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1. Introduction

1.1. Reduction of coverings of degree divisible by p. Let R be
a discrete valuation ring of mixed characteristics, with spectrum S =
SpecR. Denote the generic point η with fraction field K, and the
special point s with residue field k of characteristic p > 0. Consider
a generically smooth, stable pointed curve Y → S with an action of a
finite group G of order divisible by p. Denote X = Y/G. We assume
that G acts freely on the complement of the marked points in Yη - it
then follows that G respects the branches of all nodes of Ys.

In situations where the order of G is prime to the residue charac-
teristic, the reduced covering Ys → Xs is an admissible G-covering,
and a nice complete moduli space of admissible G-coverings exists.
An extensive literature exists describing that situation, see e.g. [H-M,
Mo, Ek, W, ℵ-C-V]. However, in our case where the residue charac-
teristic divides the order of G, interesting phenomena occur (see e.g.
[ℵ-Oo]). The situation was studied by a number of people; we will con-
cern ourselves with results of Raynaud [Ra] and, in a less direct way,
Henrio [He] and more recently Maugeais [Ma]. Related work of Saidi
[Sa1, Sa2, Sa3], Wewers and Bouw [W1, W2, W3, Bo, B-W1, B-W2],
Romagny [Ro] and others provides additional inspiration. In [ℵ-O-V2,
Section 5] the curve Y is replaced by something which could be much
more singular, and therefore the results are somewhat orthogoal to the
situation here.

Thus, in our case where p
∣∣ |G|, the covering Y → X is no longer

generically étale on each fiber. It is natural to consider some sort of
group-scheme degeneration G → X of G, in such a way that Y might
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be considered something like an admissible G-covering. In our main
theorem we show this is the case under appropriate assumptions:

Main Theorem (=Theorem 3.2.2). Assume p2 - |G| and the p-Sylow
subgroup of G is normal.

There exist

(1) a twisted curve X → X,
(2) a finite flat group scheme G → X ,
(3) a homomorphism GX → G which is an isomorphism on XK,
(4) a lifting Y → X of Y → X, and
(5) an action of G on Y through which the action of G factors,

such that Y → X is a principal G-bundle.

The formation of G commutes with any flat and quasi-finite base
change R ⊂ R′.

It is important to note that, unlike the characteristic 0 case, X is
not a stable pointed curve in general.

1.2. Background. Raynaud ([Ra], Proposition 1.2.1) considered such
a degeneration locally at the generic points of the irreducible com-
ponents of Xs, in the special case where |G| = p; our first goal, see
Theorem 3.1.1 below, is to work out its extension to the smooth locus
of X, and slightly more general groups, where as above p2 - |G| and
the p-Sylow subgroup of G is normal. The case where p2

∣∣ |G| remains
a question which I find very interesting. See example 2.1.7 and the
appendix by J. Lubin for a negative result in general, the discussion
of question 2.1.5 for positive results in the literature, and remark 2.1.8
for a positive result for small ramification.

One still needs to understand the structure of Y → X at the nodes of
Xs and Ys. Henrio, working p-adic analytically, derived algebraic data
along Xs, involving numerical combinatorial invariants and differential
forms, which in some sense classify Ys → Xs. Our second goal in this
note is to present a different approach to such degenerations at a node,
modeled on twisted curves, i.e. curves with algebraic stack structures.
Borrowing a metaphor from A. Ogus, these twisted curves have served
well in the past as a sort of “magic powder” one sprinkles over the
“bad locus” of certain structures, which brings about a hidden good
property. The point here is that, just as in [ℵ-C-V], the introduction of
twisted curves allows to replace Y → X by something that is actually
a principal bundle. Unlike the case of residue characteristics prime
to |G|, the twisted curves will in general be Artin stacks rather than
Deligne–Mumford stacks. See [Ol], [ℵ-O-V2].
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1.3. Towards a proper moduli space. The main theorem should be
thought of as a first step in constructing a nice proper moduli space of
degenerate coverings in mixed characteristics - it gives a special case of
the valuative criterion for properness. In joint work with M. Romagny
we plan to complete this task. Foundations have only recently been
developed in [ℵ-O-V, ℵ-O-V2].

1.4. Brief introduction to twisted curves. A twisted pointed curve
over a base scheme S is a diagram as follows:

ΣCi
� � //

��

C

��
ΣC
i

� � // C

��
S.

