Moduli techniques in resolution of singularities

Dan Abramovich
Brown University
Joint work with Michael Temkin and Jarosław Włodarczyk

Harvard-MIT algebraic geometry seminar

February 12, 2019
What is resolution of singularities?

Definition

A resolution of singularities $X' \to X$ is a modification\(^a\) with X' nonsingular inducing an isomorphism over the smooth locus of X.

\(^a\)proper birational map. For instance, blowing up.
What is resolution of singularities?

Definition

A resolution of singularities $X' \to X$ is a modification with X' nonsingular inducing an isomorphism over the smooth locus of X.

\[\text{proper birational map. For instance, blowing up.}\]

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the critical locus $E \subset X'$ is a simple normal crossings divisor.

\[\text{Codim. 1, smooth components meeting transversally - as simple as possible}\]

Always characteristic 0 . . .
Compactifications

“Working with noncompact spaces is like trying to keep change with holes in your pockets”

Angelo Vistoli
Compactifications

“Working with noncompact spaces is like trying to keep change with holes in your pockets”

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \smallsetminus X^0$ a simple normal crossings divisor.
Compactifications

“Working with noncompact spaces is like trying to keep change with holes in your pockets”

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \setminus X^0$ a simple normal crossings divisor.
Compactifications

“Working with noncompact spaces is like trying to keep change with holes in your pockets”

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \setminus X^0$ a simple normal crossings divisor.

Resolution of families: \(\dim B = 1 \)

Key Question

When are the singularities of a morphism \(X \to B \) simple?

Theorem (Kempf–Knudsen–Mumford–Saint-Donat 1973)

If \(\dim B = 1 \) by modifying \(X \) one can get

\[
\prod x_a^i t
\]

With base change \(t = s k \), can have \(s = \prod x_i \).
Key Question

When are the singularities of a morphism $X \to B$ simple?

Theorem (Kempf–Knudsen–Mumford–Saint-Donat 1973)

- If $\dim B = 1$ by modifying X one can get $t = \prod x_i^{a_i}$.
Resolution of families: \(\dim B = 1 \)

Key Question

When are the singularities of a morphism \(X \to B \) simple?

Theorem (Kempf–Knudsen–Mumford–Saint-Donat 1973)

- If \(\dim B = 1 \) by modifying \(X \) one can get \(t = \prod x_i^{a_i} \).
- With base change \(t = s^k \), can have \(s = \prod x_i \).
Resolution of families: $\dim B = 1$

Key Question

When are the singularities of a morphism $X \to B$ simple?

Theorem (Kempf–Knudsen–Mumford–Saint-Donat 1973)

- If $\dim B = 1$ by modifying X one can get $t = \prod x_i^{a_i}$,
- With base change $t = s^k$, can have $s = \prod x_i$.

Question

What makes these special?
Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
Log smooth schemes and log smooth morphisms

- **A toric variety** is a normal variety on which $T = \left(\mathbb{C}^* \right)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_σ with its toric divisor $X_\sigma \setminus T$.
- Étale locally it is defined by equations between monomials.
Log smooth schemes and log smooth morphisms

- A **toric variety** is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is **toroidal** or **log smooth** if étale locally it looks like a toric variety X_σ with its toric divisor $X_\sigma \setminus T$.
- Étale locally it is defined by equations between monomials.
- A morphism $X \to Y$ is **toroidal** or **log smooth** if étale locally it looks like a torus equivariant morphism of toric varieties.
- The inverse image of a monomial 1 is a monomial.

1defining equation of part of D_Y
Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \to B$ simple?

The best one can hope for, after base change, is a semistable morphism:

Definition (\mathcal{X}-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally it is a product of one-parameter semistable families.

$$t_1 = x_1 \cdots x_{l_1}$$

$$\vdots$$

$$t_m = x_{l_{m-1} + 1} \cdots x_{l_m}$$

In particular log smooth.

Similar definition by Berkovich, all inspired by de Jong.
Semistable reduction

Theorem (Many credits to be specified)

Let $\pi : X \to B$ be a dominant morphism of varieties in characteristic 0. Let $B^\circ \subset B$ be the locus where π is smooth. There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$, which is trivial over B°, such that $X_1 \to B_1$ is semistable.
Semistable reduction

Theorem (Many credits to be specified)

Let $\pi : X \to B$ be a dominant morphism of varieties in characteristic 0. Let $B^\circ \subset B$ be the locus where π is smooth. There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$, which is trivial over B°, such that $X_1 \to B_1$ is semistable.

