Resolution in characteristic 0 — why does it work?

Dan Abramovich, Brown University with Michael Tëmkin and Jarosław Włodarczyk parallel work by M. McQuillan

Harmonies in Moduli Spaces

Rome, June 9-13, 2025

- Work over \mathbb{C} . The main result is Hironaka's theorem.
- Given: singular closed $X \subset Y$ smooth.

- \bullet Work over $\mathbb C.$ The main result is Hironaka's theorem.
- Given: singular closed $X \subset Y$ smooth.
- Embedded resolution is $Y' \to Y$ where
 - Proper birational, Y' smooth
 - isomorphism away from Sing(X).
 - proper transform X' of X is smooth.

- \bullet Work over $\mathbb C.$ The main result is Hironaka's theorem.
- Given: singular closed $X \subset Y$ smooth.
- Embedded resolution is $Y' \to Y$ where
 - Proper birational, Y' smooth
 - isomorphism away from Sing(X).
 - proper transform X' of X is smooth.

Theorem (Hironaka)

Such exists.

• I allow Y' and X' to be stacks (namely "moduli spaces")

4 1 1 1 4 1 1 1

- \bullet Work over $\mathbb C.$ The main result is Hironaka's theorem.
- Given: singular closed $X \subset Y$ smooth.
- Embedded resolution is $Y' \to Y$ where
 - Proper birational, Y' smooth
 - isomorphism away from Sing(X).
 - proper transform X' of X is smooth.

Theorem (Hironaka)

Such exists.

- I allow Y' and X' to be stacks (namely "moduli spaces")
- as they do create harmonies.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

э

< □ > < @ >

• I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

э

• I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

э

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n]$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

• $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \ldots, x'_k)$.

A B b A B b

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_{Y}[s, x'_{1}, \ldots, x'_{k}]/(x_{1} - s^{\mathbf{w}_{1}}x'_{1}, \ldots, x_{k} - s^{\mathbf{w}_{k}}x'_{k})$$

- $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \dots, x'_k)$.
- \mathbb{G}_m acts on B via $t \cdot (s, x'_1, \dots, x'_k) = (t^{-1}s, t^{\mathbf{w}_1}x'_1, \dots, t^{\mathbf{w}_k}x'_k)$.

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

- $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \ldots, x'_k)$.
- \mathbb{G}_m acts on B via $t \cdot (s, x'_1, \dots, x'_k) = (t^{-1}s, t^{\mathbf{w}_1}x'_1, \dots, t^{\mathbf{w}_k}x'_k).$
- Action stabilizes V, action on $B_+ := B \setminus V$ has finite stabilizers.

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

- $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \ldots, x'_k)$.
- \mathbb{G}_m acts on B via $t \cdot (s, x'_1, \dots, x'_k) = (t^{-1}s, t^{\mathbf{w}_1}x'_1, \dots, t^{\mathbf{w}_k}x'_k)$.
- Action stabilizes V, action on $B_+ := B \setminus V$ has finite stabilizers.
- $BI_{\overline{J}}(Y) := [B_+ / \mathbb{G}_m].$

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

- $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \ldots, x'_k)$.
- \mathbb{G}_m acts on B via $t \cdot (s, x'_1, \dots, x'_k) = (t^{-1}s, t^{\mathbf{w}_1}x'_1, \dots, t^{\mathbf{w}_k}x'_k).$
- Action stabilizes V, action on $B_+ := B \setminus V$ has finite stabilizers.
- $BI_{\overline{J}}(Y) := [B_+ / \mathbb{G}_m].$
- on \mathbb{G}_m -slice $x'_i = 1$, when $w_i = 1$
- $x_i = s$ \rightsquigarrow $x_j = x_i x'_j$, the usual charts.

・ロット 御 とう きょう く 目 とうしょう

 I treat blowups following Rees, Fulton-MacPherson, Reid, Cox, Włodarczyk, Quek-Rydh.

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$
 on $Y = \operatorname{Spec} k[x_1, \dots, x_n].$

•
$$\widetilde{R} := \mathcal{O}_Y[s, x'_1, \ldots, x'_k]/(x_1 - s^{\mathbf{w}_1}x'_1, \ldots, x_k - s^{\mathbf{w}_k}x'_k)$$

- $B := \operatorname{Spec}_Y \widetilde{R}$ with vertex $V(x'_1, \ldots, x'_k)$.
- \mathbb{G}_m acts on B via $t \cdot (s, x'_1, \dots, x'_k) = (t^{-1}s, t^{\mathbf{w}_1}x'_1, \dots, t^{\mathbf{w}_k}x'_k)$.
- Action stabilizes V, action on $B_+ := B \setminus V$ has finite stabilizers.