Here we follow [ℵ-O-V2, Section 2]:

• C → S is a usual n-pointed nodal curve, with sections ΣC
i , i =

1, . . . n;
• C is an algebraic stack with finite diagonal having C as its coarse

moduli space;
• ΣCi ⊂ C are its markings, each of which a gerbe banded by some

µri
over ΣC

i ' S;
• C → C is an isomorphism away from nodes and markings of C;
• at a marking of C, where the strict henselization Csh is de-

scribed by (SpecS OS[x])sh and ΣC
i is the vanishing locus of x,

the twisted curve C is described as[
(SpecS OS[u])sh /µri

]
,

where µri
acts on u via the standard character and uri = x,

and ΣCi is the quotient of the vanishing locus of u;
• at a node of C, where the strict henselization Csh is described

by (SpecS OS[x, y]/ (xy − f))sh with f ∈ (OS)sh, the twisted
curve C is described as[

( SpecS OS [u, v] / (uv − g) )sh /µr

]
for some r, where µr acts via

(u, v) 7→ (ζru, ζ
−1
r v),

and ur = x, vr = y and gr = f .
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Of course the description on the level of strict henselization descends to
some étale neighborhoods. In case p divides ri or r, the twisted curve
C is not a Deligne–Mumford stack, and it is a little bit of a miracle,
following from [ℵ-O-V2, Proposition 2.3], that one can use such a nice
description locally in the étale topology (or on strict henselizations)
rather than the f.p.p.f. topology. The reader is warned that transition
isomorphisms between the étale local charts are in general not given in
étale neighborhoods but rather in smooth or f.p.p.f. charts.

Near a marking ΣC
i , the twisted curve is determined, uniquely up to

a unique isomorphism, by the choice of ri. In fact locally in the Zariski
topology of C we can write C = ri

√
(C,ΣC

i ), see [ℵ-G-V] for notation
and proof. Near a node, C is still uniquely determined by r, but not
up to a unique isomorphism - in fact AutCC has a factor µr for each
such twisted node of index r, see [ℵ-C-V].

1.5. Acknowledgements. Thanks to Angelo Vistoli for help, and to
F. Andreatta, A. Corti, A.J. de Jong, M. Rosen and N. Shepherd-
Barron for patient ears and useful comments. I also heartily thank J.
Lubin, who pointed me in the direction of Example 2.1.7, and in par-
ticular saved me from desperate efforts to prove results when p2| |G|. I
am indebted to M. Romagny, whose beautiful computation of a key ex-
ample in residue characteristic 2 clarified the situation at hand and led
to a big improvement in the results obtained. Thanks to the referee for
a careful reading, helpful suggestions, and for pointing out important
developments in recent papers.

2. Extensions of group schemes and their actions in
dimension 1 and 2

2.1. Raynaud’s group scheme. Raynaud (see [Ra], Proposition 1.2.1,
see also Romagny, [Ro]) considers the following construction: let U be
integral and let V/U be a finite flat G-invariant morphism of schemes,
with G finite. Assume that the action of G on the generic fiber of V/U
is faithful. We can view this as an action of the constant group scheme
GU on V , and we consider the schematic image G of the associated
homomorphism of group schemes

GU → AutUV.

Since, by definition, the image GU → U is finite, we have that G → U is
finite as well. The scheme G → U can also be recovered as the closure
of the image of the generic fiber of GU , which is, by the faithfulness
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assumption, a subscheme of AutUV . By definition G acts faithfully on
V .

Definition 2.1.1. We call the scheme G the effective model of G acting
on V/U .

Note that a-priori we do not know that G is a group-scheme. It is
however automatically a flat group scheme if U is the spectrum of a
Dedekind domain. This follows because, in that case, the image of
G ×U G → AutUV is also flat, and therefore must coincide with G.

Also note that, if s is a closed point of U whose residue characteristic
is prime to the order of G, then the fiber of G over s is simply G. So
this effective model is only of interest when the residue characteristic
divides |G|.

The following is a result of Raynaud, see [Ra], Proposition 1.2.1. The
statement here is slightly extended as Raynaud assumes |G| = p:

Proposition 2.1.2. Let U be the spectrum of a discrete valuation ring,
with special point s of residue characteristic p and generic point η.
Let V → U be a finite and flat morphism, and assume that the fiber
Vs of V over s is reduced (but not assuming geometrically reduced).
Assume given a finite group G, with normal p-Sylow subgroup, such
that p2 - |G|, and an action of G on V such that V → U is G-invariant,
and such that the generic fiber Vη → {η} is a principal homogeneous
space. Let G → U be the effective model of G acting on V/U .

Then V/U is a principal bundle under the action of G → U .

Remark 2.1.3. An analogous construction in a wider array of cases is
given in Romagny’s [Ro1, Theorem A]. Romagny does not aim to con-
struct a principal bundle; on the other hand he shows that an effective
model for an action exists even if V/U and G/U are not finite, under
very mild hypotheses.