Proper, surjective, generically finite

- One wants the **tight** result, with triviality over B° in order to compactify smooth families.
Semistable reduction

Theorem (Many credits to be specified)

Let \(\pi : X \to B \) be a dominant morphism of varieties in characteristic 0. Let \(B^\circ \subset B \) be the locus where \(\pi \) is smooth. There is an alteration\(^a\) \(B_1 \to B \) and a modification \(X_1 \to (X \times_B B_1)_{\text{main}} \), which is trivial over \(B^\circ \), such that \(X_1 \to B_1 \) is semistable.

\(^a\)Proper, surjective, generically finite

- One wants the **tight** result, with triviality over \(B^\circ \) in order to compactify smooth families.
- Some of this is work in preparation.
Semistable reduction

Theorem (Many credits to be specified)

Let $\pi : X \to B$ be a dominant morphism of varieties in characteristic 0. Let $B^\circ \subset B$ be the locus where π is smooth. There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$, which is trivial over B°, such that $X_1 \to B_1$ is semistable.

Proper, surjective, generically finite

- One wants the tight result, with triviality over B° in order to compactify smooth families.
- Some of this is work in preparation.
- Major early results by [KKMS 1973], [de Jong 1997].
Semistable reduction

Theorem (Many credits to be specified)

Let $\pi : X \to B$ be a dominant morphism of varieties in characteristic 0. Let $B^\circ \subset B$ be the locus where π is smooth. There is an alteration $a : B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$, which is trivial over B°, such that $X_1 \to B_1$ is semistable.

a Proper, surjective, generically finite

- One wants the *tight* result, with triviality over B° in order to compactify smooth families.
- Some of this is work in preparation.
- Major early results by [KKMS 1973], [de Jong 1997].
- Wonderful results in positive and mixed characteristics by de Jong, Gabber, Illusie and Temkin.
Toroidalization and weak semistable reduction

Key results in characteristic 0:

Theorem (Toroidalization, \(\aleph\)-Karu 2000, \(\aleph\)-K-Denef 2013)

There is a modification \(B_1 \to B\) and a modification \(X_1 \to (X \times_B B_1)_{\text{main}}\) such that \(X_1 \to B_1\) is log smooth and flat.

Theorem (Weak semistable reduction, \(\aleph\)-Karu 2000)

There is an alteration \(B_2 \to B_1\) and a modification \(X_2 \to (X_1 \times_{B_1} B_2)\), trivial over \(B_1^0\), such that \(X_2 \to B_2\) is log smooth, flat, with reduced fibers.
Toroidalization and weak semistable reduction

Key results in characteristic 0:

Theorem (Toroidalization, K-Karu 2000, K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, K-Karu 2000)

There is an alteration $B_2 \to B_1$ and a modification $X_2 \to (X_1 \times_{B_1} B_2)$, trivial over B_1°, such that $X_2 \to B_2$ is log smooth, flat, with reduced fibers.

Theorem (Semistable reduction, Adiprasito-Liu-Temkin 2018)

There is an alteration $B_3 \to B_2$ and a modification $X_3 \to (X_2 \times_{B_2} B_3)$, trivial over B_2°, such that $X_3 \to B_3$ is semistable.
Toroidalization and weak semistable reduction

Key results in characteristic 0:

Theorem (Toroidalization, \(\mathbb{A}\)-Karu 2000, \(\mathbb{A}\)-K-Denef 2013)

There is a modification \(B_1 \to B\) and a modification \(X_1 \to (X \times_B B_1)_{\text{main}}\) such that \(X_1 \to B_1\) is log smooth and flat.

Theorem (Weak semistable reduction, \(\mathbb{A}\)-Karu 2000)

There is an alteration \(B_2 \to B_1\) and a modification \(X_2 \to (X_1 \times_{B_1} B_2)\), trivial over \(B_1^0\), such that \(X_2 \to B_2\) is log smooth, flat, with reduced fibers.

Theorem (Semistable reduction, Adiprasito-Liu-Temkin 2018)

There is an alteration \(B_3 \to B_2\) and a modification \(X_3 \to (X_2 \times_{B_2} B_3)\), trivial over \(B_2^0\), such that \(X_3 \to B_3\) is semistable.