•
$$Bl_{\overline{J}}(Y) := [B_+ / \mathbb{G}_m].$$

- on \mathbb{G}_m -slice $x'_i = 1$, when $w_i = 1$
- $x_i = s$ \rightsquigarrow $x_j = x_i x'_j$, the usual charts.
- in general stabilized by μ_{w_i} :

•
$$x_i = s^{\mathbf{w}_i} \quad \rightsquigarrow \quad x_j = s^{\mathbf{w}_j} x'_j$$
, not the usual charts.

医静脉 医黄疸 医黄疸 医

B is the degeneration to normal cone. s = 1: just Y containing $Z := V(\overline{J})$

B is the degeneration to normal cone. s = 1: just *Y* containing $Z := V(\overline{J})$ s = 0: $N_Z Y$

э

A B A A B A

< 1[™] >

B is the degeneration to normal cone. s = 1: just Y containing $Z := V(\overline{J})$ s = 0 : $N_7 Y$ Action indicated with arrows

B is the degeneration to normal cone. s = 1: just *Y* containing $Z := V(\overline{J})$ s = 0: $N_Z Y$ Action indicated with arrows Also indicated what happens to a closed $X \subset Y$ containing *Z*

Weighted blowups — global meaning

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k}) \quad \longleftrightarrow \quad \text{monomial valuation } v_{\overline{J}}(x_i) = w_i$$

æ

イロト イボト イヨト イヨト

Weighted blowups — global meaning

• $\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k}) \quad \longleftrightarrow \text{ monomial valuation } v_{\overline{J}}(x_i) = w_i.$ • $\widetilde{R} = \bigoplus_{a \in \mathbb{Z}} R_a, \qquad R_a := \{j \in \mathcal{O}_Y : v_{\overline{J}}(f) \ge a\}$

Weighted blowups — global meaning

•
$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k}) \quad \longleftrightarrow \quad \text{monomial valuation } v_{\overline{J}}(x_i) = w_i.$$

• $\widetilde{R} = \bigoplus_{a \in \mathbb{Z}} R_a, \qquad R_a := \{j \in \mathcal{O}_Y : v_{\overline{J}}(f) \ge a\}$
• $V = V(\widetilde{R}_+), \qquad \widetilde{R}_+ := \bigoplus_{a \ge 0} R_a.$

æ

イロト イボト イヨト イヨト

• A singularity invariant is a rule $X \subset Y \quad \rightsquigarrow \quad \operatorname{inv}_X : |X| \to \Gamma$,

イロト 不得 トイヨト イヨト 二日

- A singularity invariant is a rule $X \subset Y \quad \rightsquigarrow \quad \operatorname{inv}_X : |X| \to \Gamma$,
 - Γ is a well-ordered set,
 - inv_X is upper-semicontinuous, and
 - $\operatorname{inv}_X(p) = \min \Gamma \quad \Leftrightarrow \quad p \in X \text{ is nonsingular.}$

イロト 不得 トイヨト イヨト 二日

- A singularity invariant is a rule $X \subset Y \quad \rightsquigarrow \quad \operatorname{inv}_X : |X| \to \Gamma$,
 - Γ is a well-ordered set,
 - inv_X is upper-semicontinuous, and
 - $\operatorname{inv}_X(p) = \min \Gamma \quad \Leftrightarrow \quad p \in X \text{ is nonsingular.}$
- Functorial invariant if whenever $\phi: Y_1 \to Y$ is smooth, with $X_1 = \phi^{-1}X$, we have

 $\operatorname{inv}_{X_1}(p_1) = \operatorname{inv}_X(\phi(p_1)).$

- A singularity invariant is a rule $X \subset Y \quad \rightsquigarrow \quad \operatorname{inv}_X : |X| \to \Gamma$,
 - Γ is a well-ordered set,
 - inv_X is upper-semicontinuous, and
 - $\operatorname{inv}_X(p) = \min \Gamma \quad \Leftrightarrow \quad p \in X \text{ is nonsingular.}$
- Functorial invariant if whenever $\phi: Y_1 \to Y$ is smooth, with $X_1 = \phi^{-1}X$, we have

$$\operatorname{inv}_{X_1}(p_1) = \operatorname{inv}_X(\phi(p_1)).$$
 *

- A singularity invariant is a rule $X \subset Y \quad \rightsquigarrow \quad \operatorname{inv}_X : |X| \to \Gamma$,
 - Γ is a well-ordered set,
 - inv_X is upper-semicontinuous, and
 - $\operatorname{inv}_X(p) = \min \Gamma \quad \Leftrightarrow \quad p \in X \text{ is nonsingular.}$
- Functorial invariant if whenever $\phi : Y_1 \to Y$ is smooth, with $X_1 = \phi^{-1}X$, we have

$$\operatorname{inv}_{X_1}(p_1) = \operatorname{inv}_X(\phi(p_1)).$$
 *

• Smooth invariant if the maximal locus

 $\{p \in X : inv_X(p) \text{ is maximal } \}$

in X is smooth.

