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1. Introduction

1.1. Moduli of stable varieties: the case of surfaces. In the paper [KSB88],
Kollár and Shepherd-Barron introduced stable surfaces as a generalization of stable
curves. This class is natural from the point of view of the minimal model program,
which shows that any one-parameter family of surfaces of general type admits a
unique stable limit. Indeed, the stable reduction process of Deligne and Mum-
ford can be interpreted using the language of minimal models of surfaces. Stable
surfaces admit semilog canonical singularities. Codimension-one semilog canonical
singularities are nodes, but in codimension two more complicated singularities arise.
However, these singularities are all reduced, satisfy Serre’s condition S2 (hence are
Cohen–Macaulay in codimension 2), and admit a well-defined Q-Cartier canoni-
cal divisor KS . Stable varieties in any dimension are similarly defined as proper
varieties with semilog canonical singularities and ample canonical divisor.

Kollár and Shepherd-Barron proposed the moduli space of stable surfaces as the
natural compactification of the moduli space of surfaces of general type. Much
of this was established in [KSB88], which also offered a detailed classification of
the singularities that arise. Boundedness of the class of stable surfaces with fixed
invariant (KS)2 was shown by Alexeev [Ale94].

1.2. The problem of families. To a great extent this established the moduli space
of stable surfaces as the ‘right’ geometric compactification of moduli of surfaces of
general type. But one nagging question remains unresolved: what flat families
π : X → B of stable surfaces should be admitted in the compactification?
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2 D. ABRAMOVICH AND B. HASSETT

The problem stems precisely from the fact that the dualizing sheaf ωS = OS(KS)
is not necessarily invertible for a stable surface. Rather, for a suitable positive
integer n depending on S, the sheaf

OS(nKS) = ω
[n]
S := (ωnS)∗∗

is invertible. As it turns out, there exist flat families π : X → B over a smooth
curve where the fibers are stable surfaces but ω[n]

π is not locally free for any n 6= 0.
For a local example, see Pinkham’s analysis of the deformation space of the cone
over a rational normal quartic curve described in [KSB88, Example 2.8].

Two approaches were suggested to resolve this issue (see [HK04] for detailed
discussion). In [Kol90, 5.2], Kollár proposed what has come to be called a Kollár
family of stable surfaces, where the formation of every saturated power of ωπ is
required to commute with base change. Viehweg [Vie95] suggested using families
where some saturated power of ωπ is invertible (and in particular, commutes with
base extension), i.e., there exists an integer n > 0 and an invertible sheaf on X

restricting to ω[n]
S on each fiber S of π.

It has been shown in [HK04] that Viehweg families give rise to a good moduli
space. The purpose of this article is to address the case of Kollár families. While
this question has been considered before (cf. [Hac04]), the solution we propose is
perhaps more natural than previous approaches, and has implications beyond the
question at hand.

We must note that Kollár’s [Kol08] resolves the issue by tackling it head on
using the moduli spaces of Husks. Our approach goes by way of showing that, in
the situation at hand, if we consider objects with an appropriate stack structure,
the problem does not arise. This does require us to show that moduli spaces of
such stack structures are well behaved.

1.3. Canonical models and quotient stacks. Here is the basic idea: Let X be
a smooth projective variety of general type. A fundamental invariant of X is the
canonical ring

R(X) := ⊕n≥0Γ(X,ωnX),

a graded ring built up from the differential forms on X. This ring has long been
known to be a birational invariant of X and has recently been shown to be finitely
generated [BCHM06]. This was known classically for curves and surfaces, and
established for threefolds by S. Mori in the 1980’s. The associated projective variety

Xcan := ProjR(X) = (SpecR(X) r 0)/Gm

is called the canonical model of X. Some saturated power ω[n]
Xcan is ample and

invertible, essentially by construction. Therefore, deformations of canonical models
(and stable surfaces) are most naturally expressed via deformations of the canonical
ring.

In these terms, our main problem is that certain deformations of a stable surface
do not yield deformations of its canonical ring. Our solution is to replace Xcan

with a more sophisticated geometric object that remembers its algebraic origins.
Precisely, we consider quotient stacks

X can = ProjR(X) := [(SpecR(X) r 0)/Gm] ,
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which admit nontrivial stack-structure at precisely the points where ωXcan fails
to be invertible. Our main goal is to show that this formulation is equivalent to
Kollár’s, and yields a workable moduli space.

1.4. Moduli of stacks: the past. The idea that families with fibers having stack
structure should admit workable moduli spaces is not new. On the level of defor-
mations, Hacking’s approach in [Hac04] uses precisely this idea. The case of stable
fibered surfaces, namely stable surfaces fibered over curves with semistable fibers,
was discussed in [AV00]. It was generalized to many moduli problems involving
curves in [AV02] and to varieties of higher dimension with suitable “plurifibration”
structures [Abr02]. The fibered and plurifibered examples are a little misleading,
since the existence of canonical models and complete moduli in those cases are an
outcome of [AV02] and do not require the minimal model program. Still they do
reinforce the point that stacks do not pose a true obstacle in defining moduli.

We show in this paper that this is indeed the case for stacks of the form X =
ProjR for R a finitely generated graded ring, and moreover this works in exactly
the same way it works for varieties, if one takes the appropriate viewpoint. Classical
theory of moduli of projective varieties starts by considering varieties embedded
in Pn, forming Hilbert schemes, taking quotient stacks of the appropriate loci of
normally embedded varieties by the action of PGL(n+1), and taking the union of
all the resulting stacks over all types of embeddings. Then one tries to carve out
pieces of this “mother of all moduli spaces” (of varieties) which are bounded, and
if lucky, proper, by fixing appropriate numerical invariants.

Miles Reid has been advocating over the years that, while most people insist
on embedding projective varieties in projective space, the varieties really beg to
be embedded in weighted projective spaces, denoted P(ρ) below. This is simply
because graded rings are in general not generated in one degree; see [Rei78] and
[Rei97], for example. For our stacks this point is absolutely essential, and in fact our
stacks (as well as varieties) are embedded in the appropriate weighted projective
stacks, denoted P(ρ) below.

1.5. Moduli of stacks: this paper. In section 2 we consider weighted projec-
tive stacks and their substacks. Following [OS03] substacks are parametrized by
a Hilbert scheme. All substacks of P(ρ) are cyclotomic, in particular tame, and
in analogy with the scheme case, we characterize in Proposition 2.4.2 pairs (X ,L)
consisting of a cyclotomic stack with a polarizing line bundle - one affording an
embedding - in cohomological terms.

Similar results are obtained in [RT09], though the emphasis is different. Ross
and Thomas use embeddings in weighted projective stacks and Geometric Invariant
Theory to construct distinguished Kähler metrics.

In section 3 we use these results to construct an algebraic stack StaL parametriz-
ing pairs (X ,L) of a proper stack with polarizing line bundle L (see Theorem 3.1.4).
This involves studying the effect of changing the range of weights on the moduli of
normally embedded substacks (see Proposition 3.2.4).

In section 4 we introduce orbispaces, discuss the difference between polarizing line
bundle and polarization, and construct algebraic stacks OrbL and Orbλ parametriz-
ing orbispaces with polarizing line bundles and polarized orbispaces, respectively (see
Proposition 4.2.1). We further discuss the canonical polarization, and the algebraic
stack Orbω of canonically polarized orbispaces, in Theorem 4.4.4.
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This ends the general discussion of moduli of stacks, and brings us to the ques-
tions related to Kollár families. We begin Section 5 by discussing Kollár families of
Q-line bundles (see Definition 5.2.1). We then define uniformized twisted varieties
in Definition 5.3.4. An important point here is that the conditions on flat families
are entirely on geometric fibers.

Finally we relate the two notions and prove an equivalence of categories between
Kollár families (X → B,F ) of Q-line bundles and families of uniformized twisted
varieties (see Theorem 5.3.6). In particular this means that we have an algebraic
stack KL of Kollár families with a polarizing Q-line bundle, which is at the same
time the stack of twisted varieties with polarizing line bundles. The rigidification Kλ
of KL is naturally the stack of polarized twisted varieties. After taking a flattening
stratification of the cohomology groups of the relative dualizing complex, we obtain
the locally closed substack Kω of canonically polarized twisted varieties.

We end the paper by applying the previous discussion to moduli of stable varieties
in Section 6. We define the moduli functor in terms of families of twisted stable
varieties and equivalently Kollár families stable varieties. We show that this is
open in Kω (see Proposition A.1.1) and discuss what is known about properness in
section 6.1.

It may be of interest to develop a treatment of the steps of the minimal model
program, and not only the end product ProjR(X), using stacks. It would require
at least an understanding of positivity properties for the birational “contraction”
X → X from a twisted variety to its coarse moduli space, where we expect the
notion of age, introduced in [IR96], to be salient. This however goes beyond the
scope of the present paper.

1.6. Acknowledgments. We are grateful to Valery Alexeev, Kai Behrend, Tim
Cochran, Alessio Corti, Barbara Fantechi, János Kollár, Sándor Kovács, Martin
Olsson, Miles Reid, Julius Ross, Richard Thomas, Eckart Viehweg, and Angelo
Vistoli for helpful conversations about these questions. We appreciate the hospital-
ity of the Mathematisches Forschungsinstitut Oberwolfach and the Mathematical
Sciences Research Institute in Berkeley, California.

1.7. Conventions. Through most of this paper we work over Z. When we refer to
schemes of finite type, we mean schemes of finite type over Z. The main exceptions
are Section 6 and the Appendix, where we assume characteristic zero. We leave it
to the interested reader to the supply the incantations needed to extend our results
to an arbitrary base scheme.