Passing from toroidalization to weak semistable reduction to semistable reduction was a purely combinatorial question [\(\mathbb{A}\)-Karu 2000].
Applications of loose semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective\(^a\).

\(^a\)in particular bounded and proper
Applications of loose semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective.\(^a\)

\(^a\)in particular bounded and proper

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.
Applications of loose semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective\(^a\).

\(^a\)in particular bounded and proper

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)

Nakayama’s numerical logarithmic Kodaira dimension is subadditive in families \(X \to B\) *with generic fiber* \(F\):

\[
\kappa_\sigma(X, D_X) \geq \kappa_\sigma(F, D_F) + \kappa_\sigma(B, D_B).
\]
Main result
The following result is work-in-progress.

Main result (Functorial toroidalization, \(\aleph\)-Temkin-Włodarczyk)
Let \(X \to B\) be a dominant morphism.

- There are modifications \(B_1 \to B\) and \(X_1 \to (X \times_B B_1)_{\text{main}}\) such that \(X_1 \to B_1\) is log smooth and flat;
- this is compatible with base change \(B' \to B\);
- this is functorial, up to base change, with log smooth \(X'' \to X\).

Corollary
Tight semistable reduction holds in characteristic 0.
Main result
The following result is work-in-progress.

Main result (Functorial toroidalization, \(\aleph\)-Temkin-Włodarczyk)

Let \(X \to B\) be a dominant morphism.

- There are modifications \(B_1 \to B\) and \(X_1 \to (X \times_B B_1)_{\text{main}}\) such that \(X_1 \to B_1\) is log smooth and flat;
- this is compatible with base change \(B' \to B\);
- this is functorial, up to base change, with log smooth \(X'' \to X\).

Corollary

Tight semistable reduction holds in characteristic 0.

Application:

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type is Kobayashi hyperbolic.
dim $B = 0$: log resolution via principalization

- To resolve log singularities, one embeds X in a log smooth Y...
dim $B = 0$: log resolution via principalization

- To resolve log singularities, one embeds X in a log smooth Y...
- ...which can be done locally.
dim $B = 0$: log resolution via principalization

- To resolve log singularities, one embeds X in a log smooth Y...
- ...which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization ... Â-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.
dim $B = 0$: log resolution via principalization

- To resolve log singularities, one embeds X in a log smooth Y...
- ...which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization . . . \aleph-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2)

Here u is a monomial but x is not.
dim $B = 0$: log resolution via principalization

- To resolve log singularities, one embeds X in a log smooth Y...
- ...which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization \ldots \aleph-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2) and the result of blowing up the origin, \mathcal{I}_E^2. Here u is a monomial but x is not.
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $D \leq a$ for the sheaf of logarithmic differential operators of order $\leq a$.

The logarithmic order of an ideal I is the minimum a such that $D \leq a I = (1)$.

Take u, v monomials, x free variable, p the origin.

$\logord_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$)

$\logord_p(v^2, x^2) = 2$

$\logord_p(v + u) = \infty$ since $D \leq 1 I = D \leq 2 I = \cdots = (u, v)$.

Abramovich

Moduli techniques in resolution of singularities

February 12, 2019 12 / 25
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.
- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$.
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $D \leq a$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $D \leq a \mathcal{I} = (1)$.
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The **logarithmic order** of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.

$logord_p(u^2, x) =$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The **logarithmic order** of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.

$$\logord_p(u^2, x) = 1 \quad \text{(since } \frac{\partial}{\partial x} x = 1)$$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.
- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.
- $\logord_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$)
- $\logord_p(u^2, x^2) =$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.

$\logord_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$)

$\logord_p(u^2, x^2) = 2$ $\logord_p(v, x^2) =$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.

$$
\logord_p(u^2, x) = 1 \quad \text{(since} \quad \frac{\partial}{\partial x} x = 1) \\
\logord_p(u^2, x^2) = 2 \quad \logord_p(v, x^2) = 2 \\
\logord_p(v + u) = \infty
$$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a} \mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin.

