Punctured logarithmic maps and punctured invariants

Dan Abramovich, Brown University

Work with Qile Chen, Mark Gross and Bernd Siebert

3CinG - London, Warwick, Cambridge
Other work by Parker, Tehrani, Dhruv, Fan-Tseng-Wu-You

September 18, 2020

Tension

- Virtual fundamental classes in Gromov–Witten theory require working with smooth targets.
- Making full use of deformation invariance in Gromov–Witten theory requires degenerating the target
- Such as xyz = t as $t \to 0$.
- At the very least, étale locally like toric varieties and fibers of toric morphisms
- We need a fairytale world in which these are smooth.

Log geometry

- Observation (Siebert, 2001): Such fairytale world already exists logarithmic geometry.
- schemes are glued from closed subsets of affine spaces the standard-issue smooth spaces.
- log schemes are étale glued from closed subsets of affine toric varieties - the standard-issue log smooth spaces.
- (keep this in mind when we go one step further)

Log structures (K. Kato, Fontaine-Illusie)

- ullet a log structure is a monoid homomorphism $lpha: \mathcal{M}
 ightarrow \mathcal{O}_{X}$
- such that $\alpha^* \mathcal{O}^{\times} \to \mathcal{O}^{\times}$ is an isomorphism.
- Morphisms are given by natural commutative diagrams...
- A key example is the log structure associated to an open $U \subset X$,
- where $M = \mathcal{O}_X \cap \mathcal{O}_U^{\times}$.

Toric and log smooth Log structures (K. Kato)

- When X is a toric variety and U the torus this is a prototypical example of a log smooth structure.
- In this case the monoid is associated to the regular monomials, with \mathcal{O}^{\times} thrown in.
- In general X is log smooth if it is étale locally toric.
- A morphism $X \to Y$ is log smooth if it is étale locally a base change of a dominant morphism of toric varieties.

Log curves

- A log curve is a reduced 1-dimensional fiber of a flat log smooth morphism.
- F. Kato showed that these are the same as nodal marked curves, with "the natural" log structure.

Log curves under the microscope

- Say $C \to S$ a log curve, $S = \operatorname{Spec}(M_S \to k)$.
- A general point of C looks like $Spec(M_S \to k[x])$.
- A node looks like Spec($M \to k[x,y]/(xy)$), where

$$M = M_S \langle \log x, \log y \rangle / (\log x + \log y = \log t), t \in M_S.$$

• A marked point looks like $Spec(M \to k[x])$ where

$$M = M_S \oplus \mathbb{N} \log x$$
.

Stable log maps

- Fix X a nice log smooth scheme.
- A stable log map $C \to X$ is a log morphism with stable underlying morphism of schemes.
- Marked points record contact orders with divisors of X.
- These are recorded by integer points $u \in \Sigma(X)(\mathbb{N})$.
- Stable log maps have "standard issue" log structure, called minimal.

Theorem ([GS,C,ACMW])

 $\mathcal{M}(X,\tau)$, the stack of minimal stable log maps of type τ , is a Deligne–Mumford stack which is finite and representable over $\mathcal{M}(\underline{X},\underline{\tau})$.

Tropical picture

- X has a cone complex $\Sigma(X)$ with integer lattice.
- $C \to S$ has cone complex $\Sigma(C) \to \Sigma(S)$. The fiber over $u \in \Sigma(S)$ is a tropical curve:
- Components give vertices, nodes give edges, and marked points give infinite legs.
- A stable log map gives $\Sigma(C) \to \Sigma(X)$, a family of tropical curves in $\Sigma(X)$.
- Minimality is beautifully encoded in this picture. . .

Logarithmic invariants

- Recall that $\mathcal{M}(\underline{X},\underline{\tau})$ has a perfect obstruction theory over $\mathfrak{M}_{g,n} \times \underline{X}^n$. This affords invariants by virtual pullback.
- $\mathcal{M}(X,\tau)$ has a POT over $\mathfrak{M}^{ev}(\mathcal{A}_X,\tau)$, where \mathcal{A}_X is the artin fan, a stack-theoretic version of $\Sigma(X)$.
- Here $\mathfrak{M}^{ev}(\mathcal{A}_X, \tau)$ is approximately $\mathfrak{M}(\mathcal{A}_X, \tau) \times_{\mathcal{A}_X^n} X^n$.