In characteristic zero, we freely use the established literature for Deligne-Mumford
stacks. In positive and mixed characteristics, we rely on the recent paper [AOV08a],
which develops a new notion of ‘tame stacks’ with nice properties, e.g., they admit
coarse moduli spaces that behave well under base extension.

1.8. Notation.
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P(ρ) Weighted projective space of Gm-representation ρ
P(ρ) Weighted projective stack of Gm-representation ρ
StaL Stack of stacks with polarizing line bundle
OrbL Stack of orbispaces with polarizing line bundle
Orbλ – with polarization
Orbω – with canonical polarization
KL Stack of twisted varieties with polarizing line bundle
Kλ – with polarization
Kω – with canonical polarization
�cm Index indicating Cohen-Macaulay fibers
�gor – Gorenstein fibers
�can – canonical singularities (in the coarse fibers)
�slc – semilog canonical singularities fibers
�gor-slc – Gorenstein s.l.c. singularities (in the twisted fibers)
�can indicating canonical model of something

2. Cyclotomic stacks and weighted projective stacks

2.1. Weighted projective stacks.

Definition 2.1.1. Fix a nondecreasing sequence of positive integer weights

0 < ρ1 ≤ . . . ≤ ρr

and consider the associated linear action of Gm on affine space

ρ : Gm × Ar → Ar

ρ∗(x1, . . . , xr) = (tρ1x1, . . . , t
ρrxr).

Recall that weighted projective space associated to the representation ρ is defined
as the quotient scheme

P(ρ) = P(ρ1, . . . , ρr) = (Ar r 0) /Gm.

We define the weighted projective stack as the quotient stack

P(ρ) = P(ρ1, . . . , ρr) =
[
(Ar r 0) / Gm

]
.

Each weighted projective stack has the corresponding weighted projective space
as its coarse moduli space. For each positive integer d we have

P(dρ1, . . . , dρr) ' P(ρ1, . . . , ρr),

however, the weighted projective stacks are not isomorphic unless d = 1. Indeed
P(dρ1, . . . , dρr) → P(ρ1, . . . , ρr) is a gerbe banded by µd. Note also that a weighted
projective stack is representable if and only if each weight ρi = 1; it contains a
nonempty representable open subset if and only if gcd(ρ1, . . . , ρr) = 1.

Definition 2.1.2. Let B be a scheme of finite type and V a locally-free OB-
module of rank r. Suppose that Gm acts OB-linearly on V with positive weights
(ρ1, . . . , ρr). Let w1 < . . . < wm denote the distinct weights that occur, so we have
a decomposition of OB-modules

V ' Vw1 ⊕ . . .⊕ Vwm

with
ρ(v) = twiv, v ∈ Vwi .
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Write A := SpecB(Sym•
BV ) for the associated vector bundle, with its zero section

0 ⊂ A, and
ρ : Gm ×B A → A

for the associated group action. The weighted projective stack associated with V
and ρ is the quotient stack

P(V, ρ) := [ (A r 0) / Gm ] → B.

We will sometimes drop V from the notation when the meaning is unambiguous.

Graded coherent OA-modules descend to coherent sheaves on P(V, ρ); thus for
each integer w, the twist OA(w) yields an invertible sheaf OP(V,ρ)(w) on P(V, ρ).
The canonical graded homomorphisms

Vwi ⊗B OA → OA(wi)

induce
φwi : Vwi ⊗B OP(V,ρ) → OP(V,ρ)(wi), i = 1, . . . ,m.

Note that φwi
vanishes along the locus where the elements of Vwi

are simultane-
ously zero, i.e., where all the weight-wi coordinates simultaneously vanish. The
homomorphisms φwi , i = 1, . . . ,m do not vanish simultaneously anywhere.

The following lemma is well-known in the case of projective space. The proof
for weighted-projective stacks is identical:

Lemma 2.1.3. The stack P(V, ρ) is equivalent, as a category fibered over the
category of B-schemes, with the following category:

(1) Objects over a scheme T consist of
(a) a line bundle L over T , and
(b) OT -linear homomorphisms

φwi : Vwi ⊗B OT → Lwi , i = 1, . . . ,m,

not vanishing simultaneously at any point of T .
(2) Arrows consist of fiber diagrams

L′ → L
↓ ↓
T ′ → T

compatible with the homomorphisms φwi
and φ′wi

.

As we shall see, certain stacks admitting “uniformizing line bundles” have rep-
resentable morphisms into weighted projective stacks.

2.2. Closed substacks of weighted projective stacks. By descent theory, closed
substacks

X ⊂ P(ρ) = P(ρ1, . . . , ρr)
correspond to closed subschemes

X ×P(ρ) (Ar r 0) ⊂ (Ar r 0),

equivariant under the action of Gm. Let CX denote the closure of this scheme in
Ar, i.e., the cone over X . Each such subscheme over a field k can be defined by a
graded ideal

I ⊂ k[x1, . . . , xr].
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The saturation of such an ideal is defined as

{f ∈ k[x1, . . . , xr] : 〈x1, . . . , xr〉d f ⊂ I for some d� 0}
and two graded ideals are equivalent if they have the same saturation. Equivalent
graded ideals give identical ideal sheaves on Ar r 0, hence they define the same
equivariant subschemes of Ar r 0 corresponding to the same substack of P(ρ).

There is one crucial distinction from the standard theory of projective varieties:
when the weights ρi = 1 for all i, every graded ideal is equivalent to an ideal
generated by elements in a single degree. This can fail when the weights are not all
equal. However, if we set N = lcm(ρ1, . . . , ρr) then every graded ideal is equivalent
to one with generators in degrees n, n + 1, . . . , n + N − 1, for n sufficiently large.
(This can be be shown by regarding graded ideals as modules over the subring of
k[x1, . . . , xr] generated by monomials of weights divisible by N .) An equivariant
subscheme CX ⊂ Ar is specified by the induced quotient homomorphisms on the
graded pieces of the coordinate rings

k[x1, . . . , xr]d � k[CX ]d, d = n, n+ 1, . . . , n+N − 1.

In sheaf-theoretic terms, OP(ρ)-module quotients

OP(ρ) � OX
are determined by the induced quotient of OP(ρ)-modules

π∗[⊕N−1
i=0 OP(ρ)(i)] → π∗[⊕N−1

i=0 OX (i)],

or any other interval of twists of length N , where π : P(ρ) → P(ρ) is the coarse
moduli morphism.

Definition 2.2.1. Fix a representation (V, ρ) of Gm with isotypical components
Vw1 , . . . , Vwm of positive weights w1 < · · · < wm.

A closed substack X ⊂ P(ρ) is said to be normally embedded if
(1) for each 1 ≤ j ≤ m, the homomorphism Vwj → H0(X ,OX (wj)) is an

isomorphism,
(2) for each k ≥ w1 and i ≥ 1 we have Hi(X ,OX (k)) = 0, and
(3) the natural homomorphism

SymV −→ ⊕k≥0H
0(X ,OX (k))

surjects onto the component H0(X ,OX (k)) for each k ≥ w1.

We proceed, following Olsson–Starr [OS03] to classify substacks X ⊂ P(ρ) by a
Hilbert scheme. The following definition is [OS03, Definition 5.1].

Definition 2.2.2. A locally free sheaf E on a stack Y is generating if, for each
quasi-coherent OY -module F , the natural homomorphism

θ(F) : π∗π∗HomY(E ,F)⊗Y E → F
is surjective.

We note that
E = ⊕N−1

i=0 OP(ρ)(−i)
is a generating sheaf for P(ρ) where N = lcm(w1, . . . , wm). The main insight of
[OS03] §6 is to reduce the study of OP(ρ)-quotients of F to an analysis of OP(ρ)-
quotients of π∗HomP(ρ)(E ,F). The following is a direct application of [OS03, The-
orem 1.5] to weighted projective stacks.
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Theorem 2.2.3. Let ρ be an action of Gm on Ar with positive weights and P(ρ)
the resulting weighted projective stack. For each scheme T and stack Y, write
YT = Y × T . Consider the functor

Hilb : Z-schemes → Sets

with

HilbP(ρ)(T ) =
{

Isomorphism classes of OP(ρ)T
-linear quo-

tients OP(ρ)T
� Q, with Q flat over T

}

=
{

Closed substacks X ⊂ P(ρ)T over T, with X
flat over T

}
.

Then HilbP(ρ) is represented by a scheme (denoted also HilbP(ρ)).
Furthermore, for each function F : Z → Z, the subfunctor consisting of closed

substacks X ⊂ P(ρ)T with Hilbert-Euler characteristic

χ(Xt,OXt(m)) = F(m)

for all geometric points t ∈ T is represented by a projective scheme HilbP(ρ),F

which is a finite union of connected components of HilbP(ρ).

2.3. Cyclotomic stacks and line bundles. Given an algebraic stack X , the
inertia stack is an algebraic stack whose objects are pairs (ξ, σ), with ξ an object
of X and σ ∈ Aut (ξ). The morphism IX → X given by (ξ, σ) 7→ ξ is representable,
and IX is a group-scheme over X . If X is separated, the morphism IX → X is
proper.

Definition 2.3.1. A flat separated algebraic stack

f : X → B

locally of finite presentation over a scheme B is said to be a cyclotomic stack if it
has cyclotomic stabilizers, i.e. if each geometric fiber of IX → X is isomorphic to
the finite group scheme µn for some n.

Keeping X separated, let π : X → X denote the coarse-moduli-space morphism;
it is proper and quasi-finite [KM97]. The resulting family of coarse moduli spaces
is denoted f̄ : X → B.

Example 2.3.2. Let Y → B be an algebraic space, flat and separated over B.
If Gm acts properly on Y over B with finite stabilizers then the quotient stack
X := [Y/Gm] → B is cyclotomic.