- $\logord_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$)
- $\logord_p(u^2, x^2) = 2$
- $\logord_p(v, x^2) = 2$
- $\logord_p(v + u) = \infty$ since $\mathcal{D}^{\leq 1} \mathcal{I} = \mathcal{D}^{\leq 2} \mathcal{I} = \cdots = (u, v)$.
dim $B = 0$: sketch of argument, logord $< \infty$

- In characteristic 0, if $\logord_p(I) = a < \infty$, then $D^{\leq a^{-1}}I$ contains an element x with derivative 1, a maximal contact element.
dim $B = 0$: sketch of argument, logord $< \infty$

- In characteristic 0, if $\logord_p(I) = a < \infty$, then $D^{\leq a-1}I$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x = 0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):
dim \(B = 0 \): sketch of argument, logord < \(\infty \)

- In characteristic 0, if \(\logord_p(I) = a < \infty \), then \(D^{\leq a-1}I \) contains an element \(x \) with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on \(\{ x = 0 \} \) gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

Proposition (\ldots \&-T-W)

Let \(I \) be an ideal on a logarithmically smooth \(Y \) with

\[
\max_p \logord_p(I) = a.
\]
dim $B = 0$: sketch of argument, logord $< \infty$

- In characteristic 0, if $\text{logord}_p(I) = a < \infty$, then $D^{\leq a-1}I$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x = 0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

Proposition (…ℕ-T-W)

Let I be an ideal on a logarithmically smooth Y with

$$\max_p \text{logord}_p(I) = a.$$

There is a functorial logarithmic morphism $Y_1 \to Y$, with Y_1 logarithmically smooth, such that $\mathcal{O}_Y = M \cdot I_1$ with M an invertible monomial ideal and

$$\max_p \text{logord}_p(I_1) < a.$$
Order reduction: Example 1

- Consider $Y_1 = \text{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:
Order reduction: Example 1

- Consider $Y_1 = \text{Spec } \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

$$IO Y'_1 = (u^2),$$

which is exceptional hence monomial.

This is in fact the only functorial admissible blowing up.
Order reduction: Example 1

- Consider $Y_1 = \text{Spec } \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

 - on the u-chart $\text{Spec } \mathbb{C}[u, x']$ with $x = x'u$ we have $\mathcal{I} \mathcal{O}_{Y_1} = (u^2)$,
 - on the x-chart $\text{Spec } \mathbb{C}[u', x]$ with $u' = xu'$ we have $\mathcal{I} \mathcal{O}_{Y_1} = (x^2)$,
 - which is exceptional hence monomial.
Order reduction: Example 1

- Consider $Y_1 = \text{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

 on the u-chart $\text{Spec} \mathbb{C}[u, x']$ with $x = x'u$ we have $\mathcal{I} \mathcal{O}_{Y_1} = (u^2)$,
 on the x-chart $\text{Spec} \mathbb{C}[u', x]$ with $u' = xu'$ we have $\mathcal{I} \mathcal{O}_{Y'} = (x^2)$,
 which is exceptional hence monomial.

- This is in fact the only functorial admissible blowing up.
Consider $Y_2 = \text{Spec } \mathbb{C}[\nu, x]$ and $D = \{\nu = 0\}$.

Let $\mathcal{I} = (\nu, x^2)$.

Order reduction: Example 2

- Consider $Y_2 = \text{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
Consider $Y_2 = \text{Spec } \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

Let $\mathcal{I} = (v, x^2)$.

Example 1 is the pullback of this via the log smooth $v = u^2$.

Functoriality says: we need to blow up an ideal whose pullback is (u, x).

This means we need to blow up $(v^{1/2}, x)$.
Consider $Y_2 = \text{Spec } \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

Let $\mathcal{I} = (v, x^2)$.

Example 1 is the pullback of this via the log smooth $v = u^2$.

Functoriality says: we need to blow up an ideal whose pullback is (u, x).

This means we need to blow up $(v^{1/2}, x)$.

What is this? What is its blowup?
A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).
Kummer ideals

Definition

- A **Kummer monomial** is a monomial in the Kummer-étale topology of Y (like $\nu^{1/2}$).
- A **Kummer monomial ideal** is a monomial ideal in the Kummer-étale topology of Y.

A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
Kummer ideals

Definition

- A **Kummer monomial** is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).
- A **Kummer monomial ideal** is a monomial ideal in the Kummer-étale topology of Y.
- A **Kummer center** is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $(x_1, \ldots, x_k, u_1^{1/d}, \ldots, u_{\ell}^{1/d})$.
Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{J}\mathcal{O}_{Y'}$ is an invertible ideal.
Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{J}\mathcal{O}_{Y'}$ is an invertible ideal.