Proof. As in Raynaud’s argument, it suffices to show that the sta-
bilizer of the diagonal of Vs ×U Vs inside the group scheme Vs ×U G is
trivial. Since G acts transitively on the closed points ti of Vs sending
the stabilizer on ti to that over tj, it is enough to show that one of these
stabilizers, say over t ∈ Vs, is trivial. But this stabilizer P is a group
scheme over the residue field k(t) with degree degP | p, and if nontriv-
ial it is of degree exactly p. In such a case it must coincide with the
pullback of the unique p-Sylow group-subscheme of G, therefore that
p-sylow acts trivially, contradicting the fact that G acts effectively. ♣
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Remark 2.1.4. In case the inertia group is not normal, Raynaud
passes to an auxiliary cover, which encodes much of the behavior of
V → U .

Question 2.1.5. What can one say on the action of G on V in case
the order of G (and the degree of V → U) is divisible by p2, but the
inertia group is still normal? Specifically, what happens if |G| = p2?

In the latter case, consider a subgroup P ⊂ G of order p. It can be
argued as in Raynaud’s proof, that the effective model P → U of P
acts freely on V , and thus V → V/P is a principal P-bundle. Similarly,
if Q is the effective model of G/P acting on V/P , then V/P → U is
a principal Q-bundle. At the same time, we have an action of the
effective model G of G on V/P , but it is not necessarily the case that
G/P → Q is an isomorphism.

While the statement of Question 2.1.5 is somewhat vague, two defi-
nite answers can already be given. First, if one concentrates on effective
models of the action in the sense of Romagny, a great deal can be said.
The recent work of Tossici [To1, To2] concentrates on the case where
GK = Z/p2Z and OU contains a primitive root of unity of order p2.
The paper [To1] describes explicitly the possible models G of GK ; in
[To2] an explicit description of the effective model of GK acting on V is
provided. I think it would be of interest to see if results like Theorems
3.1.1 and 3.2.2 can be obtained for more general effective models such
as these.

Second, in general no model of G will act freely on V . This is the
case even for some of the prettiest actions one can consider. This
makes giving a complete answer to the previous Question 2.1.5 tricky,
and underscores the importance of work such as Tossici’s.

As probably the simplest example, consider an action of G0 = (αp)
2 =

Spec k[a, b]/(ap, bp) on k(t). Examples of liftings of a non-free action of
the type

t 7→ t + a + f(t) b

for any residue characteristic have been written down by Romagny
(personal communication) and Saidi (see [Sa4]). The case of

(1) t 7→ t + a + tp b

is particularly appealing, as it involves torsion and endomorphisms of
a formal group. I therefore ask

Question 2.1.6. Can one lift the action (1) to characteristic 0?
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A formal positive answer in arbitrary residue characteristics is given
by Jonathan Lubin in the appendix. Here I discuss explicitly the case
of residue characteristic 2, where this action can be obtained as a re-
duction of an action of (Z/2Z)2 on a smooth curve. I concentrate on
the local picture (making it global is not difficult):

Example 2.1.7. Let R = Z2[
√

2]. Consider the group-scheme Y/R
defined by

t ∗ t′ = t + t′ +
√

2 t t′

This is an additive reduction of the multiplicative group. The reduction
of the subgroup µ2 is given as

Spec R[a]
/(

a (a+
√

2)
)
,

reducing to α2. It acts on Y by translation via the addition law as
above:

t 7→ t + a +
√

2 a t.

The reduction of the action of Z/2Z by inversion is the same group
scheme, again reducing to α2, which we write as

Spec R[b]
/(

b (b+
√

2)
)
.

This time the action is given by

t 7→
(

1 +
√

2 b
)
t − b t2

1 +
√

2 t
.

Since 2-torsion is fixed by inversion, these actions commute. Explic-
itly, the action of the product is given by

t 7→ a +
(

1 +
√

2 b
)
t − b t2

1 +
√

2 t

+
√

2 a

((
1 +

√
2 b
)
t − b t2

1 +
√

2 t

)
.

The reduction modulo
√

2 is given by

t 7→ t + a + t2 b,

as required.

Remark 2.1.8. Raynaud’s arguments do work when p2
∣∣ |G| if the p-

Sylow group-scheme of G has only étale and cyclotomic Jordan–Hölder
factors. This is because, in that case, there are no nonconstant group
subschemes in the reduction. In particular this works whenever the
absolute ramification index over Zp is < p.
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2.2. Extension from codimension 1 to codimension 2. Consider
now the case where U a Gorenstein noetherian scheme, dimU = 2, and
V/U finite flat and G-invariant as above. Consider the S2-saturation
G ′ → G of the effective model G of the G action on V/U . In Section
6.1.2 of [Va] Vasconcelos considers such saturation (S2-ification in his
terminology). His Proposition 6.21 on page 318 applies in our situation,
and gives the existence and a characterization of the S2-saturation. We
have

Lemma 2.2.1. If G ′ → U is flat then G ′ is a group-scheme acting on
V .