Indeed, the stabilizer scheme

Z = {(y, h) : h · y = y} ⊂ Y ×B Gm

is equivariant with Gm-action on Y ×B Gm

g · (y, h) = (gy, ghg−1) = (gy, h).

On taking quotients, we obtain

IX = [Z /Gm] ,

which is a closed substack of [(Y ×B Gm) /Gm] = [X ×B Gm] .



STABLE VARIETIES (April 6, 2009, slcmod-circ) 9

Definition 2.3.3. We say that a stack X has index N if for each object ξ ∈ X (T )
over a scheme T , and each automorphism a ∈ Aut ξ we have aN = id, and if N is
the minimal positive integer satisfying this condition.

Lemma 2.3.4. Let
f : X → B

be a stack of finite presentation over a scheme B and having finite diagonal. There
is a positive integer N such that X has index N .

Proof. This is well known: we may assume X is of finite type over a field k. Then
the inertia stack IX is of finite type as well. The projection morphism

IX → X
is finite, with fibers the automorphism group-schemes of the corresponding objects
of X . The degree is therefore bounded. ♣

We note that cyclotomic stacks are tame [AOV08a, Theorem 3.2 (b)]. The
following lemma is a special case of [AV02, Lemma 2.2.3] in the Deligne–Mumford
case, and [AOV08a, Theorem 3.2 (d)] in general:

Lemma 2.3.5. Consider a cyclotomic stack

f : X → B

and a geometric closed point ξ : SpecK → X with stabilizer µn. Let ξ̄ : SpecK →
X be the corresponding point. Then, in a suitable étale neighborhood of ξ̄, the stack
X is a quotient of an affine scheme by an action of µn.

The following is a special case of [AV02, Lemma 2.2.3] in the tame Deligne–
Mumford case, and [AOV08a, Corollary 3.3] in general.

Lemma 2.3.6. Let f : X → B be a cyclotomic stack (assumed by definition flat).
(1) The coarse moduli space f̄ : X → B is flat.
(2) Formation of coarse moduli spaces commutes with base extension, i.e., for

any morphism of schemes X ′ → X, the coarse moduli space of X ×X X ′ is
X ′. In particular, the geometric fibers of f̄ are coarse moduli spaces of the
corresponding fibers of f .

Lemma 2.3.7. Let X → B be a cyclotomic stack of index N and L an invertible
sheaf on X . Then there is an invertible sheaf M on X and an isomorphism

LN ' π∗M.

Proof. Each automorphism group acts trivially on the fibers of LN and hence triv-
ially on the sheaf LN . Write X locally near a geometric point ξ̄ of X as [U/µr]
with r|N . Then the total space of LN is the quotient [(U ×A1)/µr], but the action
on the factor A1 is trivial, and the total space is [U/µr]×A1 = X ×A1. Its coarse
moduli space in this neighborhood is X × A1. It follows that M = π∗LN is an
invertible sheaf on the coarse moduli space and π∗M → L is an isomorphism. See
also [AOV08b, Lemma 2.9] ♣

Definition 2.3.8. Let L be an invertible sheaf over a stack X . The stack

PL := SpecX
(
⊕i∈ZLi

)
→ X

is called the principal bundle of L. The grading induces a Gm-action on PL over
X , which gives PL the structure of a Gm-principal bundle over X .
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This definition requires the spectrum of a finitely-generated quasi-coherent sheaf
of algebras, whose existence is guaranteed by [LMB00] §14.2.

We shall require the following, see [AV02, Lemma 4.4.3] or [LMB00].

Lemma 2.3.9. Let X and Y be algebraic stacks. Let g : X → Y be a morphism.
The following are equivalent:

(1) g is representable;
(2) for any algebraically closed field K and geometric point ξ : Spec(K) → X ,

the natural homomorphism of group schemes

Aut ξ → Aut g(ξ)

is a monomorphism.

Proof. Recall that an algebraic space is a stack with trivial stabilizers. Also note
that if V is an algebraic space and φ : V → Y a morphism, then the automorphisms
of a point ξ of X ×Y V are precisely the kernel of the map Autφ(ξ) → Aut g(φ(ξ)).
So if the condition on automorphisms holds then X ×Y V has trivial stabilizers and
therefore g representable., Conversely, if g is representable and V → Y is surjective
then X ×Y V is representable and X ×Y V → X surjective. So since X ×Y V has
trivial stabilizers we have Autφ(ξ) → Aut g(φ(ξ)) injective for all ξ. ♣

We can now state a result describing generating sheaves coming from powers of
a line bundle.

Proposition 2.3.10. Let X → B be a cyclotomic stack of index N and L an
invertible sheaf on X . The following conditions are equivalent.

(1) PL is representable;
(2) the classifying morphism X → BGm associated to PL is representable;
(3) ⊕N−1

i=0 L⊗−i is a generating sheaf for X .
(4) for each geometric point ξ : SpecK → X the action of Aut ξ on the fiber of

L is effective;

Definition 2.3.11. When any of the conditions in the proposition is satisfied,
X → B is said to be uniformized by L, and L is a uniformizing line bundle for
X → B.

Proof of Proposition. We first show that the first two conditions are equivalent.
The representable morphism

Spec Z → BGm

is the universal principal bundle, thus

PL = X ×BGm Spec Z.
Clearly if X → BGm is representable, so is PL. Conversely, if PL is representable,
the automorphism group of any geometric object SpecK → X of X acts on the Gm-
torsor SpecK ×X PL with trivial stabilizers; in particular, it acts effectively. This
means that the morphism X → BGm induces a monomorphism on automorphism
groups, and by Lemma 2.3.9 it is representable.

Recall from [OS03], Proposition 5.2 that a sheaf F is a generating sheaf for X
if and only if for every geometric point ξ : Spec(K) → X and every irreducible
representation V of Aut (ξ), the representation V occurs in Fξ. The third and
fourth conditions are therefore equivalent.

We now show that the third condition is equivalent to the first.
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Assume the third condition, and fix a geometric point ξ : Spec(K) → X . Then
every irreducible representation of µr occurs in the fiber ⊕Ni=0Liξ. This implies that
the character Lξ is a generator of Z/rZ, and it clearly acts freely on the principal

bundle of L. Conversely, if X L→ BGm is representable, then µr = Aut (ξ) injects
into the automorphism group Gm of Lξ, therefore the character of µr in Lξ is a
generator the dual group Z/rZ, and therefore all characters occur in ⊕ri=0L

−i
ξ ⊂

⊕Ni=0L
−i
ξ . ♣

2.4. Embedding of a cyclotomic stack in a weighted projective bundle.

Definition 2.4.1. Let f : X → B be a proper cyclotomic stack, with moduli space
f̄ : X → B. A polarizing line bundle L on X is a uniformizing line bundle, such that
there is an f̄ -ample invertible sheaf M on X , an integer N and an isomorphism

LN ' π∗M.

We have the following analogue of the standard properties of ample bundles:

Proposition 2.4.2. let X → B be a proper family of stacks over a base of finite
type, and let L be a line bundle. The following conditions are equivalent:

(1) The stack X is cyclotomic, and L is a polarizing line bundle.
(2) For every coherent sheaf F on X there exist integers n0 and N such that

for any n ≥ n0 the sheaf homomorphism
n+N−1⊕
j=n

H0
(
X ,Lj ⊗F

)
⊗ L−j → F

is surjective.
(3) The stack X is cyclotomic, uniformized by L, and for every coherent sheaf

F on X there exists an integer n0 such that for any n ≥ n0 and any i ≥ 1
we have

Hi(X ,Ln ⊗F) = 0.

Proof. Assume the first condition and let F be a coherent sheaf. Let N be the in-
dex of X . Fix k such that Lk = π∗M with M ample and consider the sheaves
Gi = π∗(Li ⊗ F), i = 0, . . . N − 1 on M . There exists m0 such that for all
m ≥ m0 the sheaf homomorphisms H0 (X ,Mm ⊗ Gi) ⊗ OX → Gi are surjective.
Note that Mm ⊗ Gi ' pi∗(Lmk+i ⊗ F). Also by Proposition 2.4.2 we have that
π∗π∗

(
⊕N−1
i=0 Li ⊗F

)
⊗

(
⊕N−1
i=0 L−i

)
→ F is surjective. The second condition follows.

The reverse implication also follows: L is uniformizing since the sheaf ⊕0
i=−N−1Li

is necessarily generating by Proposition 2.4.2, and M ample by Serre’s criterion.
Since X is tame we have that π∗ is exact on coherent sheaves. Writing n = mk+j

we have Hi(X ,Ln ⊗ F) = Hi(X,π∗(Ln ⊗ F)) = Hi(X,Mm ⊗ π∗(Li ⊗ F)). The
equivalence of the first two conditions with the third follows from Serre’s criterion
for ampleness applied to M . ♣

Proposition 2.4.3. Let f : X → B be as above, and L a polarizing line bundle.
There are positive integers n < m such that

(1) for every geometric point s ∈ B with residue field K, we have

Hi(Xs,Lj) = 0 ∀ i > 0, j ≥ n.

(2) the sheaf f∗Lj is locally free ∀j ≥ n.
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(3) for every geometric point s ∈ B, the space
m⊕
j=n

H0(Xs,Lj)

generates the algebra

K ⊕
⊕
j≥n

H0(Xs,Lj).