Example 0

$Y = \text{Spec } \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.
Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \rightarrow Y$ such that Y' is logarithmically smooth and $\mathcal{J}O_{Y'}$ is an invertible ideal.

Example 0

$Y = \text{Spec } \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
Blowing up Kummer centers

Proposition
Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{J}O_{Y'}$ is an invertible ideal.

Example 0
$Y = \text{Spec } \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
- There is a stack $Y' = Y(\sqrt{D})$, the Cadman–Vistoli root stack, satisfying the proposition!
Consider $Y_2 = \text{Spec } \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.

Example 2 concluded
Example 2 concluded

- Consider $Y_2 = \text{Spec } \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.
- associated blowing up $Y' \to Y_2$ with charts:
 - $Y'_{x} := \text{Spec } \mathbb{C}[v, x, v']/(v'x^2 = v)$, where $v' = v/x^2$ (nonsingular scheme).
 - Exceptional $x = 0$, now monomial.
 - $\mathcal{I} = (v, x^2)$ transformed into (x^2), invertible monomial ideal.
 - Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).

Example 2 concluded

- Consider $Y_2 = \text{Spec } \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.
- associated blowing up $Y' \to Y_2$ with charts:
 - $Y'_x := \text{Spec } \mathbb{C}[v, x, v']/(v'x^2 = v)$, where $v' = v/x^2$ (nonsingular scheme).
 - Exceptional $x = 0$, now monomial.
 - $\mathcal{I} = (v, x^2)$ transformed into (x^2), invertible monomial ideal.
 - Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).
 - The $v^{1/2}$-chart:
 - stack quotient $X'_{v^{1/2}} := \left[\text{Spec } \mathbb{C}[w, y]/\mu_2\right]$, where $y = x/w$ and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
 - Exceptional $w = 0$ (monomial).
 - (v, x^2) transformed into invertible monomial ideal $(v) = (w^2)$.
 - $(v^{1/2}, x)$ transformed into invertible monomial ideal (w).

Abramovich
Proof of proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal{J}\mathcal{O}_{Y'}$ is an invertible ideal.
Proof of proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal{J} \mathcal{O}_{Y'}$ is an invertible ideal.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{J} \mathcal{O}_{\tilde{Y}}$ is an ideal.
Proof of proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal{J}\mathcal{O}_{Y'}$ is an invertible ideal.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{J}\mathcal{O}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
Proof of proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal{J}\mathcal{O}_{Y'}$ is an invertible ideal.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{J}\mathcal{O}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E.
Let \(\mathcal{J} \) be a Kummer center on a logarithmically smooth \(Y \). There is a universal proper birational \(Y' \to Y \) such that \(Y' \) is a logarithmically smooth stack and \(\mathcal{J} O_{Y'} \) is an invertible ideal.

- Choose a stack \(\tilde{Y} \) with coarse moduli space \(Y \) such that \(\tilde{\mathcal{J}} := \mathcal{J} O_{\tilde{Y}} \) is an ideal.
- Let \(\tilde{Y}' \to \tilde{Y} \) be the blowup of \(\tilde{\mathcal{J}} \), with exceptional \(E \).
- Let \(\tilde{Y}' \to B\mathbb{G}_m \) be the classifying morphism of \(\mathcal{I}_E \).
- \(Y' \) is the relative coarse moduli space of \(\tilde{Y}' \to Y \times B\mathbb{G}_m \).
Proof of proposition

Let \(\mathcal{J} \) be a Kummer center on a logarithmically smooth \(Y \). There is a universal proper birational \(Y' \to Y \) such that \(Y' \) is a logarithmically smooth stack and \(\mathcal{J}O_{Y'} \) is an invertible ideal.