Proof. We claim that the rational map G ′ ×U G ′ 99K G ′ induced
by multiplication in AutUV is everywhere defined. Indeed the graph
of this map is finite over G ′ ×U G ′ and isomorphic to it over the locus
where G ′ → G is an isomorphism, whose complement has codimension
≥ 2. Now G ′ is S2 and of dimension 2, hence Cohen–Macaulay. Pulling
back to G ′ the flat Cohen–Macaulay G ′ → U we get that G ′ ×U G ′
is Cohen–Macaulay, in particular S2. This implies that the graph of
G ′ ×U G ′ 99K G ′ is isomorphic to G ′ ×U G ′, and therefore the map is
regular. The same works for the map defined by the inverse in AutUV .
This makes G ′ a group-scheme, and the map G ′ → AutUV into a group-
homomorphism. ♣

This applies, in particular, when U is regular:

Lemma 2.2.2. If U is regular, the S2-saturation G ′ of the effective
model G is a finite flat group scheme acting on V .

Proof. Again G ′, being 2-dimensional and S2, is Cohen-Macaulay,
and being finite over the nonsingular scheme U , it is finite and flat over
U (indeed its structure sheaf, being saturated, is locally free over the
nonsingular 2-dimensional scheme U). The result follows from Lemma
2.2.1. ♣

When the action on the generic fiber is free, we have more:

Proposition 2.2.3. Let U be a Cohen-Macaulay integral scheme with
dimU = 2. Let V → U be a G invariant, finite, flat and Cohen–
Macaulay morphism, and assume the action of G on the generic fiber
is free. Let G → U be the effective model of the action. Assume that
for every codimension-1 point ξ, the action of the fiber Gξ on Vξ is free.

Then

(1) G → U is a flat group-scheme, and
(2) The action of G on V is free.
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Note that, by Raynaud’s result 2.1.2, the assumptions hold when
U = V/G is local of mixed characteristics (0, p), the fibers Vξ are
reduced, the p-Sylow of G is normal and p2 - |G|.

Proof. Consider the S2-saturation G ′ of G. Since V → U is flat
and Cohen-Macaulay, the same is true for V ×U V → V and for G ′ ×U
V → G ′. Since G ′ and V are Cohen-Macaulay, we have that V ×U V
and G ′ ×U V are Cohen-Macaulay, hence S2, as well. The morphism
G ′ ×U V → V ×U V induced by the action G ′ → AutUV is finite
birational and restricts to an isomorphism in condimension 1. By the S2
property it is an isomorphism. In particular we have that G ′×U V → V
is flat, and since V → U is faithfully flat we have that G ′ → U is flat.
By Lemma 2.2.1 we have that G ′ → U is a finite flat group scheme
acting on V , and the isomorphism G ′ ×U V → V ×U V shows that the
action is free, in particular G ′ → G is an isomorphism. ♣

3. Curves

3.1. The smooth locus. The main case of interest for us is the fol-
lowing:

Let R be a complete discrete valuation ring of mixed characteristic,
with fraction field K of characteristic 0, residue field k of characteristic
p > 0, and spectrum S. Assume Y → S is a stable pointed curve with
smooth generic fiber, G a finite group acting on Y over S, and denote

X = Y/G.

We assume that the closure of the locus of fixed points of G in YK forms
a disjoint union of marked sections of the smooth locus Ysm. Hence for
every node y ∈ Y , the stabilizer in G of y keeps the branches of Y at y
invariant. We denote the complement of the closure in Ysm of the fixed
locus of the generic fiber by Ygen, and the image in X by Xgen - the so
called general locus.

Note that the morphism Ysm → Xsm is flat.

The propositions above give:

Theorem 3.1.1. Assume p2 - |G| and the p-Sylow subgroup of G is
normal.

There exist

(1) a finite flat group scheme Gsm → Xsm,
(2) a homomorphism GXsm → Gsm which is an isomorphism over

XK, and
(3) an action of Gsm on Ysm through which the action of G factors,
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such that Ygen → Xgen is a principal Gsm-bundle.

The formation of Gsm commutes with any flat and quasi-finite base
change R ⊂ R′.

Proof. Let Gsm → Xsm be the S2-saturation of the effective model
of the action of G on Ysm. As Xsm is smooth we can apply Lemma
2.2.2, therefore Gsm → Xsm is a finite flat group scheme acting on Ysm,
giving (1) and (3). Part(2) applies since over K the group G does not
degenerate.

The assumptions on G mean we can apply Proposition 2.1.2, so the
action of Gsm|Xgen on Ygen is free in codimension 1. We can therefore
apply Proposition 2.2.3, and obtain that Ygen → Xgen is a principal
bundle.