Proof. Part (1) is a special case of part 3 of Proposition 2.4.2.
Part (2) follows from (1) by Grothendieck’s “cohomology and base change” ap-

plied directly to the f -flat sheaves Lj since H1(Xs,Lj) = 0. Alternatively, consider
the sheaves π∗Lj . These sheaves are flat over B since X is tame: since Lj is flat we
have that for any OB-ideal I the induced homomorphism I⊗OB

Lj → Lj injective.
Since X is tame we have π∗ exact, therefore I ⊗OB

π∗Lj → π∗Lj is injective, as
needed. Since H1(Xs, π∗Lj) = 0 we can apply “cohomology and base change” to
X → B.

For (3), we first note that a range n ≤ j ≤ m as required exists for any point s
of B: for each i = 0, . . . , N − 1 there exists an l such that

H0(X , π∗M l ⊗ Li)⊗H0(X , π∗Mr) → H0(X , π∗M l+r ⊗ Li)

is surjective for all r. We may choose a single l that works for all i = 0, . . . , N − 1
and take n = lN .

If at the same time we choose n so that part (1) holds, then elements ofH0(Xs,Lj)
in the given finite range lift to a neighborhood of s. Also the algebraH0(X,⊕l≥0M

l)
is finitely generated and for each j, H0(X, (π∗Lj)⊕M l) is a finite module over the
algebra. So a given range for Xs works for a neighborhood of s. Since B is noe-
therian, finitely many such neighborhoods cover B and the maximal choice of m
works over all B. ♣

Corollary 2.4.4. Let n,m be as in Proposition 2.4.3. Consider the locally free
sheaves Wj = f∗Lj. Then we have a closed embedding

X ↪→ P
( m⊕
j=n

Wj

)
.

Proof. Write

Rn,m := SymB

( m⊕
j=n

Wj

)
,

and denote A := SpecBRn,m. We have a Gm-equivariant map of

PL → A,

and since LN = M is ample, the image is disjoint from the zero section 0 ⊂ A. In
order to show that the morphism of quotient stacks

[PL/Gm] = X →
[(

A r 0
)
/Gm

]
is an embedding, it suffices to show that the morphism PL → A is an embedding.

Let
Rn = OB ⊕

⊕
j≥n

Wj .
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We have a surjective algebra homomorphism Rn,m → Rn, implying that

SpecBRn → A
is a closed embedding. It suffices to show that PL → SpecBRn is an embedding.

Next, let RL = R0 =
⊕

j≥0Wj . The morphism

SpecBRL → SpecBRn

induced by the natural inclusion Rn ⊂ RL is finite and birational, having its
conductor supported along the zero section. It therefore suffices to show that the
morphism PL → SpecBRL is an embedding.

We now use the finite morphism PL → PM , given by the finite ring extension
⊕l∈ZM

l ↪→ ⊕j∈Zπ∗Lj .
Since M is ample, we have an open embedding PM ↪→ SpecBRM . Taking the

normalization P̂L of SpecBRM in the structure sheaf of PL we get an embedding
PL → P̂L. Note that P̂L is affine over B. Now sections over affines in B of the
structure sheaf of P̂L restrict to sections of π∗Lj , in other words they come from
global sections of π∗Lj . It follows that P̂L = SpecB ⊕j∈Zf∗Lj , and since these
vanish for j < 0 we get P̂L = SpecBRL. ♣

3. Moduli of stacks with polarizing line bundles

3.1. The category StaL. We are now poised to define a moduli stack. In order
to avoid cumbersome terminology and convoluted statements, we will define the
objects of the stack schemes of finite type. The extension to arbitrary schemes is
standard but less than illuminating.

Definition 3.1.1. We define a category StaL, fibered in groupoids over the cate-
gory of schemes, as follows:

(1) An object StaL(B) over scheme of finite type consists of a proper family
X → B of cyclotomic stacks, with polarizing line bundle L.

(2) An arrow from (X → B,L) to (X1 → B1,L1) consists of a fiber diagram

X
φ //

��

X1

��
B // B1

along with an isomorphism α : L → φ∗L1.

Remark 3.1.2. As defined, this is really a 2-category, because arrows of stacks in
general have automorphisms, but because L is polarizing it is easy to see (see, e.g.
[AGV08], §3.3.2) that it is equivalent to the associated category, whose morphisms
are isomorphism classes of 1-morphisms in the 2-category. We can realize this
category directly using the principal bundle PL as follows: an object of StaL(B)
consists of a Gm-scheme P → B, such that X := [P/Gm] is a proper cyclotomic
stack polarized by the line bundle associated to P; an arrow is a Gm-equivariant
fiber diagram

P //

��

P1

��
B // B1.



14 D. ABRAMOVICH AND B. HASSETT

The fact that StaL parametrizes schemes with extra structure can be used to show
that it is a stack. We will however show that it is an algebraic stack via a different
route - as suggested by the theorem below.

It is also worth noting that StaL is highly non-separated and far from finite type.

Remark 3.1.3. Note that the group Gm acts by automorphisms on every object.

Theorem 3.1.4. The category StaL is an algebraic stack, locally of finite type over
Z. In fact, StaL has an open covering by tQα → StaL, where

(1) each Qα = [Hα/Gα] is a global quotient,
(2) Hα ⊂ HilbP(ρα) is a quasi-projective open subscheme (described explicitly

below), and
(3) Gα = Aut ρα(V ), where V is the representation space of ρα.

This theorem is a direct generalization to its well known analogue, due to
Grothendieck, of the same statement for moduli of projective schemes endowed
with an ample sheaf. The proof encompasses the rest of this section.

3.2. Normally embeddable stacks. Before we start the proof in earnest, we give
some preliminary results.

Definition 3.2.1. A stack X uniformized by L is normally embeddable in P(ρ) if
there exists a normal embedding X ⊂ P(ρ) such that OX (1) ' L.

Proposition 3.2.2. Fix a function F : Z → Z and two positive integers n < m. For
n ≤ i ≤ m fix free modules Vi of rank f(i) and consider the natural representation
ρ of Gm on V = ⊕mi=nVi.

(1) There is an open subscheme H ⊂ HilbP(ρ),F parametrizing normally em-
bedded substacks.

(2) The subcategory StaLF(ρ) ⊂ StaL of objects with fibers normally embeddable
in P(ρ) and Hilbert–Euler characteristic χ(X ,Lm) = F(m) satisfies

StaLF(ρ) ' [H/G],

with G = Aut ρ(V ).

Remark 3.2.3. Note that G is the group of automorphisms of the free module
representation rather than automorphisms of its projectivization. This accounts
for the fact that Gm acts on all objects of the quotient [H/G].

Proof of Proposition. For (1), note that each of the conditions in definition 2.2.1 is
an open condition, by the theorem on cohomology and base change.

We prove (2). The data of a map to the quotient stack B → [H/G] is equivalent
to a family Y → Q→ B whereQ is a principalG-bundle over B and Y ⊂ P(ρ)×Q is
a family of normally embedded substacks. Recall (see Definition 2.3.8) the principal
Gm-bundle POY(1) → Y associated to OY(1). The free action of G lifts canonically
to OY (1) and to its principal bundle, and commutes with the Gm action on the
line bundle by scaling. To show that Y → Q descends to B, consider the quotient
POY(1)/G. This retains a Gm action, with finite stabilizers, whose quotient is
denoted X . Let L denote the line bundle associated to the principal Gm-bundle
POY(1)/G→ X . While we have scrupulously avoided the subtle procedure of taking
the quotient of a stack under a free group action, we can identify X = Y/G and
L = OY(1)/G, namely X parametrizes principal G bundles carrying an object of
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Y and similarly for L. A diagram summarizing the objects in this construction,
where the parallelograms are cartesian squares, is as follows:

POY(1)
� � //

%%KKKKKKKKKK

��

OY(1) � � //

��

O(1)×Q //

��

O(1)×H

��
PL

%%LLLLLLLLLLLL Y � � //

&&MMMMMMMMMMMM

��

P(ρ)×Q //

��

P(ρ)×H

��
X

&&MMMMMMMMMMMMM Q //

��

H

��
B // [H/G].

Now X → B is a cyclotomic stack polarized by L, with geometric fibers embeddable
in P(ρ): indeed the geometric fibers of X → B are isomorphic to those of Y → Q,
which are cyclotomic, polarized by OY(1), and embedded in P(ρ). The whole
construction works over arrows B′ → B → [H/G], and therefore gives a functor
[H/G] → StaLF(ρ).

It is crucial in this construction that we work with the quotient of H by the linear
group G and not its projective version - otherwise we would not have a functorial
construction of the line bundle L.

We now consider the opposite direction. Let X → B be a cyclotomic stack
polarized by L. Consider the locally-free sheaf ⊕mnWj , with Wj = f∗Lj . Each
fiber of W is isomorphic as Gm-space to a fixed free module V with representation
ρ. By the embeddability assumption and Corollary 2.4.4, we have an embedding
X ↪→ P(W ).

Consider the principal G-bundle Q = IsomGm(W,VB). We have a canonical
isomorphism W ×B Q ' VB , giving an isomorphism P(W ) ×B Q ' P(ρ) × Q.
Write Y = X ×B Q. We have a canonical induced embedding Y ↪→ P(ρ) × Q.
This is a normal embedding by definition, and it is clearly G-equivariant. We thus
obtain an object of [H/G] as required.

Again the fact that the construction is canonical gives a construction for arrows
in B′ → B → StaLF(ρ). The proof that the two functors are inverse to each other
is standard and left to the reader. ♣

We now consider what happens when we change the range of integers n ≤ i ≤ m.

Proposition 3.2.4. Fix again a function F : Z → Z and free modules Vi of rank
F(i). For positive integers n < m we again consider the natural representation ρn,m
of Gm on Vn,m = ⊕mi=nVi. Then

(1) StaLF(ρn,m) → StaLF(ρn,m+1) is an open embedding.
(2) For any n < m there exists a canonical open embedding

StaLF(ρn,m) ↪→ StaLF(ρn+1,m+n).