- Choose a stack \(\tilde{Y} \) with coarse moduli space \(Y \) such that \(\tilde{\mathcal{J}} := \mathcal{J}O_{\tilde{Y}} \) is an ideal.
- Let \(\tilde{Y}' \to \tilde{Y} \) be the blowup of \(\tilde{\mathcal{J}} \), with exceptional \(E \).
- Let \(\tilde{Y}' \to B\mathbb{G}_m \) be the classifying morphism of \(\mathcal{I}_E \).
- \(Y' \) is the relative coarse moduli space of \(\tilde{Y}' \to Y \times B\mathbb{G}_m \).
- One shows this is independent of choices. ♠
Key new ingredient: The monomial part of an ideal

Definition

\(\mathcal{M}(\mathcal{I}) \) is the minimal monomial ideal containing \(\mathcal{I} \).
Key new ingredient: The monomial part of an ideal

Definition

\(M(I) \) is the minimal monomial ideal containing \(I \).

Proposition (Kollár, \(\& \)-T-W)

1. In characteristic 0, \(M(I) = D^\infty(I) \). In particular \(\max_p \log_\rho(I) = \infty \) if and only if \(M(I) \neq 1 \).
Key new ingredient: The monomial part of an ideal

Definition

\(M(\mathcal{I}) \) is the minimal monomial ideal containing \(\mathcal{I} \).

Proposition (Kollár, A-T-W)

1. *In characteristic 0, \(M(\mathcal{I}) = D^\infty(\mathcal{I}) \). In particular, \(\max_p \log \text{ord}_p(\mathcal{I}) = \infty \) if and only if \(M(\mathcal{I}) \neq 1 \).*

2. *Let \(Y_0 \to Y \) be the normalized blowup of \(M(\mathcal{I}) \).*
Key new ingredient: The monomial part of an ideal

Definition

\(\mathcal{M}(\mathcal{I}) \) is the minimal monomial ideal containing \(\mathcal{I} \).

Proposition (Kollár, K-T-W)

(1) \textit{In characteristic 0,} \(\mathcal{M}(\mathcal{I}) = D^\infty(\mathcal{I}) \). \textit{In particular}
\[\max_p \log \text{ord}_p(\mathcal{I}) = \infty \text{ if and only if } \mathcal{M}(\mathcal{I}) \neq 1. \]

(2) \textit{Let } \mathcal{Y}_0 \to \mathcal{Y} \textit{ be the normalized blowup of } \mathcal{M}(\mathcal{I}). \textit{Then}
\[\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{\mathcal{Y}_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{\mathcal{Y}_0}), \text{ and it is an invertible monomial ideal,} \]
Key new ingredient: The monomial part of an ideal

Definition

\(\mathcal{M}(\mathcal{I}) \) is the minimal monomial ideal containing \(\mathcal{I} \).

Proposition (Kollár, \(\aleph \)-T-W)

1. In characteristic 0, \(\mathcal{M}(\mathcal{I}) = D^\infty(\mathcal{I}) \). In particular \(\max_p \logord_p(\mathcal{I}) = \infty \) if and only if \(\mathcal{M}(\mathcal{I}) \neq 1 \).

2. Let \(Y_0 \to Y \) be the normalized blowup of \(\mathcal{M}(\mathcal{I}) \). Then \(\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0}) \), and it is an invertible monomial ideal, and so \(\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M} \) with \(\max_p \logord_p(\mathcal{I}_0) < \infty \).
Key new ingredient: The monomial part of an ideal

Definition

\(\mathcal{M}(\mathcal{I}) \) is the minimal monomial ideal containing \(\mathcal{I} \).

Proposition (Kollár, \(\aleph \)-T-W)

(1) In characteristic 0, \(\mathcal{M}(\mathcal{I}) = \mathcal{D}^\infty(\mathcal{I}) \). In particular, \(\max_p \log \text{ord}_p(\mathcal{I}) = \infty \) if and only if \(\mathcal{M}(\mathcal{I}) \neq 1 \).

(2) Let \(Y_0 \to Y \) be the normalized blowup of \(\mathcal{M}(\mathcal{I}) \). Then \(\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0}) \), and it is an invertible monomial ideal, and so \(\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M} \) with \(\max_p \log \text{ord}_p(\mathcal{I}_0) < \infty \).

(1) \(\Rightarrow \) (2)

\(\mathcal{D}_{Y_0} \) is the pullback of \(\mathcal{D}_Y \), so (2) follows from (1) since the ideals have the same generators.
The monomial part of an ideal - proof

Proof of (1), basic affine case.