Theorem ([GS,C,AC])

 $\mathfrak{M}^{ev}(A_X, \tau)$ is log smooth, and has a fundamental class. This affords invariants by virtual pullback.

An Analogy: Orbifold vs. Logarithmic cohomology

- If $\mathcal X$ is an orbifold, Chen-Ruan defined orbifold and quantum cohomology based on $H^*(\overline{\mathcal I}(\mathcal X),\mathbb Q)$.
- $\overline{\mathcal{I}}(\mathcal{X})$, the rigidified inertia stack is the moduli space of orbifold points in \mathcal{X} ,
- whose components, twisted sectors, correspond to (x, ϕ) where $x \in \mathcal{X}$ and $\phi \in \operatorname{Aut}(x)$.
- Chen Ruan cohomology pairs ϕ with ϕ^{-1} .
- If X is a log scheme, Gross-Hacking-Keel-Siebert.... define the ring of theta functions,
- based on the moduli space $\mathcal{P}(X)$ of log points in \mathcal{X} ,
- whose components correspond to (x, u) where $x \in X$ and u a contact order at x, namely $u \in \Sigma(X)(\mathbb{N})$.
- what about -u?

Splitting?

- Consider $X \to \mathbb{A}^1$ the total space of xy = t, and
- $C \rightarrow S$ given by $\{y = 0\} \rightarrow \{t = 0\}$.
- At the origin $M_S + \mathbb{N} \log x \subseteq M \subseteq M_S + \mathbb{Z} \log x$.
- It is not a log curve, but rather a punctured curve.
- Its tropicaliation is a finite leg.

Punctured curves and maps

 A puncturing of a marked curve is a log structure M at a marked point with

$$M_S + \mathbb{N} \log x \subseteq M \subseteq M_S + \mathbb{Z} \log x$$
.

- It is an instance of an idealized log smooth scheme.
- A morphism $f: C \to X$ is prestable if M is generated by $M_S + \mathbb{N} \log X$ and $f^{\flat} M_X$.

Another example

- Now consider $X = \mathbb{P}^1 \times \mathbb{P}^1$ with log structure given by D = one ruling.
- Let a conic C degenerate to the union of the two rulings $C_0 = D + F$.
- Then D has one marked point and one puncture,
- and (after pre-stabilizing) F has one marked point.

Punctured log maps

- A punctured stable log map $C \to X$ is a prestable log morphism with stable underlying morphism of schemes.
- Punctured points record contact orders with divisors of *X*.
- These are recorded by integer tangents of the cone complex of X.
- Punctured log maps have "standard issue" minimal log structures.

Theorem ([ACGS])

 $\mathcal{M}(X,\tau)$, the stack of minimal punctured stable log maps of type τ , is a Deligne–Mumford stack which is finite and representable over $\mathcal{M}(X,\tau)$.

Punctured invariants

- $\mathcal{M}(X,\tau)$ has a POT over $\mathfrak{M}^{ev}(A_X,\tau)$, where A_X is the artin fan.
- $\mathfrak{M}^{ev}(A_X, \tau)$ is not log smooth, and doesn't have a fundamental class.

Theorem ([ACGS])

 $\mathfrak{M}^{ev}(\mathcal{A}_X, \tau)$ is idealized log smooth. This affords invariants by super-careful virtual pullback.

• The case of $g=0, n=3, u_1, u_2, -u_3 \in \Sigma(X)(\mathbb{N})$ is, fortunately, manageable.

Abramovich Punctured log maps September 18, 2020 16 / 18

Gluing

• There is a natural finite and representable splitting morphism $\mathcal{M}(X,\tau) \stackrel{\delta}{\to} \prod \mathcal{M}(X,\tau_i)$.

Theorem (ACGS)

There is a virtual-pullback cartesian diagram

$$\mathcal{M}(X,\tau) \longrightarrow \prod_{i=1}^{r} \mathcal{M}(X,\tau_{i})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathfrak{M}^{ev}(A_{X},\tau) \longrightarrow \prod_{i=1}^{r} \mathfrak{M}^{ev}(A_{X},\tau_{i})$$

with horizontal arrows the splitting maps, and the vertical arrows the canonical strict morphisms.

• One needs even more care to relate this to a diagonal map.

The end

Thank you for your attention

18 / 18