Resolving singularities in families

Dan Abramovich Brown University

Joint work with Michael Temkin and Jarosław Włodarczyk

September 30, 2018

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.^a

^aCodimension 1, smooth components meeting transversally

Always characteristic 0 . . .

Resolution of families: dim B = 1

Question

When are the singularities of a morphism $X \rightarrow B$ simple?

3

- ∢ ≣ →

___ ▶

Resolution of families: dim B = 1

Question

When are the singularities of a morphism $X \rightarrow B$ simple?

- If dim B = 1 the simplest one can have by modifying X is $t = \prod x_i^{a_i}$,
- and if one also allows base change, can have $t = \prod x_i$. [Kempf-Knudsen-Mumford-Saint-Donat 1973]

Resolution of families: dim B = 1

Question

When are the singularities of a morphism $X \rightarrow B$ simple?

- If dim B = 1 the simplest one can have by modifying X is $t = \prod x_i^{a_i}$,
- and if one also allows base change, can have t = ∏ x_i. [Kempf–Knudsen–Mumford–Saint-Donat 1973]

Question

What makes these special?

Abramovich

Resolving singularities in families

September 30, 2018 3 / 23

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_σ with its toric divisor X_σ < T.
- Étale locally it is defined by equations between monomials.

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_σ with its toric divisor X_σ < T.
- Étale locally it is defined by equations between monomials.
- A morphism X → Y is toroidal or log smooth if étale locally it looks like a torus equivariant morphism of toric varieties.
- The inverse image of a monomial is a monomial.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \rightarrow B$ simple?

3

- E

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \rightarrow B$ simple?

The best one can hope for, after base change, is a semistable morphism, locally a product of stemistable one-parameter families:

Definition (ℵ-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally

÷ ÷

$$t_1 = x_1 \cdots x_{h_1}$$

Abramovich

 $t_m = x_{l_{m-1}+1} \cdots x_{l_m}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conjecture [ℵ-Karu]

Let $X \to B$ be a dominant morphism of varieties.

• (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

Conjecture [ℵ-Karu]

Let $X \to B$ be a dominant morphism of varieties.

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

• One wants the tight version in order to compactify smooth families.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].
- Wonderful results in positive and mixed characteristics by de Jong, Gabber, Illusie and Temkin.

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

 Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],

くほと くほと くほと

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and

イロト 不得 トイヨト イヨト 二日

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Karim Adiprasito Gaku Liu Igor Pak Michael Temkin].

イロト 不得 トイヨト イヨト 二日

Application of weak semistable reduction

(with a whole lot of more input)

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \rightarrow B$ and $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat;
- this is compatible with log base change $B' \rightarrow B$;
- this is functorial, up to base change, with log smooth $X'' \to X$.

This implies the tight version of the results of semistable reduction type.

Current application of our main result

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type is Kobayashi hyperbolic.

• To resolve log singularities, one embeds X in a log smooth Y...

- To resolve log singularities, one embeds X in a log smooth Y...
- ... which can be done locally.

3

A B A A B A

- To resolve log singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization ... ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- To resolve log singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization ... ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2) Here *u* is a monomial but *x* is not.

Abramovich

- To resolve log singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization ... ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2) and the result of blowing up the origin, \mathcal{I}_E^2 . Here u is a monomial but x is not.

Abramovich

Resolving singularities in families

September 30, 2018 11 / 23

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. logord_p $(u^2, x) =$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. logord_p $(u^2, x) = 1$ (since $\frac{\partial}{\partial x}x = 1$)

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. logord_p $(u^2, x) = 1$ (since $\frac{\partial}{\partial x}x = 1$) logord_p $(u^2, x^2) =$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. logord_p $(u^2, x) = 1$ (since $\frac{\partial}{\partial x}x = 1$) logord_p $(u^2, x^2) = 2$ logord_p $(v, x^2) =$
Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. logord_p $(u^2, x) = 1$ (since $\frac{\partial}{\partial x}x = 1$) logord_p $(u^2, x^2) = 2$ logord_p $(v, x^2) = 2$ logord_p(v + u) =

Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Take u, v monomials, x free variable, p the origin. $\operatorname{logord}_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x}x = 1$) $\operatorname{logord}_p(u^2, x^2) = 2$ $\operatorname{logord}_p(v, x^2) = 2$ $\operatorname{logord}_p(v + u) = \infty$ since $\mathcal{D}^{\leq 1}\mathcal{I} = \mathcal{D}^{\leq 2}\mathcal{I} = \cdots = (u, v)$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing $\mathcal{I}.$

3

- ∢ ≣ →

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

(1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

A B M A B M

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$.

A B F A B F

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal,

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal, and so $\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M}$ with $\max_p \operatorname{logord}_p(\mathcal{I}_0) < \infty$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proof of (1), basic affine case.

• Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.

A 1			
	hra	mon	/ICh
	ula	THO	

3

< 177 ▶

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \ldots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

Therefore *M* = ⊕*uM_u* with ideals *M_u* ⊂ ℂ[*x*₁,...,*x_n*] stable under derivatives,

- 4 目 ト - 4 日 ト - 4 日 ト

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

- Therefore *M* = ⊕*uM_u* with ideals *M_u* ⊂ ℂ[*x*₁,...,*x_n*] stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).