くぼう くさう くさう しき

Assume we have a smooth, functorial singularity invariant inv.

A B A A B A

< □ > < 同 >

Assume we have a smooth, functorial singularity invariant inv.

Lemma

• Fix $X \subset Y$ and assume we have a center

$$\overline{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$$

on Y which satisfies (a) $V(\overline{J})$ is the maximal locus of inv_X on X, and

< □ > < □ > < □ > < □ > < □ > < □ >

Assume we have a smooth, functorial singularity invariant inv.

Lemma

• Fix $X \subset Y$ and assume we have a center

$$\overline{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$$

on Y which satisfies (a) $V(\overline{J})$ is the maximal locus of inv_X on X, and (b) $maxinv_X = maxinv_{BX}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Assume we have a smooth, functorial singularity invariant inv.

Lemma

• Fix $X \subset Y$ and assume we have a center

$$\overline{J} = (x_1^{1/w_1}, \dots, x_k^{1/w_k})$$

on Y which satisfies (a) $V(\overline{J})$ is the maximal locus of inv_X on X, and (b) $max inv_X = max inv_{BX}$. Then

 $\max \operatorname{inv}_{Bl_{\overline{J}}(X)} < \max \operatorname{inv}_X.$

< □ > < □ > < □ > < □ > < □ > < □ >

Assume we have a smooth, functorial singularity invariant inv.

Lemma

• Fix $X \subset Y$ and assume we have a center

$$\overline{J} = (x_1^{1/w_1}, \ldots, x_k^{1/w_k})$$

on Y which satisfies (a) $V(\overline{J})$ is the maximal locus of inv_X on X, and (b) $max inv_X = max inv_{BX}$. Then

 $\max \operatorname{inv}_{Bl_{I}(X)} < \max \operatorname{inv}_{X}.$

Assume a center J satisfying these conditions exists for every resolution situation X ⊂ Y. Then resolution of singularities holds.

ヘロト 人間ト ヘヨト ヘヨト

Proof of criterion

Proof of 2: denoting $X' = Bl_{\overline{J}}(X)$, and then $X^{(n)} = Bl_{\overline{J}_{X^{(n-1)}}}(X^{(n-1)})$, the invariants drop, and must stop when $X^{(n)}$ is smooth.

Proof of criterion

Proof of 2: denoting $X' = Bl_{\overline{J}}(X)$, and then $X^{(n)} = Bl_{\overline{J}_{X^{(n-1)}}}(X^{(n-1)})$, the invariants drop, and must stop when $X^{(n)}$ is smooth.

Proof of 1:

Claim: The maximal locus W equals V. With this, the invariant on B_+X drops. But $B_+X \to X'$ is smooth, so the invariant on X' drops.

<ロ> <四> <四> <四> <四> <四</p>

• $\{s \neq 0\} \rightarrow Y$ is smooth. So by functoriality and (a), $W \cap \{s \neq 0\} = V \cap \{s \neq 0\}$, with maximal invariant as that of X.

- $\{s \neq 0\} \rightarrow Y$ is smooth. So by functoriality and (a), $W \cap \{s \neq 0\} = V \cap \{s \neq 0\}$, with maximal invariant as that of X.
- By (b) the maximal invariant on B is the same, so by upper-semicontinuity and smoothness V is an connected component of W.

- $\{s \neq 0\} \rightarrow Y$ is smooth. So by functoriality and (a), $W \cap \{s \neq 0\} = V \cap \{s \neq 0\}$, with maximal invariant as that of X.
- By (b) the maximal invariant on B is the same, so by upper-semicontinuity and smoothness V is an connected component of W.
- By functoriality any point $b \in N_Z \cap W$ comes along with its orbit.

- $\{s \neq 0\} \rightarrow Y$ is smooth. So by functoriality and (a), $W \cap \{s \neq 0\} = V \cap \{s \neq 0\}$, with maximal invariant as that of X.
- By (b) the maximal invariant on B is the same, so by upper-semicontinuity and smoothness V is an connected component of W.
- By functoriality any point $b \in N_Z \cap W$ comes along with its orbit.
- The limit point of the orbit lies in V, contradicting that V is a connected component of W.