Let $\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$. The operators $1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}$ commute and have distinct systems of eigenvalues on the eigenspaces $\mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u. Therefore $\mathcal{M} = \bigoplus u \mathcal{M}_u$ with ideals $\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n]$ stable under derivatives, so each \mathcal{M}_u is either (0) or (1). In other words, \mathcal{M} is monomial.

The general case requires more commutative algebra.
The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

 $$1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}$$

 commute and have distinct systems of eigenvalues on the eigenspaces

 $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

Therefore $\mathcal{M} = \bigoplus u \mathcal{M}_u$ with ideals $\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n]$ stable under derivatives, so each \mathcal{M}_u is either (0) or (1).

In other words, \mathcal{M} is monomial.

♠

The general case requires more commutative algebra.
The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.
- Therefore $\mathcal{M} = \bigoplus u \mathcal{M}_u$ with ideals $\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n]$ stable under derivatives,
The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let \(\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m] \) and assume \(\mathcal{M} = \mathcal{D}(\mathcal{M}) \).
- The operators

 \[
 1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}
 \]

 commute and have distinct systems of eigenvalues on the eigenspaces

 \(u \mathbb{C}[x_1, \ldots, x_n] \), for distinct monomials \(u \).

- Therefore \(\mathcal{M} = \bigoplus u \mathcal{M}_u \) with ideals \(\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n] \) stable under derivatives,

- so each \(\mathcal{M}_u \) is either (0) or (1).
The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let \(\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m] \) and assume \(\mathcal{M} = \mathcal{D}(\mathcal{M}) \).
- The operators

 \[1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l} \]

 commute and have distinct systems of eigenvalues on the eigenspaces \(u \mathbb{C}[x_1, \ldots, x_n] \), for distinct monomials \(u \).
- Therefore \(\mathcal{M} = \bigoplus u \mathcal{M}_u \) with ideals \(\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n] \) stable under derivatives,
- so each \(\mathcal{M}_u \) is either (0) or (1).
- In other words, \(\mathcal{M} \) is monomial.
The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let \(\mathcal{O}_Y = \mathbb{C}[x_1, \ldots, x_n, u_1, \ldots, u_m] \) and assume \(\mathcal{M} = D(\mathcal{M}) \).
- The operators
 \[
 1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}
 \]
 commute and have distinct systems of eigenvalues on the eigenspaces
 \(u \mathbb{C}[x_1, \ldots, x_n] \), for distinct monomials \(u \).
- Therefore \(\mathcal{M} = \bigoplus u \mathcal{M}_u \) with ideals \(\mathcal{M}_u \subset \mathbb{C}[x_1, \ldots, x_n] \) stable under derivatives,
- so each \(\mathcal{M}_u \) is either (0) or (1).
- In other words, \(\mathcal{M} \) is monomial.

The general case requires more commutative algebra.
Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.

- This is done by relative order reduction, using relative logarithmic derivatives.
Arbitrary B

(Work in progress)

Main result (\aleph-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $I\mathcal{O}_{Y'}$ an invertible monomial ideal.

- This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}^{\leq a}_{Y/B}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}_{Y/B} \mathcal{I} = (1)$.
The new step

- $\mathcal{M} := \mathcal{D}_Y^\infty_B \mathcal{I}$ is an ideal which is monomial along the fibers.
The new step

- $\mathcal{M} := D_{Y/B}^\infty \mathcal{I}$ is an ideal which is monomial along the fibers.
- $\text{relord}_p(\mathcal{I}) = \infty$ if and only if $\mathcal{M} := D_{Y/B}^\infty \mathcal{I}$ is a nonunit ideal.
The new step

- $\mathcal{M} := \mathcal{D}_{Y/B}^\infty \mathcal{I}$ is an ideal which is monomial along the fibers.
- $\text{relord}_p(\mathcal{I}) = \infty$ if and only if $\mathcal{M} := \mathcal{D}_{Y/B}^\infty \mathcal{I}$ is a nonunit ideal.

Monomialization Theorem [\$-T-W\]

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_Y$ an ideal with $\mathcal{D}_{Y/B} \mathcal{M} = \mathcal{M}$. There is a log morphism $B' \to B$ with saturated pullback $Y' \to B'$, such that $\mathcal{M} \mathcal{O}_{Y'}$ a monomial ideal.