- 4 同 6 4 日 6 4 日 6

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

- Therefore *M* = ⊕*uM_u* with ideals *M_u* ⊂ ℂ[*x*₁,...,*x_n*] stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).
- In other words, \mathcal{M} is monomial.

- 4 同 6 4 日 6 4 日 6

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \ldots, x_n]$, for distinct monomials u.

- Therefore $\mathcal{M} = \oplus u \mathcal{M}_u$ with ideals $\mathcal{M}_u \subset \mathbb{C}[x_1, \dots, x_n]$ stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).
- In other words, \mathcal{M} is monomial.

The general case requires more commutative algebra.

イロト 不得下 イヨト イヨト

Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

This is done by relative order reduction, using relative logarithmic derivatives.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{Y/B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y/B}^{\leq a}\mathcal{I} = (1)$.

イロト イポト イヨト イヨト 二日

The new step

• $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B} \mathcal{I}$ is an ideal which is monomial along the fibers.

- 一司

-

The new step

• $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B} \mathcal{I}$ is an ideal which is monomial along the fibers. • relord_p(\mathcal{I}) = ∞ if and only if $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is a nonunit ideal.

The new step

- $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B} \mathcal{I}$ is an ideal which is monomial along the fibers.
- relord_p(\mathcal{I}) = ∞ if and only if $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is a nonunit ideal.

Monomialization Theorem [ℵ-T-W]

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_Y$ an ideal with $\mathcal{D}_{Y/B}\mathcal{M} = \mathcal{M}$. There is a log morphism $B' \to B$ with saturated pullback $Y' \to B'$, such that $\mathcal{MO}_{Y'}$ a monomial ideal.

After this one can proceed as in the case "dim B = 0".

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

- 3

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

• Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u\frac{\partial}{\partial u} v\frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u\frac{\partial}{\partial u} v\frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u\frac{\partial}{\partial u} v\frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,

• say
$$f = u^{\alpha} f_{\alpha}$$
, with $f_{\alpha} \in \mathbb{C}[w]$.

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u\frac{\partial}{\partial u} v\frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,

• say
$$f = u^{\alpha} f_{\alpha}$$
, with $f_{\alpha} \in \mathbb{C}[w]$.

Blowing up (f_α) on B has the effect of making it monomial, so f becomes monomial.

イロト 不得 トイヨト イヨト 二日

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u\frac{\partial}{\partial u} v\frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,

• say
$$f = u^{\alpha} f_{\alpha}$$
, with $f_{\alpha} \in \mathbb{C}[w]$.

• Blowing up (f_{α}) on B has the effect of making it monomial, so f becomes monomial.

The general case is surprisingly subtle.

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $I = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $I = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $I = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- ▶ on the *u*-chart Spec $\mathbb{C}[u, x']$ with x = x'u we have $\mathcal{IO}_{Y'_1} = (u^2)$,
- on the x-chart Spec $\mathbb{C}[u', x]$ with u' = xu' we have $\mathcal{IO}_{Y'} = (x^2)$,
- which is exceptional hence monomial.

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $I = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- on the *u*-chart Spec $\mathbb{C}[u, x']$ with x = x'u we have $\mathcal{IO}_{Y'_1} = (u^2)$,
- on the x-chart Spec $\mathbb{C}[u', x]$ with u' = xu' we have $\mathcal{IO}_{Y'} = (x^2)$,
- which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

글 > - + 글 >

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $I = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $I = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $I = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.
- What is this? What is its blowup?

Kummer ideals

Definition

A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of *Y*.

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of *Y*.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $(x_1, \ldots, x_k, u_1^{1/d}, \ldots u_\ell^{1/d})$.
Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

A B F A B F

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

• There is no log scheme Y' satisfying the proposition.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
- There is a stack $Y' = Y(\sqrt{D})$, the Cadman–Vistoli root stack, satisfying the proposition!

(本間) (本語) (本語) (語)

Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.

- 御下 - 西下 - 西下 - 西

Example 2 concluded

• Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

• Let
$$\mathcal{I} = (v, x^2)$$
 and $\mathcal{J} = (v^{1/2}, x)$.

- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - Y'_x := Spec ℂ[v, x, v']/(v'x² = v), where v' = v/x² (nonsingular scheme).
 - **★** Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (v, x^2)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).

Example 2 concluded

• Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

• Let
$$\mathcal{I} = (v, x^2)$$
 and $\mathcal{J} = (v^{1/2}, x)$.

- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - Y'_x := Spec ℂ[v, x, v']/(v'x² = v), where v' = v/x² (nonsingular scheme).
 - **★** Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (v, x^2)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).
 - ► The v^{1/2}-chart:
 - * stack quotient $X'_{v^{1/2}} := [\operatorname{Spec} \mathbb{C}[w, y]/\mu_2],$
 - * where y = x/w and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
 - ★ Exceptional w = 0 (monomial).
 - * (v, x^2) transformed into invertible monomial ideal $(v) = (w^2)$.
 - * $(v^{1/2}, x)$ transformed into invertible monomial ideal (w).

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal{JO}_{Y'}$ is an invertible ideal.

• Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{JO}_{\tilde{Y}}$ is an ideal.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .
- Y' is the relative coarse moduli space of $\tilde{Y}' \to Y \times B\mathbb{G}_m$.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}} := \mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .
- Y' is the relative coarse moduli space of $\tilde{Y}' \to Y \times B\mathbb{G}_m$.
- One shows this is independent of choices. \blacklozenge