9/15

Resolution exists

Theorem (ℵ-Tëmkin-Włodarczyk)

In characteristic 0, a smooth functorial singularity invariant and, for every $X \subset Y$, a center \overline{J} satisfying (a) and (b) exist.

- In particular, by (2) resolution exists.
- I am not aware of a proof of Hironaka's theorem going through such criterion without weighted blowups.
- Let us see some examples.

• Let
$$X = V(x^2 - y^2 z)$$
.

Image: A matched block

• Let
$$X = V(x^2 - y^2 z)$$
.

- The most singular point is the origin p = V(x, y, z),
- x, y, z appear in degrees 2, 3, 3 respectively.

• Let
$$X = V(x^2 - y^2 z)$$
.

- The most singular point is the origin p = V(x, y, z),
- x, y, z appear in degrees 2, 3, 3 respectively.
- $inv_p = (2,3,3)$, and $J = (x^2, y^3, z^3)$,
- reduced center $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}) = J^{1/6}$ which we can blow up.

• Let
$$X = V(x^2 - y^2 z)$$
.

- The most singular point is the origin p = V(x, y, z),
- x, y, z appear in degrees 2, 3, 3 respectively.
- $inv_p = (2, 3, 3)$, and $J = (x^2, y^3, z^3)$,
- reduced center $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}) = J^{1/6}$ which we can blow up.
- On *B* have $x = s^3 x', y = s^2 y', z = s^2 z'$.
- Plugging in the equation becomes $s^6(x'^2 + y'^2z')$.
- Proper transform BX is given by $V(x'^2 + y'^2z')$. its maximal locus is again the locus V(x', y', z').

• Let
$$X = V(x^2 - y^2 z)$$
.

- The most singular point is the origin p = V(x, y, z),
- x, y, z appear in degrees 2, 3, 3 respectively.
- $inv_p = (2, 3, 3)$, and $J = (x^2, y^3, z^3)$,
- reduced center $\overline{J} = (x^{1/3}, y^{1/2}, z^{1/2}) = J^{1/6}$ which we can blow up.
- On *B* have $x = s^3 x', y = s^2 y', z = s^2 z'$.
- Plugging in the equation becomes $s^6(x'^2 + y'^2z')$.
- Proper transform BX is given by $V(x'^2 + y'^2z')$. its maximal locus is again the locus V(x', y', z').
- This locus is removed in B_+ , hence the invariant drops.

Weighted blowup of Whitney's umbrella — picture

The red dot is the μ_3 point s = z' = y' = 0.

The green triangle is the exceptional weighted projective plane s = 0. The light green line is the μ_2 -locus s = x' = 0.

The purple curve is the intersection of the umbrella with the exceptional.

Standard blowup of Whitney's umbrella

- Consider the same X but with the blowup but with $\overline{J} = (x, y, z)$.
- In this case the proper transform BX is defined by the equation

$$x^{\prime 2}+y^{\prime 2}z^{\prime }s.$$

- We notice that at the point where x' = y' = z' = s = 0 has these variables appearing in degrees 2, 4, 4, 4 which is larger than the original 2, 3, 3.
- In other words, it does not satisfy the criterion.
- As is well-known, the standard blowup of X has an isomorphic singularity: for any z' ≠ 0 the equation above is isomorphic to X, so the invariant stays the same after blowup.
- In the example of $x^2 yzwt$, the standard blowup would actually get things worse.

Resolving
$$X = V(x^5 + x^3y^3 + y^{100})$$

Consider the newton polyhedron

Resolving
$$X = V(x^5 + x^3y^3 + y^{100})$$

Consider the newton polyhedron

- $inv(0) = (5, 7.5), J = (x^5, y^{7.5}), \overline{J} = (x^{1/3}, y^{1/2}).$
- The proper transform is $x'^5 + x'^3y'^3 + y'^{100}s^{185}$ and the criterion holds.

Resolving
$$X = V(x^5 + x^3y^3 + y^{100})$$

Consider the newton polyhedron

- $inv(0) = (5, 7.5), J = (x^5, y^{7.5}), \overline{J} = (x^{1/3}, y^{1/2}).$
- The proper transform is $x'^5 + x'^3y'^3 + y'^{100}s^{185}$ and the criterion holds.
- The invariant of the blowup is (3, 185) < (5, 7.5) lexicographically.
- The next weighted blowup is nonsingular.

Thanks for years of friendship and inspiration

< 47 ▶

Thanks for years of friendship and inspiration

Thanks for years of friendship and inspiration

... wishing you many more happy and productive years!