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Abstract. We make an observation which enables one to deduce the
existence of an algebraic stack of log maps for all Deligne–Faltings log
structures (in particular simple normal crossings divisor) from the sim-
plest case with characteristic generated by N (essentially the smooth
divisor case).
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1. Introduction

The idea of logarithmic stable maps was introduced in a legendary lecture
by Bernd Siebert in 2001. The program has been on hold for quite a while as
Mark Gross and Siebert were pursuing mirror symmetry; they have returned
to it only recently. The central object is a stack KΓ(Y ) parametrizing what
one calls logarithmic stable maps of log-smooth curves into a logarithmic
scheme Y with Γ indicating the relevant numerical data, such as genus,
marked points, curve class and other indicators related to the logarithmic
structure. One needs to show KΓ(Y ) is algebraic and proper. Gross and
Siebert approach this by means of probing a logarithmic scheme by the
standard log point Spec(N → C). Our understanding is that this method
works in great generality.1 ←1

In [6], the second author considers another combinatorial construction of
the stack KΓ(Y ) when the logarithmic structure Y on the underlying scheme
Y is associated to the choice of a line bundle with a section. The motivating
case is that of a pair (Y ,D), where D is a smooth divisor in the smooth
locus of the scheme Y underlying Y . This particular situation enables him
to approach the degeneration formula of [13, 7, 15] in terms of logarithmic
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structures. It should be pointed out that these logarithmic stable maps are
not identical to those of Kim [11], though they are closely related.

Our point is that based solely on this special case, one can give a “pure
thought” proof of algebricity and properness of the stack KΓ(Y ) whenever Y
is a so called generalized Deligne–Faltings logarithmic structure. By saying
Y is a generalized Deligne–Faltings log structure we mean that there is a
fine saturated sharp monoid P and a sheaf homomorphism P →MY which
locally lifts to a chart P → MY ; the slightly simpler Deligne–Faltings log
structure is the case where P = Nk. This in turn covers many of the cases of
interest, such as a variety with a simple normal crossings divisor, or a simple
normal crossings degeneration of a variety with a simple normal crossings
divisor. We generalize it a bit frther in Proposition 3.12. It does not cover
the case of a normal crossings divisor which is not simple, but we hope one
could cover this case using descent arguments.

The purpose of this note is to set up a general categorical framework
which enables us to make this construction. This general setup is of use not
only for KΓ(Y ). In particular we have applications, pursued elsewhere [1], to
constructing the target of evaluation maps of logarithmic Gromov–Witten
theory.

All logarithmic schemes in this note are assumed to be fine and satu-
rated logarithmic schemes - abbreviated fs log schemes - unless indicated
otherwise.

2. Logarithmic maps: a tale of two categories

2.1. Stable maps. Let Y be a projective scheme. The stack of stable maps
to Y is defined as follows: one fixes discrete data Γ = (g, n, β) where g, n are
non-negative integers standing for genus and number of marked points, and
β a curve class on Y . A pre-stable map to Y over a scheme S is a diagram

C //

��

Y

S

where C → S is a proper flat family of n-pointed prestable curves, and
C → Y a morphism. The prestable map is stable if on the fibers the groups
AutY (Cs) are finite. Morphisms of prestable curves are defined as cartesian
diagrams.

One easily sees that prestable maps form a category fibered in groupoids
over the category of schemes. It is an important theorem that it is in fact an
algebraic stack Kpre(Y ), and the substack KΓ(Y ) of stable maps of type Γ is
proper with projective coarse moduli space [12]. When Y is smooth, there
is a perfect obstruction theory, giving rise to a virtual fundamental class
[KΓ(Y )]virt underlying the usual algebraic treatment of Gromov–Witten the-
ory [16, 5].
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The main result of this note is an analogue of the following evident result:
assume Y = Y1 ×Y2 Y3. Then

Kpre(Y ) = Kpre(Y 1) ×
Kpre(Y 2)

Kpre(Y 3).