(3) For any n1 < m1 and n2 < m2, there exist an integer m ≥ max(m1,m2)
and canonical open embeddings

StaLF(ρn1,m1) ↪→ StaLF(ρn,m)

StaLF(ρn2,m2) ↪→ StaLF(ρn,m)
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with n = max(n1, n2).

Proof of proposition. For (1), it is clear that we have an inclusion StaLF(ρn,m) ↪→
StaLF(ρn,m+1). Given a family of graded rings generated in degrees n, . . . ,m + 1,
it is an open condition on the base that they are generated in degrees n, . . . ,m, as
required.

We prove (2). We have an open embedding StaLF(ρn,m) ↪→ StaLF(ρn,m+n) by (1).
In StaLF(ρn,m+n) we have an open substack StaLF(ρ(n),n+1,m+n) of objects whose
projection to the factors in degrees n+1, . . . , n+m is still an embedding. This also
has an open embedding StaLF(ρ(n),n+1,m+n) ↪→ StaLF(ρn+1,m+n) as it corresponds
to objects such that Hi(X ,Ln) = 0 for i > 0.

StaLF(ρn,m) � � //

((

StaLF(ρn,m+n)

StaLF(ρ(n),n+1,m+n)
� � //

?�

OO

StaLF(ρn+1,m+n)

Now consider a graded ring R = ⊕Ri. Suppose R is generated in degrees n, . . .m
over R0. Then the truncation

R′ = R0 ⊕
∞⊕

i=n+1

Ri

is generated in degrees n + 1, . . . , n +m. Indeed if g1 · · · gk is a product of homo-
geneous terms in degrees between n and m, of total degree > n + m, and is of
minimal degree requiring a term g1 of degree n as a product of terms in the range
n, . . . ,m + n, then the other terms g2, . . . , gk are of degree between n + 1 and m,
so we may replace g1 by g′1 = g1gk and write g = g′1g2 · · · gk−1 as a product of
homogeneous terms in the range n+ 1, . . . , nm.

This implies that the truncation of the ring of an object in StaLF(ρn,m+n) coming
from the open substack StaLF(ρn,m) is still normally generated. This means that the
embedding StaLF(ρn,m) ⊂ StaLF(ρn,m+n) factors through the stack StaLF(ρ(n),n+1,m+n).
This induces the required open embedding StaLF(ρn,m) ↪→ StaLF(ρn+1,m+n), as re-
quired.

Part (3) follows by iterating the construction of part (2). ♣

3.3. Proof of Theorem 3.1.4. Given an object f : X → B in StaL(B), there is
a maximal open and closed subset B0 ⊂ B so that f0 : X ×B B0 → B0 is an object
in StaLF(B0); the formation of B0 commutes with arbitrary base change. Thus we
can decompose

StaL =
⊔
F

StaLF ,

where StaLF is the open and closed fibered subcategory parametrizing cyclotomic
stacks polarized by a line bundle with Hilbert-Euler characteristic F : Z → Z. We
can thus fix F and focus on StaLF .

Proposition 3.2.4 gives for each pair of integers n < m a fibered subcategory
StaLF(ρn,m) ⊂ StaLF . This fibered subcategory is open: first note that the condition
that the higher cohomologies of Li vanish for n ≤ i ≤ m is open by cohomology
and base change. Second, the condition that the ring be normally generated in
these degrees (including vanishing of cohomology in higher degrees) is open as well.
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These open embeddings are compatible with the embeddings in Proposition 3.2.4.
It follows that ∪StaLF(ρn,m) ⊂ StaLF is an open subcategory. But by Corollary 2.4.4
every geometric point of StaLF is in ∪StaLF(ρn,m), which implies that ∪StaLF(ρn,m) =
StaLF as fibered categories. Since ∪StaLF(ρn,m) is a direct limit of open subcategories
which are algebraic stacks, it is also an algebraic stack. ♣

4. Moduli of polarized orbispaces

4.1. Orbispaces.

Definition 4.1.1. An orbispace X is a separated reduced and connected stack with
of finite type over a field and with finite diagonal, admitting a dense open U ⊂ X
where U is an algebraic space.

The assumption that X be connected is made mainly for convenience.
Given two flat families of orbispaces Xi → Bi there exists a natural notion of a

1-morphism of families between them, namely a cartesian square

X1 → X2

↓ ↓
B1 → B2.

There is a natural notion of 2-morphism, making families of orbispaces into a 2-
category. However by [AV00], Lemma 4.2.3, such 2-morphisms are unique when
they exist. It follows that this 2-category is equivalent to the associated category,
where morphisms consist of isomorphism classes of 1-morphisms. We call this the
category of families of orbispaces.

As an example, we have that the weighted projective stack P(ρ1, . . . , ρr) is an
orbispace if and only if gcd(ρ1, . . . , ρr) = 1.

Adding the conditions in StaL we can define another category - the subcategory
OrbL ⊂ StaL of proper cyclotomic orbispaces with polarizing line bundles. We
have

Proposition 4.1.2. The subcategory OrbL ⊂ StaL forms an open substack

Proof. Let X → B be a family of cyclotomic stacks polarized by L. The locus
where the fibers are reduced and connected is open in B: see [Gro66, 12.2.1], for
“no embedded points” and then cohomology and base change for “connected”.
Since the inertia stack is finite over X , the same holds for the locus where the fibers
have a dense open with trivial inertia. ♣

4.2. Polarizations. There is an important distinction to be made between a po-
larizing line bundle and a polarization - the difference between the data of a line
bundle and an element of the Picard group.

Let (Xi → Bi,Li) be two families with polarizing line bundles Li; then a mor-
phism comes from a 1-morphism fX : X1 → X2 sitting in a cartesian diagram as
above, together with an isomorphism α : L1 → f∗XL2. But a morphism of po-
larizations should ignore the Gm-action on the line bundles. The issue is treated
extensively in the literature. A procedure for removing the redundant action, called
rigidification, is treated in [ACV03], [Rom05], [AGV08], [AOV08a, Appendix A].
This is foreshadowed by the appendix in [Art74].

Going back to our families with polarizing line bundles, the hypothesis that
there is at least one point in each fiber where inertia is trivial implies that Gm is a
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subgroup of the center of Aut (X ,L) for any object (when the generic stabilizer is
nontrivial, Gm need not act effectively). This allows us to rigidify the stack OrbL
along the Gm-action. Following the notation of [Rom05, AGV08, AOV08a] (but
different from [ACV03]) we thus have an algebraic stack

Orbλ = OrbL((( Gm.

An object (X → B, λ) of Orbλ(B) is a polarized family of cyclotomic stacks over
B. These will be described below.

Recall that we have a presentation StaL = ∪[Hα/Gα], with Hα a subscheme of
the Hilbert scheme of the weighted projective stack P(ρα). Whenever P(ρα) is an
orbispace the group Gm embeds naturally in the center of the group Gα, and we can
form the projective group PGα = Gα/Gm. We can extract from this a presentation
of OrbL and of Orbλ as follows:

Proposition 4.2.1. Let Horb
α ⊂ Hα be the open subscheme parametrizing embedded

orbispaces. Then
(1) OrbL =

⋃
α[Horb

α /Gα].
(2) Orbλ =

⋃
α[Horb

α /PGα].

This follows directly from the construction in any of [ACV03], [AGV08], [AOV08a,
Appendix A].

This construction induces a morphism of stacks

OrbL → Orbλ,
which gives OrbL the structure of a gerbe banded by Gm over Orbλ.

The stack Orbλ can be described as follows: an object (X → B, λ) of Orbλ(B)
is a family of cyclotomic stacks X → B, and λ given locally in the étale topology
on B by a polarizing line bundle on X . Moreover, these ‘almost’ descend to a
polarizing line bundle on X , i.e., on the overlaps these line bundles differ by a line
bundle coming from the base; this determines a section λ of Pic(X/B) called a
polarization of X .

The obstruction to existence of a line bundle on X is exactly the Brauer class
in H2

ét(B,Gm) of the Gm-gerbe B ×Orbλ OrbL → B. If the obstruction is trivial,
then a polarizing line bundle L exists. In this case two pairs (X ,L) and (X ,L′)
represent the same polarization if and only if there is a line bundle M on B such
that L ' L′ ⊗ f∗M .

4.3. Comparison of polarizations. The construction of rigidification involves
stackification of a pre-stack. In our case this is much simpler as we end up sheafify-
ing a pre-sheaf. The underlying fact is the following well-known result (cf. [Vie95,
Lemma 1.19]):

Proposition 4.3.1. Consider a proper family of stacks f : X → B and L,L′ line
bundles on X . Assume the fibers of X → B are reduced and connected.

There exists a locally closed subscheme B0 ⊂ B and a line bundle M on B0,
over which there exists an isomorphism L|B0 → L′|B0⊗f∗M , and is universal with
respect to this property.

The following is the outcome for polarizations.

Corollary 4.3.2. Consider a proper family of orbispaces X → B and λ, λ′ polar-
izations on X . There exists a locally closed subscheme B0 ⊂ B, over which there
exists an isomorphism λB0 → λ′B0 , and is universal with respect to this property.
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Proof. Fix an étale covering C → B and line bundles L,L′ on XC representing
λC , λ

′
C . By the proposition there is C0 ⊂ C and a line bundle M on C0, over which

there exists an isomorphism L|C0 → L′|C0 ⊗ f∗CM , and is universal with respect
to this property. Since it is universal, the two inverse images of C0 in C ×B C
coincide, therefore C0 descends to B0 ⊂ B, and the data L|C0 → L′|C0 ⊗ f∗CM
gives an isomorphism λB0 → λ′B0 by definition. ♣

Corollary 4.3.3. Consider a proper family of orbispaces X → B, L a line bundle,
λ′ a polarization on X .