After this one can proceed as in the case “$\text{dim } B = 0$”.
Proof of Monomialization Theorem, special case

Let $Y = \text{Spec } \mathbb{C}[u, v] \to B = \text{Spec } \mathbb{C}[w]$ with $w = uv$, and $\mathcal{M} = (f)$.

Every monomial is either $u^\alpha w^k$ or $v^\alpha w^k$. Once again the operators $1, u \partial_u - v \partial_v$ commute and have different eigenvalues on u^α, v^α. Expanding $f = \sum u^\alpha f^\alpha + \sum v^\beta f^\beta$, the condition $\mathcal{M} = \partial Y / B \mathcal{M}$ gives that only one term survives, say $f = u^\alpha f^\alpha$, with $f^\alpha \in \mathbb{C}[w]$. Blowing up (f^α) on B has the effect of making it monomial, so f becomes monomial. ♠

The general case is surprisingly subtle.

Abramovich
Moduli techniques in resolution of singularities
February 12, 2019 24 / 25
Proof of Monomialization Theorem, special case

Let \(Y = \text{Spec } \mathbb{C}[u, v] \rightarrow B = \text{Spec } \mathbb{C}[w] \) with \(w = uv \), and \(\mathcal{M} = (f) \).

Proof in this special case.

- Every monomial is either \(u^\alpha w^k \) or \(v^\alpha w^k \).
Proof of Monomialization Theorem, special case

Let $Y = \text{Spec } \mathbb{C}[u, v] \to B = \text{Spec } \mathbb{C}[w]$ with $w = uv$, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α}.
Proof of Monomialization Theorem, special case

Let \(Y = \text{Spec} \mathbb{C}[u, v] \to B = \text{Spec} \mathbb{C}[w] \) with \(w = uv \), and \(\mathcal{M} = (f) \).

Proof in this special case.

- Every monomial is either \(u^\alpha w^k \) or \(v^\alpha w^k \).
- Once again the operators \(1, u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v} \) commute and have different eigenvalues on \(u^\alpha, v^\alpha \).
- Expanding \(f = \sum u^\alpha f_\alpha + \sum v^\beta f_\beta \), the condition \(\mathcal{M} = D_{Y/B} \mathcal{M} \) gives that only one term survives,
Proof of Monomialization Theorem, special case

Let $Y = \text{Spec } \mathbb{C}[u, v] \to B = \text{Spec } \mathbb{C}[w]$ with $w = uv$, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^\alpha w^k$ or $v^\alpha w^k$.
- Once again the operators $1, u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^α, v^α.
- Expanding $f = \sum u^\alpha f_\alpha + \sum v^\beta f_\beta$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,
- say $f = u^\alpha f_\alpha$, with $f_\alpha \in \mathbb{C}[w]$.
Proof of Monomialization Theorem, special case

Let \(Y = \text{Spec} \mathbb{C}[u, v] \rightarrow B = \text{Spec} \mathbb{C}[w] \) with \(w = uv \), and \(\mathcal{M} = (f) \).

Proof in this special case.

- Every monomial is either \(u^\alpha w^k \) or \(v^\alpha w^k \).
- Once again the operators \(1, u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v} \) commute and have different eigenvalues on \(u^\alpha, v^\alpha \).
- Expanding \(f = \sum u^\alpha f_\alpha + \sum v^\beta f_\beta \), the condition \(\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M} \) gives that only one term survives,
- say \(f = u^\alpha f_\alpha \), with \(f_\alpha \in \mathbb{C}[w] \).
- Blowing up \((f_\alpha) \) on \(B \) has the effect of making it monomial, so \(f \) becomes monomial.
Proof of Monomialization Theorem, special case

Let $Y = \text{Spec} \mathbb{C}[u,v] \to B = \text{Spec} \mathbb{C}[w]$ with $w = uv$, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^\alpha w^k$ or $v^\alpha w^k$.
- Once again the operators $1, u \frac{\partial}{\partial u} - v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^α, v^α.
- Expanding $f = \sum u^\alpha f_\alpha + \sum v^\beta f_\beta$, the condition $\mathcal{M} = \mathcal{D}_{Y/B}\mathcal{M}$ gives that only one term survives,
- say $f = u^\alpha f_\alpha$, with $f_\alpha \in \mathbb{C}[w]$.
- Blowing up (f_α) on B has the effect of making it monomial, so f becomes monomial.

The general case is surprisingly subtle.
Thank you for your attention!