2.2. Logarithmic stable maps as a stack over LogSch. Let Y be a fs
logarithmic scheme with projective underlying scheme Y . One can repeat
the construction above, replacing prestable curves by log smooth curves [9],
and replacing all morphisms of schemes by morphisms of log schemes: a log
prestable map over S is a diagram of logarithmic schemes

C //

��

Y

S

where C → S is a log smooth curve and C → Y a morphism of log schemes.
We define such a map to be stable if the underlying prestable map is stable.
Arrows are defined using cartesian diagrams:

C ′ //

��

C //

��

Y

S′ // S

Again it is evidently a category fibered in groupoids, but this time over
the category LogSch of fs logarithmic schemes. It is proven in [6] when
the log structure Y is given by a line bundle with section, and in greater
generality in the upcoming work of Gross and Siebert, that this category
is an fs logarithmic algebraic stack: there is a logarithmic algebraic stack
KΓ(Y ) = (K,MK), where the log structure is fs, such that logarithmic
stable maps over S are equivalent to log morphisms S → KΓ(Y ). Denote
the universal log smooth curve by C→ KΓ(Y ).

It is natural to search for general criteria for algebricity of such logarithmic
moduli in analogy to Artin’s work [4]. We do not address this general
question here.

2.3. Logarithmic stable maps as a stack over Sch. The existence of
KΓ(Y ) has immediate strong implications on the structure of log stable
maps. Objects of the underlying stack KΓ(Y ) over a scheme S can be
understood as follows: an object is after all an arrow S → KΓ(Y ). It
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automatically gives rise to a cartesian diagram

Cmin //

��

C //

��

Y

Smin //

��

KΓ(Y )

��

S // KΓ(Y ).

in particular an object Smin → KΓ(Y ), but here the logarithmic structure
Smin is pulled back from KΓ(Y ). Moreover, every log stable map factors
uniquely through one of this type: Given a log stable map over S we have a
morphism S → KΓ(Y ) by definition, giving rise to an extended diagram

C //

��

Cmin //

��

C //

��

Y

S // Smin //

��

KΓ(Y )

��

S // KΓ(Y ).

and the top left square is cartesian by F. Kato’s theorem [9]. Following B.
Kim [11] we call a log map over S minimal (not to be confused with log min-
imal models of the minimal model program) if S → KΓ(Y ) is strict, namely
the log structure on S is the pullback of the log structure on KΓ(Y ). It fol-
lows tautologically that the underlying stack KΓ(Y ) precisely parametrizes
log maps with minimal log structure.

In fact this thought process is reversible: the construction of [6] in the
case of a Deligne–Faltings log structure of rank 1 goes by way of constructing
a proposed minimal log structure associated to any log map, and verifying
that log maps where the log structure is the proposed minimal one are in-
deed minimal (every object maps uniquely to a minimal one), and form an
algebraic stack over Sch carrying a logarithmic structure. Our understand-
ing is that Gross and Siebert use this avenue too.2 In short, the second

2→
categorical interpretation, of KΓ(Y ) as a stack over Sch, takes precedence
here.

One is tempted to try to mimic the same construction in general. This
is not the route taken here. In fact we use the universality of the category
KΓ(Y ) over LogSch for given Y to deduce its algebricity from cases of
simpler Y . It is worthwhile setting this up in general.