The formation of Gsm clearly commutes with base change when re-
stricted to the locus where it acts freely, and also over XK . As it is
flat and S2, its formation also commutes with base change across the
remaining codimension 2 locus. ♣

It would be really interesting to see what happens for other groups
G.

3.2. The structure of Y and G over nodes and markings of
X. What can be done about the singular points and markings of X
and Y ? It is easy to see that even in the case of characteristic 0, the
cover Y → X is not a principal bundle in general; it is already not
a principal bundle at the fixed points of YK , and rarely a principal
bundle at the nodes. However, the behavior of Y → X at the nodes is
very interesting. My suggested approach here is to follow the method
of [ℵ-V1, ℵ-V2, ℵ-C-V, Ol, ℵ-O-V2] using twisted curves. Let us first
consider the cover Y → X itself and investigate its structure from this
point of view.

Consider first a node P ∈ X where étale locally Xsh is described
by the equation xy = πm, with π a uniformizer in S. Similarly take a
node Q ∈ Y over P with local equation st = πn. Say the local degree
of Y → X at Q is d, so without loss of generality we can write x = sdµ
and y = tdν, where µ and ν are units on Y sh. Comparing the Cartier
divisors of x, y, s, t and π on Y sh we get that m = dn, and µν = 1. Note
that, since G acts transitively on the points of Y lying over P ∈ X,
the degree d is independent of the choice of Q, and we may denote it
dP , to indicate its dependence on P .
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Consider now the twisted curve X having index dP at each node P .
Recall from above that it has local description[

( SpecS OS [u, v] / (uv − πn) )sh /µd

]
.

Write Z = (SpecS OS [u, v] / (uv − πn))sh. We stress again that up to
a non-unique isomorphism X does not depend on the choice of local
coordinates.

Lemma 3.2.1. There is a lifting, unique up to a unique isomorphism,
of Y → X to a finite flat Cohen-Macaulay morphism Y → X .

Proof. Recall that the coordinate s on Y sh is related to x via x = sdµ
with µ a unit. Consider the µd-cover P → Y sh given by

P = SpecOY sh [w]/(wd − µ),

using the same unit µ, where µd acts via w 7→ ζdw. Define a morphism
P → Z via u = sw and v = t/w. This morphism is clearly equivariant,
giving a morphism Y sh → [Z/µp] = X sh. Since (sw)p = x = up and
(t/w)p = y = vp this lifts the given map Y → X. It is a tedious but
straightforward exercise to show that the morphism on strict henseliza-
tion descends to give the required morphism Y → X . The uniqueness
statement follows from the fact that X is a separated stack. To check
that Y → X is flat it suffices to show P → Z flat. This follows from
the local criterion for flatness: the fiber over u = v = 0 is given by
s = t = 0, wd = c where c is the constant coefficient of µ at s = t = 0.
This is a scheme of degree precisely d as required. Since Y and X
(or, for that matter, P and Z) are Cohen-Macaulay, the morphism is
Cohen-Macaulay. ♣

We now have our main theorem:

Theorem 3.2.2. Assume p2 - |G| and the p-Sylow subgroup of G is
normal.

There exist

(1) a twisted curve X → X,
(2) a finite flat group scheme G → X ,
(3) a homomorphism GX → G which is an isomorphism on XK,
(4) a lifting Y → X of Y → X, and
(5) an action of G on Y through which the action of G factors,

such that Y → X is a principal G-bundle.

The formation of G commutes with any flat and quasi-finite base
change R ⊂ R′.
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Proof. There are two issues we need to resolve here: the construc-
tion of G at the nodes, and the construction of X and G at the markings.

First we need to extend G over nodes. We have that Y → X is
flat and Cohen-Macaulay at the nodes; by Theorem 3.1.1 we have that
Ygen → Xgen is a principal bundle under Ggen. By Proposition 2.2.3 the
effective model G → X of the action of GX on the X -scheme Y is a
finite flat group scheme over X , and away from the markings Y is a
principal bundle.

Next, we deal with the markings: the local picture of YK → XK at a
marking is Y sh = (SpecR[s])sh and Xsh = (SpecR[x])sh where x = sd,
and the stabilizer in G of s = 0 on Y is identified with µd, acting
via s 7→ ζs. We give X the unique structure of a twisted curve with
index d along this marking; locally around the marking s = 0 we have
X sh = [(SpecOS[u])sh/µd]. The discussion above shows that YK → XK
is a principal G-bundle. Applying Proposition 2.2.3 again we obtain
that G is a group scheme and Y is a principal bundle. ♣

So, in view of the characteristic 0 discussion in [ℵ-C-V], we might
call Y → X̃ a twisted G-bundle.

