Title of Paper

The author(s)'s name(s)*

Abstract. This is to explain how to prepare a contribution for publication in EMS Congress Reports.

2010 Mathematics Subject Classification. Primary 11-XX; Secondary 14-XX.
Keywords. Drinfeld modules, L-functions, Weil conjecture.

1. Introduction

Authors are requested to use standard $\mathrm{AAT}_{\mathrm{E}} \mathrm{X}$ and the class file

```
emsprocart.cls
```

This file is essentially 'article.cls', slightly changed, loading amsmath, amsfonts, amssymb, latexsym, and with amsthm.sty included. It sets the page size to

```
\textheight=548pt
\textwidth=357pt
```

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ source file should begin with
\documentclass\{emsprocart\}
Enter the name(s) of the author(s) using the tag
\contact[e-mail address]\{Author's address\}
Each author's name should be entered with a separate \contact command. No personal style files should be used. Each paper should contain the 2000 Mathematics Subject Classification. Please DO NOT use one-letter lower case newly defined commands like

```
\newcommand{\e}{\varepsilon}
```

since this can interfere with the hyperref package and conversion of your article to Times fonts later.

2. Some rules

In order to achieve a uniform appearance of all the contributions, we encourage you to to observe the following rules when preparing your article.

[^0]2.1. Displayed formulas. If you have displayed formulas consisting of more than one line we recommend to you use
\begin\{align\}... \end\{align\} }
instead of
\begin\{eqnarray\}... \end\{eqnarray\} }
(respectively the starred forms) since the former yields a better spacing. Compare:
\[

$$
\begin{align*}
A & =f\left(x_{i}\right)=F^{\prime}(x) \tag{1}\\
B & =g\left(x_{i}\right)=G^{\prime}(x) \tag{2}\\
A & =f\left(x_{i}\right)=F^{\prime}(x) \tag{3}\\
B & =g\left(x_{i}\right)=G^{\prime}(x) \tag{4}
\end{align*}
$$
\]

In case you do not want the numbering for every line, type
\nonumber
at the end of the line where you do not want a number.

$$
\begin{align*}
& A=f\left(x_{i}\right)=F^{\prime}(x) \\
& B=g\left(x_{i}\right)=G^{\prime}(x) \tag{5}
\end{align*}
$$

If you want a number for the complete block, this works:

$$
\begin{align*}
& \text { \begin\{equation\}\begin\{split\}...\end\{split\}\end\{equation\} } } \\
{ \qquad \begin{array} { c }
{ A = f (x _ { i }) = F ^ { \prime } (x) } \\
{ B = g (x _ { i }) = G ^ { \prime } (x) }
\end{array} }
\end{array}}
\end{align*}
$$

If you prefer to number equations in the form $(2.1),(2.2), \ldots$, add the line

```
\numberwithin{equation}{section}
```

to the preamble of your document.
2.2. Theorems and alike. For theorems, lemmas, definitions, etc. use the standard syntax.
\begin\{theorem\}... \end\{theorem\} }
Put optional arguments into square brackets ("Main Theorem, [5]" in the example below).

Theorem 2.1 (Main Theorem, [5]). If a knot K has Seifert form V_{K} and its Alexander polynomial is not 1, then there is an infinite family $\left\{K_{i}\right\}$ of nonconcordant knots such that each K_{i} has Seifert form V_{K}.

Definition 2.2. A preference order (or preference relation) on \mathcal{X} is a binary relation \succ with the following two properties.
(1) Asymmetry: If $x \succ y$, then $y \nsucc x$.
(2) Negative transitivity: If $x \succ y$ and $z \in \mathcal{X}$, then either $x \succ z$ or $z \succ y$ or both must hold.

In this example file, enumerations of theorems, lemmas definitions, etc. appear consecutively. If you want separate numbering (Theorem 2.1, Definition 2.1) change e.g.
\newtheorem[theorem] \{definition\}
to
\newtheorem\{definition\}\{Definition\} [section]
If you want a statement unnumbered, just define
\newtheorem*\{coro\}\{Corollary\}
to obtain
Corollary. If all the coefficients of (A.2) are entire functions, then all local solutions of (A.2) admit a meromorphic continuation over the whole complex plane \mathbb{C}.

For a proof, use
\begin\{proof\}... \end\{proof\} }
An end-of-proof sign \square is set automatically.
Proof. This finishes the proof of the corollary.
2.3. Operator names. There are several $T_{E} X$-commands setting things automatically upright like det, sin,... . If you need operators not predefined, simply define e.g.

```
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\Ker}{\operatorname{Ker}}
```

and then use
\Hom, \Ker
to obtain

$$
\varphi \in \operatorname{Hom}(G / H) \Longrightarrow \operatorname{Ker}(\varphi) \neq\{0\}
$$

It is accepted typographical standard that abbreviated mathematical expressions standing for "words" appear in roman (upright) typeface.

3. References

It follows a list of references showing you the style in which books and journal articles should be listed.
[1] M. T. Anderson, Geometric aspects of the AdS/CFT correspondence. In AdS/CFT Correspondence: Einstein metrics and their conformal boundaries (ed. by Olivier Biquard). IRMA Lect. Math. Theor. Phys. 8, European Math. Soc. Publishing House, Zürich 2005, 1-31.
[2] I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978), 736-754.
[3] M. H. Freedman and F. Quinn, Topology of 4-manifolds. Princeton Math. Ser. 39, Princeton University Press, Princeton, NJ, 1990.
[4] A. I. Mal'cev, On homomorphisms onto finite groups. Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49-60.
[5] M. Schweizer, Hedging of options in a general semimartingale model. Diss. ETH Zürich No. 8615, Zürich 1988.
[6] M. F. Vigneras, Induced representations of reductive p-adic groups in characteristic $\ell \neq p$. Selecta Math. (N.S) 4 (1998), 549-623.

Author's name, Department, University, PO Box or Street, City, Country
E-mail: e-mail address

[^0]: *The authors are grateful to the Max Planck Institute (Bonn) for hospitality during the writing of this paper.

