show that the relevant moduli space in X̃0 has two components isomorphic
to P1×P1, depending on which sides x3 and x4 lie. The virtual fundamental class of
each component is in fact the top Chern class of the rank-2 trivial bundle, namely
0. This moduli space maps injectively to the moduli space of X0.

6.4.11. Curves with n1 = n2 = 0. Now consider the case that n1 = n2 = 0 and
n3 = 2. This rigid tropical curve cannot be realised as the tropicalization of a stable
logarithmic map over the standard log point. Indeed, to be realised, the curve must
have an irreducible component of class C0 + 2f = C∞, and we know there is no
such curve. However, this tropical curve can in fact be realised as a degeneration of
another tropical curve, as depicted in Figure 10.
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p3

C∞

f0 f∞

C0

p1
p2

Figure 9. F2curvebad

v1 v3 v2

P1 P3 P2

Ex3 Ex4

Figure 10. F2curvegood1

To construct an actual logarithmic curve, we use refinements again. Assume for
simplicity of the discussion that P1 and P2 have been taken to have distance 2 from
the origin. Subdivide ∆(X) by introducing vertical rays with endpoints P1 and P2,
and in addition introduce vertical rays which are the images Ex3 and Ex4 ; again for
simplicity of the discussion take the endpoint of these rays to be at distance 1 from
the origin.

This corresponds to a blow-up X̃ → X involving four exceptional components,
and Figure 11 shows the central fibre of X̃ → A1, along with the image of a stable
logarithmic map which tropicalizes appropriately. Composing this stable logarithmic
map with X̃ → X then gives a non-basic stable logarithmic map to X over the
standard log point. It is not hard to see that the corresponding basic monoid Q
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p3

C∞

f0 f∞

C0

p2p1

Figure 11. F2curvegood2

has rank 3, parameterizing the image of the curve in Σ(B) as well as the location of
the edges Ex3 and Ex4 . The degenerate tropical curve where the edges Ex3 and Ex4

are attached to the vertex v3 represents a one-dimensional face of Q∨, so the rigid
tropical curve with n3 = 2 does appear in the family Q∨, but only as a degeneration
of a tropical curve which is realisable by an actual stable logarithmic curve over the
standard log point.

One can again show that the relevant moduli space in X̃0 has two components
isomorphic to P1×P1. This time the virtual fundamental class of each component is
the top Chern class of O(1)⊞O(1), which has degree 1. In contrast the corresponding
moduli space Mni=0(X0) is discrete.

6.4.12. Curves with ni = 2. To complete the analysis, we end by noting that the case
n1 = 2 or n2 = 2 cannot occur. Consider the case n1 = 2. Any stable logarithmic
curve over the standard log point with a tropicalization which degenerates to such a
rigid tropical curve must have a decomposition into unions of irreducible components
corresponding to the vertices v1, v2 and v3, with the homology class of the image of
the stable map restricted to each of these unions of irreducible components being
2[f0], 0 and [C0] respectively. In particular, this will prevent the possibility of having
any irreducible component whose image contains σ2(0). Thus this case does not
occur.

6.4.13. Deformation invariance, toric maps, and fundamental cycles. Recall that
logarithmic Gromov–Witten invariants are deformation invariant, therefore the num-
ber 2 of logarithmic stable maps is calculated equally well when pi map to general
points as when they specialize. When the images of pi are in general position there
are precisely two maps - with identical curves but the points x3, x4 reordered, which
are necessarily unobstructed. The virtual fundamental class at b0 is represented by
the limiting cycle, which corresponds to two logarithmic stable maps on X . We claim
that this cycle consists of two logarithmic stable maps with n1 = n2 = 1. One is
bound to ask — how is this possible?
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First, let us argue that indeed this is the case. Here the toric picture is helpful
since it is unobstructed. Let Y t be the Hirzebruch surface with its toric logarithmic
structure coming from the divisor f0+f∞+C0+C∞, and let Y t → Y be the natural
logarithmic map where C0 is left out. The two general logarithmic stable maps
corresponding to pi generic are disjoint from C0, hence they lift to Y t. Using the
formalism of [NS06], one can choose the points P1, P2, P3 so that that the limiting
curves on Y t have precisely three components and compose to two maps having
n1 = n2 = 1 on Y .

Next, let us explain why this does not constitute a contradiction within mathe-
matics, and what we must learn from this example.

First, the moduli space M (Y †/b0, β, σ) has four relevant components, two cor-
responding to curves with n1 = n2 = 1 and two corresponding to curves with
n1 = n2 = 0. It has virtual fundamental class represented by the 0-cycle representing
the two limiting logarithmic stable maps, which happens to lie on the components
with n1 = n2 = 1. It is also the direct image of the class [Mτ,A(Y

†/b0, β, σ)]
virt on

the moduli space of curves Mτ,A(Y
†/b0, β, σ) mapping to the locus of logarithmic

stable maps with n1 = n2 = 1. But there is nothing here to guarantee that the
limiting cycle is the image of any cycle coming from Mτ,A(Y

†/b0, β, σ), and in fact
this is not the case here. (One can obtain the limiting cycle as the image with a
different choice of points constraints σ.) Figure 12 describes the situation.

Second, we point out that the virtual decomposition is not compatible with the
map Y t → Y from the toric logarithmic structure.
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