This suggests an approach to lifting covers from characteristic p to
characteristic 0, by breaking it in two stages: (1) lifting group-schemes
over X , and (2) lifting the covers. Recent work of Wewers [W3] seems
to support such an approach.
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Appendix A. Lifting a non-free action on a formal group

by Jonathan Lubin1

The Question. In characteristic p > 0, consider the substitution t 7→
a + t + btp , where ap = bp = 0. This clearly defines a groupscheme of
rank p2, isomorphic to αp × αp, and an action of the groupscheme on
a curve, in this case the affine line. Question 2.1.6 asked whether this
group-scheme and this action can be lifted to characteristic zero, over
a suitably ramified extension of Zp.

The Answer. It’s a partial yes, in that the example presented here
shows an action not on the affine line but on the formal version of this,
the formal spectrum of O[[t]], where O is the ring of integers in a well-
chosen ramified extension of Qp. But if the question is whether there
is any example of an action of αp × αp on a genuine algebraic curve in
characteristic zero, then I must plead ignorance.

In general, if R is a ring and f and g are power series in one variable
over R, then it makes no sense to compose the series, f ◦g, unless g has
zero constant term. Yet, there are situations where R has a suitable
complete topology, when f ◦g can make sense even when g(0) 6= 0. Let
us detail one fairly general such situation:

If (o,m) is a complete local ring, then on the category of complete
local o-algebras (R,M) we define a group functor denoted B or Bo,
such that B(R) is the set of power series

f(t) =
∑
j≥0

cjt
j ∈ R[[t]]

for which c0 ∈ M and c1 6∈ M . Our desire is that Bo(R) should be a
group under composition of power series, and indeed the condition on
c0 guarantees that composition will be well-defined, while the condition
on c1 guarantees that the series will have an inverse in B(R). One sees
now that if κ is the characteristic-p field of definition in Question 2.1.6,
and if R is the local κ-algebra κ[a, b]/(ap, bp), then the series a+ t+ btp

is an element of Bκ(R). The relation

(a+ t+ btp) ◦ (a′ + t+ b′tp) = (a+ a′) + t+ (b+ b′)tp

shows that the groupscheme that’s being described is finite and iso-
morphic to αp × αp.

1Department of Mathematics, Brown University Box 1917, Provi-
dence, RI 02912

Email address: lubinj@math.brown.edu
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The Method. We take a formal group F of finite height that has a
subgroup of order p as well as a group of automorphisms of order p.
Now, finite groups of automorphisms of a formal group of finite height
are always étale, but by taking a slight blowup of F , we convert the
automorphism subgroup to a local groupscheme, without going so far
as to make the above group of torsion points of F étale as well. Then,
allowing ourselves a slight abuse of language, our desired lifting consists
of all substitutions

t 7→ a+̃t+̃[b]F ′(t),

where a is a torsion point of the blow-up of F , and 1 + b is a p-th
root of 1. In the displayed formula, F ′ is the blown-up version of F ,
the tilde over the plus-sign indicates addition with respect to F ′, and
as usual, [b]F ′(t) is the endomorphism whose first-degree term is bt. I
suppose that very confident people may be able to look at the preceding
explanation and say, Of Course, No Problem, End of Story. But I’m
not so confident, and the rest of this note is devoted to filling in the
gaps and making sure, to my own satisfaction at least, that everything
is on the up and up. To those confident readers, everything from here
on may thus be unnecessary, though the summary 1-7 at the end of
this note may be an aid to flagging assurance.

A.1. Some Algebra. Let ζ = ζp be a primitive p-th root of 1 in an
algebraic extension of Qp, and let o = Zp[ζ]. Let also π = ζ − 1,
a prime element of o, and let k be the fraction field of o. In the ring
o[T ]/(T p−1), let us call Γ the image of T , and let us consider ∆ = Γ−1

π
.

Then the minimal polynomial for ∆ is

(∗) T p +
p

π
T p−1 +

p(p− 1)

2π2
T p−2 + · · ·+ p(p− 1)

2πp−2
T 2 +

p

πp−1
T,

in which the coefficient of T is a unit in o congruent to −1 modulo
π. Let us call B the ring o[∆]; we need to establish a few facts about
it. I will use capital Greek letters for elements of B, lower case Greek
letters for elements of o.

Lemma A.1.1. The ring B is isomorphic to o ⊕ o ⊕ · · · ⊕ o, with p
factors. In B, every element Θ satisfies the condition that Θp−Θ ∈ πB.