There exists a locally closed subscheme B0 ⊂ B, over which there exists an
isomorphism λB0 → λ′B0 , with λ the polarization induced by L, and is universal
with respect to this property.

Proof. This is immediate from the previous corollary. ♣

4.4. Moduli of canonically polarized orbispaces.

Lemma 4.4.1. Let X → B be a proper family of orbispaces. There exists open
subschemes Bgor ⊂ Bcm ⊂ B where the fibers of X → B are Cohen-Macaulay. and
Gorenstein respectively.

Proof. Recall the following fact [Gro66, 12.2.1]: Suppose X → B is a flat morphism
of finite type with pure dimensional fibers and F is a coherent OX -module flat over
B. Then for each r ≥ 0 the locus

{b ∈ B : F |Xb
is Sr}

is open in B. Take F = OX and r = dim(X/B) to see that the locus where the
fibers are Cohen-Macaulay is open.

When the fibers of X → B are Cohen-Macaulay, the shifted relative dualizing
complex ω•X/B [−n] is a sheaf ωX/B that is invertible precisely on the open subset
where the fibers are Gorenstein (see [Con00], Theorem 3.5.1, Corollary 3.5.2, and
the subsequent discussion).

It remains to check this analysis applies to the stack X . In characteristic 0, note
that the dualizing sheaf is insensitive to étale localization [Con00, Th. 4.4.4 and
p. 214], and thus descends canonically to X . In arbitrary characteristic one has to
use smooth covers instead. However, it is a fundamental property of the dualizing
complex that it behaves well under smooth morphisms, i.e., if g : Y → Z is smooth
and Z → B is flat then (up to shifts)

ω•Y/B = g∗ω•Z/B ⊗ ωY/Z .

Indeed, these formulas are fundamental tools in showing that the dualizing complex
is well-defined (see [Con00, pp. 29-30, Th. 2.8.1 and 3.5.1]). In particular, we can
define ω•X/B via smooth covers.

It the particular case at hand with X = [P/Gm], the smooth cover is given by P
and the descent datum is given by the Gm-equivariant structure on ωP . (Duality
for Artin stacks is developed in [Nir09]. However we will only need the existence of
a unique ωX .) ♣

The lemma implies:

Proposition 4.4.2. There are open substacks Orbλgor ⊂ Orbλcm ⊂ Orbλ parametriz-
ing Gorenstein and Cohen-Macaulay polarized orbispaces.



20 D. ABRAMOVICH AND B. HASSETT

For most applications to compactifications of moduli spaces these substacks
should be sufficient (see Remark 6.1.6). However, in some situations more gen-
eral singularities might be needed:

Definition 4.4.3. A family X → B of orbispaces is canonically polarized if
• the fibers are pure-dimensional, satisfy Serre’s condition S2, and are Goren-

stein in codimension one;
• ω◦X/B , namely the component of the dualizing complex ω•X/B in degree

dimB − dimX, is locally free and polarizing.
The canonical polarization on X → B is the polarization induced by ω◦X/B .

Theorem 4.4.4. There is a locally closed substack Orbω ⊂ Orbλ parametrizing
canonically polarized orbispaces.

Proof. Lemma 4.4.1 guarantees the conditions on the fibers are open. The change-
of-rings spectral sequence gives an injection of sheaves

ω◦X/B |Xb
↪→ ω◦Xb

,

with cokernel supported on a subset of Xb of codimension two. The dualizing sheaf
ω◦Xb

is automatically saturated (cf. [Rei87, 1.6]), so any injection from an invertible
sheaf that is an isomorphism in codimension one is an isomorphism. Thus on the
open locus where ω◦X/B is invertible, its formation commutes with arbitrary base
change. Applying Corollary 4.3.3, we obtain the theorem. ♣

We denote the intersection Orbωgor := Orbω ∩Orbλgor, the substack of canonically
polarized Gorenstein orbispaces.

Note that over Orbω, the universal polarization is represented by an invertible
sheaf, namely, the relative dualizing sheaf of the universal family. This gives us a
lifting

OrbL

��
Orbω

::

// Orbλ.
Indeed we can describeOrbω orOrbωgor directly in terms of line bundles as follows:

an object of Orbω is a triple (X ,L, φ) where X is an orbifold on which ω◦X/B is
invertible, L a line bundle, and φ : L → ω◦X/B an isomorphism. Arrows are fiber
diagram as for Orbω. But note that an arrow does not involve the choice of an
arrow on ω◦X/B : such an arrow is canonically given as the unique arrow on ω◦X/B
respecting the trace map Rnπ∗ω

◦
X/B → OB . The relative dualizing sheaf (and

complex) does have Gm acting as automorphisms, but this automorphism group
acts effectively on the trace map.

5. Kollár families and stacks

5.1. Reflexive sheaves, saturation and base change. Let X be a reduced
scheme of finite type over a field, having pure dimension d, satisfying Serre’s con-
dition S2.

Lemma 5.1.1. (1) Let F be a coherent sheaf on X. Then the sheaf F ∗ :=
Hom(F,OX) is S2.
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(2) Suppose ψ : F → G is a morphism of S2-sheaves which is an isomorphism
on the complement of a closed subscheme of codimension ≥ 2. Then ψ is
an isomorphism.

(3) Let F be an S2 coherent sheaf on X. Then the morphism F → F ∗∗ is an
isomorphism.

Proof. The problems being local, we assume X is affine.
(1) Let φ be a section of Hom(F,OX) over an open set U with codim(XrU) ≥

2. Let f be a section of F on X and consider φ(fU ) ∈ H0(U,OU ). Since
X is S2 this extends uniquely to a regular function g on X. We define
φ̃(f) = g.

(2) Let g be a section of G. Let U be an open subset with codimension ≥ 2
complement on which ψ is an isomorphism. Set fU = ψ−1(gU ), then fU is
uniquely the restriction of a section f of F , and f = ψ−1g.

(3) Since F and F ∗∗ are S2, the homomorphism F → F ∗∗ is an isomorphism.
♣

Definition 5.1.2. A coherent sheaf F on X is said to be reflexive if the morphism
F → F ∗∗ is an isomorphism.

Definition 5.1.3. Let F be a coherent sheaf on X, and n a positive integer. We
define

F [−n] = Hom(F⊗n,OX).
and

F [n] = Hom(F [−n],OX).

Theorem 10 of [Kol95] implies

Proposition 5.1.4. Let X → B be a flat morphism of finite type with S2 fibers of
pure dimension d. Let U ⊂ X be an open subscheme, dense in each fiber. Let F be
a coherent sheaf on X, locally free on U . If the formation of F [n] commutes with
arbitrary base extension then F [n] is flat over B.

5.2. Kollár families of Q-line bundles.

Definition 5.2.1. (1) By a Kollár family of Q-line bundles we mean
(a) f̄ : X → B a flat family of equidimensional reduced schemes satisfying

Serre’s condition S2,
(b) F a coherent sheaf on X, such that

(i) for each fiber Xb, the restriction F |Xb
is reflexive of rank 1;

(ii) for every n, the formation of F [n] commutes with arbitrary base
change;

(iii) for each geometric point s of B there is an integer Ns 6= 0 such
that F [Ns]|Xs is invertible.

(2) A morphism from a Kollár family (X → B,F ) to another (X1 → B1, F1)
consists of a cartesian diagram

X

��

φ̄ // X1

��
B // B1

along with an isomorphism ᾱ : F → φ̄∗F1.
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(3) Parts (1) and (2) above define the objects and arrows of a category of Kollár
families of Q-line bundles, fibered over the category Schk of k-schemes. It
has an important open subcategory KL of Kollár families of polarizing Q-
line bundles, where X → B is proper and F [Ns]|Xs is ample.

Note that (1.b.i) and (1.b.ii) imply that F = F [1]. Furthermore, (1.b.i) and
(1.b.iii) imply that F is invertible in codimension 1. A reflexive rank-one sheaf on
a reduced one-dimensional scheme X is a fractional ideal J . Indeed, express F∗
locally as a quotient O⊕rX → F → 0, which realizes F as a subsheaf of O⊕rX . Choose
a projection O⊕rX → OX such that the composed homomorphism F → OX has
rank one at each generic point. This is injective since our scheme is reduced. The
saturated powers F [n] equal Jn, i.e., the powers of J as an ideal. In particular, JN

is locally principal. The blow-up of X along J is

ProjX ⊕n≥0J
n ' ProjX ⊕n≥0J

Nn = X,

so J is locally principal and F is invertible.
One can show that the category of proper Kollár families is an algebraic stack.

We will show below that the subcategory KL is an algebraic stack by identifying it
as an algebraic substack of OrbL. Kollár families were introduced in the canonical
case F = ωX/B in [Kol90, 5.2] and [HK04, 2.11]. In [Hac04] it was shown that they
admit, at least in the canonical case, a good deformation-obstruction theory. As
we see below, this holds in complete generality. Indeed Hacking’s approach is via
the associated orbifolds, as is ours. In [Kol08] Kollár provides an approach without
orbifolds.

We note that the index Ns is bounded in suitable open sets:

Lemma 5.2.2. Let (X → B,F ) be a Kollár family of Q-line bundles, and s ∈ B a
geometric point. Let Ns be an integer such that F [Ns]|Xs is invertible. Then there
is an open neighborhood U of s such that F [Ns]|XU

is invertible.