2(Dan) Check with G-S
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2.4. The general setup. Consider a commutative diagram

X

��

  AAAAAAA Y

��

~~~~~~~~~

B

��

X
f

//

��???????
Y

���������

B

where X → B is an integral morphism of fs log schemes with X → B flat
and proper, Y is an fs log scheme, and X → Y a morphism. We can define
a category Liftf fibered in groupoids over LogSch whose objects over S are

morphisms S → B of fs log schemes with a lifting fS : XS → YS of the
underlying morphism f

S
: XS → Y S . The arrows are again defined by

taking cartesian diagrams. We can ask the following question:

problem Problem 2.5. Is the category Liftf equivalent to an fs logarithmic algebraic

stack Liftf? Under what conditions is it proper?

Again this can be interpreted over Sch: objects of the underlying alge-
braic stack Lift

f
parametrize lifts over a minimal log structure. This point

of view will not be pursued here.
In fact if convenient we can remove the geometry of Y entirely from the

picture, mimicking the methods of Olsson [17]: consider Y = Y ×B B and
Z = X×Y Y . Then Z is a logarithmic scheme over X. The category Liftf is

evidently equivalent to the category SecX/B(Z/X) whose objects over a log
morphism S → B are sections XS → ZS of ZS → XS . Again the statement
that SecX/B(Z/X) is a log algebraic stack is equivalent to the statement
that there is a stack SecX/B(Z/X) parametrizing sections over minimal log
structures.

The main result is the following:

Th:Sec-limits Theorem 2.6. Let ∆ = (Zα, πi : Zαi → Zβi) be a finite diagram of fs log
schemes over X, with final object X. Assume

Z = lim
←

(∆)

in the category of fs log schemes. Then

SecX/B(Z/X) = lim
←

SecX/B(Zα/X)

namely it is the limit in the category of fs log schemes.

If the reader finds general categorical limits a bit off-putting, the main
cases needed for our applications are (1) fiber products, and (2) equalizers,
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where one imposes one equation on a log structure coming from two arrows
N ⇒ P on the level of characteristics.

The existence of such limits in the category of fs log schemes is proven
in [10]: the case of arbitrary log structures is treated in (1.6), coherent log
structures in (2.6), and fine log structures follow from (2.7); the case of fs
log structures follows from the analogous adjoint functor with P int replaced
by P sat.

Theorem 2.6 applies directly to the category Liftf and Problem 2.5.

We can use the theorem for log stable maps as follows: consider the
stack KΓ(Y ). Since the universal curve is prestable, it has a canonical log
smooth structure coming from Mg,n using F. Kato’s theorem. We put this
in the setup of SecX/B(Z/X) by setting B = KΓ(Y ) with the pull-back log
structure coming from Mg,n; X = the universal curve with its canonical
log structure; and Z = X ×(Y×BB) Y as before. Suppose the log structure
on the target Y is a Deligne–Faltings log structure associated to a fine and
saturated monoid P . Then P can be written as a colimit

P = lim
→

(Nk ⇒ Nm).

If we further break this into factors we can write Y = lim← Yi and Z =
lim← Zi, where the Yi have Deligne–Faltings log structure with characteristic
sheaf generated by the constant sheaf N. Theorem 2.6, in conjunction with
[6], implies:

Cor:stable-maps Corollary 2.7. Assume that the logarithmic structure Y is a Deligne–Faltings
log structure. Then the category KΓ(Y ) is a proper logarithmic algebraic
stack.

2.8. Proof of Theorem 2.6. An object of SecX/B(Z/X) over an arrow
S → B is by definition a section s : XS → Z, and composing with the
canonical maps we get si : XS → Zi such that for each arrow π : Zi → Zj
in ∆ we have πi ◦ sαi = sβj . This in particular gives us a diagram of
objects si ∈ SecX/B(Zi/X)(S) with πi(sαi) = sβi , namely an object of
lim← SecX/B(Zi/X). The correspondence on the level of arrows is similar
(though maybe more confusing).