Proof. The minimal polynomial for ∆, described above, is T p − T
modulo π. By Hensel’s Lemma it splits into dinstinct linear factors
over the complete local ring o, so that the first part of the statement is
verified. Since each element β ∈ o has the property that βp − β ∈ πo,
the corresponding property holds for elements of B as well. It may be
of interest to note that this is not true of the subring o[Γ] of B.
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A.2. Endomorphisms of the fundamental formal group. We start
with the polynomial f(t) = πt + tp ∈ o[[t]], which has associated to it
a unique formal group F (x, y) ∈ o[[x, y]] for which f ∈ Endo(F ), as
proved in [LT]. The following is hardly surprising:

Lemma A.2.1. For each Θ ∈ B, there is a unique series [Θ]F (t) ∈
B[[t]] such that [Θ]′F (0) = Θ and f ◦ [Θ]F = [Θ]F ◦ f ; this series is an
element of EndB(F ). In particular for Θ = π we have [π]F = f .

This may be proved by using either of the halves of Lemma A.1.1; if
one wishes to use the fact that Θp−Θ is always in πB, then the proof
of the first Lemma in [LT] goes through word for word. The statement
[π]F = f follows by uniqueness.

The endomorphism ring EndB(F ) contains in particular the series
[∆]F and [Γ]F ; the p-fold iterate of the latter series is the identity
series t. And since Γ = 1 + π∆, our periodic series [Γ]F (t) may also be
written as

F ( t, ([π]F ◦ [∆]F ) (t) ) .

If β is an element of ker([π]F ), then the series τβ(t) = F (t, β) commutes
with both

[ζ]F (t) = F ( t, [π]F (t) )

and
[Γ]F (t) = F ( t, ([∆]F ◦ [π]F ) (t) ) .

If only B = o[∆] had not been an étale o-algebra, we could have taken
ker([π]F )×Spec(B) as our desired lifting of αp×αp. After all, the points
of ker([π]F ) are the β’s mentioned above, and the points of Spec(B)
are essentially the p-th roots of unity ξ, and the substitution

t 7→ F (β, [ξ]F (t))

would be our lifting of the substitution mentioned in the introduction.
There is the additional problem that in case p = 2, F is of height one
and so ker[π] is not a lifting of αp, but the étaleness of the other factor
is a much bigger obstacle.

Because of the form of f(t) = [π]F (t) = πt+ tp, not only F but also
all the B-endomorphisms [Θ]F have the property that the only nonzero
terms are in degrees congruent to 1 modulo p− 1. Any such series can
be written, that is, in the form

∑
j≥0Hj where each Hj is a form or

monomial of degree 1 + j(p − 1). For want of a better term, I’ll call
any series with this last property (p− 1)-lacunary.

Now I want to let O be any complete local o-algebra in which π is
no longer indecomposable, π = λµ where both λ and µ are nonunits.
Minimally, one may take λ = µ =

√
π and O = o[

√
π]. Or we may let
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O be the ring of integers in any properly ramified algebraic extension K
of k, and λ any element of K with valuation 0 < v(λ) < v(π) = 1. Or,
generically, we can take O = o[[λ, π/λ]], a ring that can be described
alternatively as o[[λ, µ]]/(λµ − π) or as the set of all doubly infinite
Laurent series

∑
j∈Z αjλ

j in the indeterminate λ and with coefficients

αj ∈ o satisfying the additional condition that j + v(αj) ≥ 0, where v
is the (additive) valuation on o and k normalized so that v(π) = 1.

If G is a (p − 1)-lacunary series in one or more variables, I will
call the λ-blowup of G, denoted G(λ), the series formed from G in the
following way: if G =

∑
j≥0Hj , each Hj being homogeneous of degree

1 + j(p− 1), then G(λ) =
∑

j≥0 λ
jHj.

When we apply the above operation to F and its endomorphisms,
here’s what happens: F (λ) becomes a formal group whose reduction
modulo the maximal ideal of O is just the additive formal group x+ y.
The maps Endo(F ) → EndO(F (λ)) and EndB(F ) → EndB⊗oO(F (λ))
that take g(t) to g(λ)(t) are injections. For any Θ ∈ B, I will write

[Θ](λ) for [Θ]F (λ) = ([Θ]F )(λ); then since [π](λ)(t) = πt+λtp = λ(µt+tp),
the new formal group F (λ) has at least one nontrivial finite subgroup,
namely the set of roots of µt+tp, under the group law furnished by F (λ),
and they certainly are the geometric points of Spec (O[t]/(µt+ tp)),
but this is not the kernel of [π](λ), since the standard construction of
kernel in that case leads to something that’s not flat. Rather, if we call
g(t) = µt + tp, then the finite groupscheme we’re talking about is the

kernel of g : F (λ) → F (λ2).

Seeing just how a group scheme lifting αp acts on F (λ) is a little
trickier and more unusual. Our aim is to show that the automorphism
[Γ](λ)(t) of F (λ) lies in O[∆′][[t]], where ∆′ = λ∆ has the O-minimal
polynomial

T p +
pλ

π
T p−1 +

p(p− 1)λ2

2π2
T p−2 + · · ·+ p(p− 1)λp−2

2πp−2
T 2 +

pλp−1

πp−1
T

(∗∗)

= T p +
p

µ
T p−1 +

p(p− 1)

2µ2
T p−2 + · · ·+ p(p− 1)

2µp−2
T 2 +

p

µp−1
T ;

Note that this polynomial is congruent to T p modulo the maximal ideal
M of O.