Proof. Since F [N ] are flat and their formation commutes with base change, the
assumption that F [Ns]|Xs is invertible implies F [Ns] is invertible in a neighborhood
of Xs. Since X → B is of finite type the assertion follows. ♣

5.3. Kollár families and uniformized twisted varieties.

Definition 5.3.1. Let (f̄ : X → B , F ) be a Kollár family of Q-line bundles.
(1) The Gm-space of F is the X-scheme

PF = SpecX
(
⊕j∈ZF

[j]
)
.

Note that PF → B is flat by Proposition 5.1.4.
(2) The associated stack is

XF =
[
PF

/
Gm

]
.

This comes with the natural line bundle L = LF associated to the principal
bundle

PF → XF .
We drop the index F and write X and P when no confusion is likely. We denote

by π : X → X the resulting morphism.

Proposition 5.3.2. (1) The family X → B is a family of cyclotomic orbifolds
uniformized by L, with reduced fibers satisfying Serre’s condition S2.



STABLE VARIETIES (April 6, 2009, slcmod-circ) 23

(2) The morphism π : X → X makes X into the coarse moduli space of X .
This morphism is an isomorphism on the open subset where F is invertible,
the complement of which has codimension > 1 in each fiber.

(3) For any integer a, we have π∗(La) = F [a] (in particular π∗(La) is reflexive).
(4) This construction is functorial, that is, given a morphism of Kollár families

(φ̄, ᾱ) from (X → B,F ) to (X1 → B1, F1) we have canonically PF ' φ̄∗PF1

and XF ' φ̄∗XF1 .

Proof. To verify that X → B is cyclotomic and uniformized by L, we just need to
check that Gm acts on PF with finite stabilizers. Lemma 5.2.2 allows us to assume
that F [N ] is locally free for some N > 0. We have natural homomorphisms

ma : (F [N ])a −→ F [Na]

for each a ∈ Z. For each b ∈ B, the sheaf F is locally free on an open set Ub ↪→ Xb

with codimension-two complement, so ma is an isomorphism over Ub, and hence
over all Xb. It follows that (F [N ])a = F [Na].

Consider the Gm-equivariant morphism

PF −→ SpecX
(
⊕a∈ZF

[aN ]
)
.

Note that Gm acts on the target with stabilizer µN , which implies the stabilizers
on PF are subgroups of µN .

To complete part (1), we note that a fiber in PF over b ∈ B is S2 as the spectrum
of an algebra with reflexive components over an S2 base. Also PF → X is smooth
and surjective. Smoothness implies that the quotient stack X is S2 as well.

Since the coarse moduli space is obtained by taking invariants (see proof of
Lemma 2.3.6), and since the invariant part of ⊕F [a] is F [0] = OX , we have that X
is the coarse moduli space of X . Over the locus U where F is invertible, the scheme
PF is a principal Gm-bundle, so

XU = [ (PF )|U / Gm ] = U.

Part (3) follows since La is the degree-a component of the graded OX -algebra
⊕Li, whose spectrum is PF . The degree-a component of the graded OX algebra
⊕i∈ZF

[i] is F [a].
Part (4) follows from the functoriality of Spec and of the formation of quotient

stack.
♣

Remark 5.3.3. If we assume for each a ∈ Z and b ∈ B that F [a] is Sr (in particular
the fibers of X are Sr), it follows that the fibers of X are Sr as well.

Definition 5.3.4. A family of uniformized twisted varieties (X → B,L) is a flat
family of reduced S2 cyclotomic stacks uniformized by L, such that the morphism
π : X → X to the coarse moduli space is an isomorphism away from a subset of
codimension > 1 in each fiber.

We define 1-morphisms of families of uniformized twisted varieties as fibered
diagrams. Of course, there is a notion of 2-morphism making these into a 2-category,
but since these are orbispaces, a 2-isomorphism is unique when it exists [AV02,
Lemma 4.2.3], so this 2-category is equivalent to the associated category, whose
morphisms are isomorphism classes of 1-morphisms.
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Remark 5.3.5. We insist on π : X → X an isomorphism in codimension-1 to
obtain an equivalence with Kollár families as in Theorem 5.3.6 below. To describe
uniformized orbifolds in terms of sheaves on X in general, it is necessary to spec-
ify an algebra of sheaves, which can be quite delicate especially when X → X
is branched along singular codimension-1 loci. For a subtle example see [Jar00,
Definition 2.5] as well as [AJ03, §4.2-4.4] where an equivalence analogous to our
Theorem 5.3.6 below.

Theorem 5.3.6. The category of Kollár families of Q-line bundles is equivalent to
the category of uniformized twisted varieties via the base preserving functors

(X → B,F ) 7→ (XF → B,LF ),

with XF = [PF / Gm], and its inverse

(X → B,L) 7→ (X → B, π∗L),

where X is the coarse moduli space of X .

Proof. Proposition 5.3.2 gives the functor from the category of Kollár families of
Q-line bundles to the category of uniformized twisted varieties. We now give an
inverse. Fix a uniformized twisted variety (X → B,L), with coarse moduli space
π : X → X. Since the formation of π commutes with arbitrary base change (Lemma
2.3.6), the universal property of coarse moduli spaces guarantees that each fiber of
X → B is reduced. If N is the index of X then, by Lemma 2.3.7, LN descends to
an invertible sheaf on X, which coincides with π∗LN .

Each geometric point of X admits an étale neighborhood which is isomorphic
to a quotient of an affine S2-scheme V by the action of µr. Locally, the coarse
moduli space is the scheme-theoretic quotient V/µr. However, since µr is linearly
reductive, any quotient of an S2-scheme by µr is also S2, because the invariants
are a direct summand in the coordinate ring of V . Similarly the sheaves π∗Lj are
direct summands in the algebra of P, which is affine over X, flat over B with S2

fibers. It follows that these sheaves are flat over B, saturated, and their formation
commutes with base change on B. ♣

Corollary 5.3.7. The category KL is an algebraic stack, isomorphic to the open
substack of OrbL where (X → B,L) are uniformized twisted varieties.

Proof. Using Theorem 5.3.6 note that KL indeed parametrizes orbifolds with po-
larizing line bundles which are at the same time uniformized twisted varieties. This
is open in OrbL since the conditions of being S2 is open ([Gro66, 12.2.1]) and the
condition on the fibers of inertia having support in codimension > 1 is open by
semicontinuity of fiber dimensions in proper morphisms. ♣

Definition 5.3.8. We define Kλ = KL((( Gm, where Gm acts by scalars on L.
We define Kω ⊂ Kλ as the locally closed subcategory corresponding to canonically
polarized twisted varieties (f : X → B, λ) where λ is given by ω◦X/B .

We define Kωgor ⊂ Kω to be the open substack where the fibers of f are Cohen-
Macaulay.

Note that Corollary 4.3.3 guarantees that the second condition is locally closed.

Remark 5.3.9. We can interpret Kω in terms of Kollár families (f̄ : X → B,F )
with isomorphism F → ω◦X/B . The substack Kωgor is characterized by
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(1) the fibers of f are Cohen-Macaulay;
(2) each power ω[n]

X/B is Cohen-Macaulay.
Indeed, if a sheaf G on X is Cohen-Macaulay then π∗G is also Cohen-Macaulay:
locally write X as a quotient of an affine scheme V by µr, and G corresponding to
an equivariant module G. The complex computing local cohomology of G can be
taken µr-equivariant, and the invariant subcomplex splits. Therefore, if the local
cohomology vanishes the invariant part, computing local cohomology of Gµr on X
vanishes.

In general, the second condition is not a logical consequence of the first. There
are examples [Sin03, §6] of Cohen-Macaulay log canonical threefolds whose index-
one covers are not Cohen-Macaulay. For varieties with canonical singularities, the
index-one cover has canonical singularities [Rei80] which are rational [Elk81] and
Cohen-Macaulay [KM98], in characteristic zero.

6. Semilog canonical singularities and compactifications

From here on we assume our schemes are over a field of characteristic 0.

6.1. Properness results and questions. Recall that canonical singularities de-
form to canonical singularities [Kaw99]. This fact and Proposition A.1.1 of the
appendix allow us to formulate the following:

Definition 6.1.1. We define Kωcan ⊂ Kω as the open substack corresponding to
canonically polarized twisted varieties where both X and X have canonical singu-
larities.

We define Kωslc,Kωgor-slc ⊂ Kω as the open substack corresponding to canonically
polarized twisted varieties where X has semilog canonical (resp. Gorenstein semilog
canonical) singularities.

Objects of Kωslc are called families of twisted stable varieties.

Theorem 5.3.6 induces equivalences of the categories above with the respective
categories of Kollár families and rigidified Kollár families.

We review what is known about properness of moduli spaces of stable varieties:

Proposition 6.1.2. Each connected component of the closure of Kωcan in Kωslc is
proper with projective coarse moduli space.

Proof. Most of this is contained in [Kar00], though our definition of families differs
from Karu’s.

We first check that the closure of Kωcan satisfies the valuative criterion for proper-
ness.

Let ∆ be the spectrum of a discrete valuation ring, with special point s and
generic point η. Let Xη be a canonically-polarized orbispace with Gorenstein canon-
ical singularities over η. Let Xη denote its coarse moduli space.

Apply resolution of singularities and semistable reduction [KKMSD73] to obtain
• a finite branched cover ∆′ → ∆ with generic point η′ and special point s′;
• a nonsingular variety Y and a flat projective morphism φ : Y → ∆′, with
Ys′ reduced simple normal crossings;

• a birational morphism Yη′ → Xη′ .
Consider the canonical model of Y relative to φ

ψ : W → ∆′,
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which exists due to [BCHM06, Theorem 1.1]. It has the following properties:

• KW/∆′ is Q-Cartier and ample relative to ψ;
• W has canonical singularities, so every exceptional divisor has discrepancy
≥ 0.