The process is completely reversible, hence the equivalence.

3. Further results

3.1. Obstruction theory. TO BE REMOVED - INCLUDE IN SEPA-
RATE PAPER

Theorem 3.2. If Y is log smooth, the stack KΓ(Y ) has a virtual fundamen-
tal class.

The proof is identical to [11] - the log relative obstruction theory is perfect.
Since the relevant log stack has pure dimension, the virtual fundamental
class exists.
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3.3. The zero-dimensional case and evaluations. TO BE REWRIT-
TEN - MATERIAL IN ANOTHER PAPER

Other cases of Problem 2.5 are of interest. An especially important case
is when X → B is a log marked point: the characteristic of X is obtained as
MX =MB × N. Up to a C∗ action, the evaluation maps of KΓ(Y ) land in
SecX/B(Z/X) where Z is the restriction of C ×Y Y to the relevant marking
X ⊂ C. A related case is when X → B is a log node: the characteristic of
X is obtained as MX =MB[a, b]/(a+ b = e) where e ∈MB.

A proof of the following result will be given elsewhere:

Proposition 3.4. Let X → B be either a log marked point or a log node,
and let Z → X be a morphism with Z an fs log scheme. Then SecX/B(Z/X)
is a log algebraic stack, locally of finite type over S.

In general this stack is not of finite type - in particular contact orders are
encoded here.

A natural way to prove this proposition is by first proving it for X a
Deligne–Faltings structure with monoid N → MX , use Theorem 2.6 to
deduce the case of arbitrary Deligne–Faltings structure, and then apply
étale descent to obtain the case of an arbitrary fs structure.

3.5. Review of the result of [6]. TO BE REWRITTEN WHEN [6] IS
CIRCULATED.

We quote the following:

Theorem 3.6. [6] Let Y carry a log structure associated to a line bun-
dle with section (L, s) on Y . Then KΓ(Y ) is a proper algebraic stack with
projective coarse moduli space.

We give some ideas about its proof.

3.6.1. The graph. Fix a log map f : C → Y and a point ξ ∈ S. We create a
marked graph G, formed out of the dual graph with some extra data coming
from f :

(1) a partition of the vertices of G in two types V (G) = V0(G) t V1(G).
(2) Integer weights cl ≥ 0, l ∈ E(G) on the edges.
(3) Orientation of edges with nonzero weight.

The vertices V0(G) are precisely those components of C where the section s
does not vanish identically. The weights and orientation come by considering
the image of the generator of N in the putative characteristic monoid at a
node: it is of the form e+cl log x or e+cl log y, and the orientation determines
whether log x or log y occurs.

3.6.2. The monoid. We associated a monoidM(G) to the marked graph: it
is the saturation of the monoid with vertex generators ev, v ∈ V (G), edge
generators el, l ∈ E(G), modulo vertex equations ev = 0, v ∈ V0(G) and
edge equations ev′ = ev + clel for every edge l with extremities v, v′.
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3.6.3. Minimality. There is always a unique mapM(Gξ)→MS,ξ for every
point ξ. This follows by looking at the behavior of monoids near nodes. So
we define the log structure to be minimal if this map is an isomorphism.

3.6.4. The stack. We define KΓ(Y ) as the stack of log maps which are min-
imal.

3.6.5. Openness. Minimality is an open condition by considering how graphs
and marked graphs contract in small deformations.

3.6.6. Algebricity. It follows from Olsson’s log stacks [17] that there is a
deformation and obstruction theory. So KΓ(Y ) is an Artin stack locally of
finite presentation.

3.6.7. Separation. The stack KΓ(Y ) is separated essentially by uniqueness
of the minimal structure (there is a bit more to say but that’s not hard).

3.6.8. Properness. One can prove properness directly, as is done in [6]. For
the weak of heart there is another way: it follows directly if we compare it
with Kim’s version of Jun Li’s space.

Proposition 3.7. Let Klog
Γ (Y ,D) be the space of relative log maps according