Now recall that Γ = 1+∆π, so that the series [Γ](t), which is periodic
of period p with respect to substitution of series, whether we’re talking
about automorphisms of the original F or of the blown-up F (λ), can be
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written
[Γ](t) = F ( t, ([∆] ◦ [π] )(t)) .

Since every element of B is an o-linear combination of {1,∆, . . . ,∆p−1},
we may write

[∆]F (t) = ∆t+
∑
j≥1

Cjt
j(p−1)+1 ∈ B[[t]],

where, as remarked, each coefficient Cj is an o-linear combination of
the powers of ∆, up to ∆p−1. It follows that [∆](λ), the corresponding
endomorphism of F , has the form

[∆]F (λ)(t) = ∆t+
∑
j≥1

Cjλ
jtj(p−1)+1 ∈ O[[t]],

where the Cj’s are the same in both displayed formulas. Now, what
of [∆](λ) ◦ [π](λ) = [∆](λ)(πt+ λtp)? Making the indicated substitution
gives

∆ (πt+ λtp) +
∑
j≥1

Cjλ
j(πt+ λtp)j(p−1)+1

= ∆′ (µt+ tp) +
∑

Cjλ
jp+1(µt+ tp)j(p−1)+1.

But now because Cj ∈ B = o[∆], we also have Cjλ
jp+1 ∈ λO[∆′] =

λO[λ∆], since the j’s all are at least 1. This shows that [π∆](λ)(t) is
a power series with coefficients in O[∆′], and indeed, modulo M, this
series is just ∆′tp. Finally, when we add this series and the series t
by means of the formal group F (λ)(x, y) ≡ x + y mod M, the result,
namely [Γ](λ)(t), has coefficients in B′ = O[∆′], and is congruent mod-
ulo M to t+ ∆′tp. One more remark is necessary, the obvious one that
if µα + αp = 0, then [∆π](λ)(α) = 0 and [Γ](λ)(α) = α.

In summary, this is what we now have:

(1) The ring o is Zp[ζ], where ζ = ζp is a primitive p-th root of
unity, and we use the prime element π = ζ − 1.

(2) The ring O is any suitably ramified extension of o, the minimal
example being O = o[

√
π]. This O is the ring over which our

liftings and action are defined, and we identify in it elements
λ, µ ∈ O with λµ = π.

(3) The formal group F over o has πt+ tp as an endomorphism and
thus has o as its ring of “absolute” endomorphisms (over the
ring of integers of any algebraic extension field of the fraction
field of o). Allowing for abuse of language, there is a unique
o-subgroupscheme of F of rank p, namely ker[π]F = Spec(A),
where A = o[[t]]/ ([π]F (t)).
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(4) The finite o-algebra B is o[∆], where the minimal polynomial
for ∆ over o is given in formula (∗). Algebraically, B is o⊕p, and
when we call Γ = 1 + π∆ ∈ B, we have Γp = 1. The scheme
Spec(B) is a finite étale groupscheme of order p; the element
Γ ∈ B is a generic p-th root of unity, and the operation of the
étale groupscheme on the formal-affine line is t → [Γ]F (t) =
F (t, ([π] ◦ [∆])(t)).

(5) We use λ ∈ O to form a sort of blowup of F , which we call
F (λ) and which is described on the preceding page. This for-
mal group has the subgroup scheme Spec(A′), where A′ =
O[[t]]/(µt+ tp), and this groupscheme acts on the formal-affine
line by the substitution t → F (λ)(a, t) when a is any root of
µt+ tp.

(6) We define ∆′ = λ∆ ∈ B⊗oO, and note that ∆′ has the minimal
polynomial over O given by (∗∗) on the preceding page. Call
B′ = O[∆′]. The periodic power series [Γ](λ)(t), originally de-
fined to be in B⊗o O[[t]], actually is in B′[[t]] and as an element
of this ring, it becomes t+ ∆′tp in B′ ⊗O O/M[[t]].

(7) Since the series [Γ](λ)(t) and the F (λ)(a, t) mentioned in (5)
commute, we do indeed have a finite groupscheme, namely
Spec(A′ ⊗O B′), acting on the formal-affine line in such a way
that over O/M, the action is t 7→ a+ t+ ∆′tp.
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versitätsdrucke Göttingen, Gttingen, 2004.

[Ek] T. Ekedahl, Boundary behaviour of Hurwitz schemes. The moduli space
of curves (Texel Island, 1994), 173–198, Progr. Math., 129, Birkhäuser
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