to Kim (with expansions). Then there is a surjection Klog
Γ (Y ,D)→ KΓ(Y ).

The idea is as follows: we can define an aligned graph G to be a marked
graph G along with a strictly orientation preserving surjection V (G) → I
with I a totally ordered set, such that V0(G) maps to the minimal element of
I. We can associate a monoid to an aligned graph, and define a similar stack

of aligned log maps Kaligned
Γ (Y ). There is an obvious surjective forgetful map

Kaligned
Γ (Y )→ KΓ(Y ). The result follows from

Lemma 3.8. The stack Kaligned
Γ (Y ) is isomorphic to Klog

Γ (Y ,D).

3.9. Explicit description of minimal log structures for stable maps.
The main result of [6] gives more than just 2.7 for the case P = N: we have an
explicit combinatorial description of the minimal log structure associated to
a given log map, in terms of weighted oriented graphs. A similar description
is possible in general. We present here one of the main cases of interest,
namely the case P = Nk.

3.9.1. The graph. Fix a log map f : C → Y and a point ξ ∈ S. We create
a k-marked graph G, formed out of the dual graph with the following extra
data coming from f :

(1) k partitions of the vertices of G in two types V (G) = V
(i)

0 (G) t
V

(i)
1 (G), where i = 1, . . . , k.

(2) k integer weights c
(i)
l ≥ 0, i = 1, . . . , k on the edges l ∈ E(G).

(3) k orientations of edges: whenever an edge l has extremities v, v′ and

c
(i)
l > 0, we choose an orientation v >i v

′ or v′ >i v of the edge l.
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The weights and orientation come by considering the image of the generator
of Nk in the putative characteristic monoid at a node.

3.9.2. The monoid. We associated a monoidM(G) to the k-marked graph:

it is the saturation of the monoid with vertex generators e
(i)
v , v ∈ V (G), edge

generators el, l ∈ E(G), modulo vertex equations e
(i)
v = 0, v ∈ V (i)

0 (G) and

edge equations e
(i)
v′ = e

(i)
v + c

(i)
l el for every edge l with extremities v ≤i v′. 3

←3

Proposition 3.10. There is a canonical morphism M(G) → MS. A log
structure is minimal if and only if this morphism is an isomorphism.

3.11. A generalization. We can weaken the assumption that Y be a Deligne–
Faltings structure in corollary 2.7 as follows.

Prop:moreDF Proposition 3.12. Assume that Y is projective, Y is fine and saturated
and there is a surjective homomorphism of sheaves of monoids NkY →MY .
Then the category KΓ(Y ) is a proper logarithmic algebraic stack. Moreover,
let Y ′ be the Deligne–Faltings log structure associated to NkY through local

charts MY →MY . Then the morphism φ : KΓ(Y )→ KΓ(Y ′) associated to
Y → Y ′ is a closed embedding of fs logarithmic stacks, and the map of log
structures φ∗MKΓ(Y ′) →MKΓ(Y ) is surjective.

Proof. By Corollary 2.7 we have that KΓ(Y ′) is a proper logarithmic al-
gebraic stack. It therefore suffices to prove the second statement in the
proposition.

We construct KΓ(Y ) locally over KΓ(Y ′). We may assume we have a
scheme of finite type B′, a log stable map (C ′/B′, C ′ → Y ′). We claim that
B := B′ ×KΓ(Y ′) KΓ(Y ) → B′ is a closed immersion, and the log structure
of B′ surjects to that of B.

We take Z = Y ×′C C → C ′. Then Z is a closed subset of C ′, so there is
a universal closed subset of B′ where Z = C ′. We replace B by this closed
subset, with the pullback log structure.

Since the problem is local we may assume that there are sections σi :
B′ → C ′ landing in the generic locus, and meeting every component of
every fiber. We denote B′i = B ×C′ Z, where the product is taken via σi.
Then B → B′ factors through B′i, and evidently the log structure of B′

surjects to that of B′i. Replacing B′ by B′i one at a time and repeating
the previous step, we may assume Z → C ′ → B′ has the property that
Z → C ′ is an isomorphism along the generic locus of each fiber. It follows
that Z → C ′ is an isomorphism, and then B = B′. ♠
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