As a consequence, we deduce Wη′ ' Xη′ and W is Cohen-Macaulay.
Furthermore, every exceptional divisor in the special fiber has log discrepancy

≥ 0 with respect to (W,Ws′), thus Ws has normal crossings in codimension one.
In particular, the pair (W,Ws′) is log canonical. Applying ‘Adjunction’ [Kaw07]
and criterion A.1.3, we conclude that Ws′ has semilog canonical singularities. The
variety Ws′ is the desired stable limit of Xη; it is unique by the uniqueness of the
canonical models.

Now we construct our desired stack-theoretic stable limit. The point is that the
stack-theoretic canonical model has canonical singularities for the same reason W
has. In classical terms, since W has canonical singularities, its index-one cover does
as well [KM98, 5.20,5.21]. Furthermore, the direct-image sheaves

ψ∗ω
[n]
ψ , n ≥ 0,

are locally free and commute with restriction to the fibers, i.e.,

ψ∗ω
[n]
ψ |s′ = Γ(Wt, ω

[n]
Ws′

).

This formulation of ‘deformation invariance of plurigenera’ follows from the exis-
tence of minimal models [Nak86, Cor. 3, Thm. 8] and the good behavior of direct
images of dualizing sheaves [Kol86, Thm 2.1].

Since W is a canonical model, we can express

W = Proj∆′ ⊕n≥0ψ∗ω
[n]
ψ .

The corresponding affine cone

CW := Spec∆′ ⊕n≥0ψ∗ω
[n]
ψ

comes with a Gm-action associated with the grading, and we define

W = [ (CW r 0) / Gm ] .

Again, we have Wη′ ' Xη′ (as polarized orbispaces) and thus Ws′ has Gorenstein
semilog canonical singularities. Indeed, W has canonical singularities (it is locally
modeled by the index-one cover of W ) and thus is Cohen-Macaulay; the dualizing
sheaf ωW/∆′ is invertible by the Gm-quotient construction. Repeating the previous
adjunction analysis yields that Ws′ is semilog canonical.

The uniqueness of the stack-theoretic limit follows from the uniqueness of the
canonical model, via Theorem 5.3.6.

We turn now to boundedness: [Kar00, §3] still shows that each connected com-
ponent of the closure of Kωcan is of finite type: Matsusaka’s big theorem shows
the open locus Kωcan is of finite type. We apply weak semistable reduction to an
arbitrary compactification of a tautological family, and obtain a family X → B
which is weakly semistable. In particular, B is smooth. Applying finite generation
([BCHM06]) we can take the relative canonical model Xcan = ProjB R(X/B) → B,
or its orbispace version X can = ProjBR(X/B) → B. The total space has canon-
ical singularities as it is a canonical model - this is true for either Xcan or X can.
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Deformation invariance of plurigenera shows that this is flat. An argument sim-
ilar to the one below shows that the fibers are semilog canonical. This gives a
compactified family over a base of finite type as required.

The argument there, citing Kollár’s projectivity criterion [Kol90], shows that
properness of the closure of Kωcan implies projectivity of its coarse moduli space.

♣

We would like the following formulation of ‘semi-canonical models’:

Assumption 6.1.3. Suppose that ∆ is the spectrum of a discrete valuation ring
with special point s and generic point η. Let Xη be a stable variety over η. Then
there exists a finite ramified base-change ∆′ → ∆ with special point s′ and generic
point η′, a unique variety W , and a flat morphism ψ : W → ∆′ satisfying the
following:

• Wη′ is isomorphic to the base-change Xη′ = X ×η η′.
• The relative dualizing sheaf ωψ is Q-Cartier and ample.
• Each reflexive power ω[n]

ψ is S2 relative to ψ, i.e., S2 on restriction to the

fibers. If Xη is Cohen-Macaulay, we expect the sheaves ω[n]
ψ to be Cohen-

Macaulay as well. [KK09]
• Ws′ has semilog canonical singularities.
• The sheaves ψ∗ω

[n]
ψ , n ≥ 0 are locally free and satisfy

ψ∗ω
[n]
ψ |s′ = Γ(Ws′ , ω

[n]
Ws′

).

Proposition 6.1.4. Under Assumption 6.1.3, Kωslc satisfies the valuative criterion
for properness. In particular, each connected component of finite type is proper.

Remark 6.1.5. To say that each connected component of Kωslc is of finite type is
a boundedness assertion about the stable varieties with given numerical invariants.
These assertions have been proven in dimensions ≤ 2 [Ale94], but remain open in
higher dimensions.

Remark 6.1.6. The discussion following Corollary 1.3 of [KK09] implies that the
stable limit of a one-parameter family of Cohen-Macaulay stable varieties (resp.
Gorenstein twisted stable varieties) is Cohen-Macaulay (resp. Gorenstein). Thus
the Kωgor-slc ⊂ Kωslc is a union of connected components.

Nevertheless, there are good reasons to consider non-Cohen-Macaulay singular-
ities. We have already mentioned non-Cohen-Macaulay log canonical singularities
in Remark 5.3.9. In characteristic zero, log terminal singularities and their index-
one covers are automatically Cohen-Macaulay [KM98]. However, there exist log
terminal surface singularities in positive characteristic with index-one covers that
are not Cohen-Macaulay [Kaw].

Appendix A. The semilog canonical locus is open

A.1. Statement. The following result is known for surfaces ([KSB88, Kol90]). The
present proof was suggested to us by V. Alexeev. The second part can be found in
[Kar00].
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Proposition A.1.1. Let B be a scheme of finite type over a field of characteristic
zero and f : X → B be a flat morphism of finite type with connected reduced equidi-
mensional fibers. Assume that the fibers are S2 and Gorenstein in codimension
one.

Suppose there exists an invertible sheaf L on X such that for each b ∈ B we have

L|Xb ' j∗ω
⊗n
U , n ∈ N,

where j : U ↪→ Xb is the open subset where Xb is Gorenstein. Then the locus where
the fibers have semilog canonical singularities

Bslc = {b ∈ B : Xb is semilog canonical}
is open in B.

Remark A.1.2. In the case where the fibers are Gorenstein, the existence of L is
automatic. Indeed, the relative dualizing sheaf ωX/B is itself invertible.

Before starting the proof proper, we recall a characterization of semilog canonical
singularities, which can be found in chapter 2 of [Kol92]:

Lemma A.1.3. Let (Y,D) be a pair consisting of a connected equidimensional S2

scheme Y and a reduced effective divisor D with no components contained in the
singular locus of Y . Suppose that Y has normal crossings in codimension one and
that the Weil divisor KY +D is Q- Cartier. Let ν : Ỹ → Y denote the normalization
and C ⊂ Ỹ its conductor, i.e., the reduced effective divisor such that

ν∗(KY +D) = KỸ + D̃ + C,

where D̃ is the proper transform of D. Then the following conditions are equivalent:
• (Y,D) is semilog canonical.
• (Ỹ , D̃ + C) is log canonical.

The condition of having normal crossings in codimension 1 is also open. Indeed,
this means that the only singularities in codimension 1 are nodes, which can only
deform to smooth points. We therefore assume that the fibers of f have normal
crossings in codimension one.

A.2. Constructibility.

Lemma A.2.1. Under the assumptions of Proposition A.1.1, the locus Bslc is
constructible in B.

Proof. The main ingredient is resolution of singularities. The image of a con-
structible set is constructible, so we may replace B by a resolution of singularities
of its normalization B′ → B. We have the pull back family

X ′ = X ×B B′ → B′.

We claim we can stratify B′ by locally-closed subsets

B′ =
∐
j∈J

B′j

such that the restriction over each stratum

fj : X ′
j = X ′|B′j → B′j

admits a simultaneous good resolution of singularities. By definition, a good res-
olution of singularities is one where the preimage of the singular locus is a simple
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normal crossings divisor; in a simultaneous good resolution, each intersection of
components of the simple normal crossings divisor is smooth over the base.

The stratification is constructed inductively: Choose a good resolution of sin-
gularities W → X ′, which induces a good resolution of the geometric generic fiber
of X ′ → B′. Since we are working over a field of characteristic zero, such fiber
is smooth. We can choose a dense open subset B′′ ⊂ B′ such that W → X ′ is a
simultaneous good resolution of the fibers X ′

b for b ∈ B′′. However, B′ r B′′ ( B′

is closed, so we are done by Noetherian induction.
The fibers of fj have invertible dualizing sheaves, so Lemma A.1.3 allows us to

determine whether the fibers have SLC singularities by computing discrepancies
on the good resolutions. However, discrepancies are constant over families with a
simultaneous good resolution, so if one fiber of fj is SLC then all fibers are SLC.
In particular, the the fibers are SLC over a constructible subset of the base. ♣

A.3. Proof of Proposition. We complete the proof that Bslc is open by proving
that it is stable under one-parameter generalizations. Precisely, let T be nonsingular
connected curve, t ∈ T a closed point, µ : T → B a morphism, and

fT : XT = X ×B T → T

the base change of our family to T . Then the set

{s ∈ T : Xs is semilog canonical }

is open. The existence of the sheaf L guarantees that the canonical class of XT is
Q-Cartier.

Suppose that s ∈ T is such that Xs has semilog canonical singularities. Let
ν : X̃T → XT denote the normalization and g : X̃ → T the induced morphism. Let
C denote the conductor divisor, which is also flat over T . We may write

ν∗KX = KX̃ + C,

which is also Q-Cartier. If S is the normalization of some irreducible component of
X̃s and ι : S → X̃s the induced morphism, then

ι∗(KX̃s
+ Cs) = KS + Θ,

where Θ contains the conductor and the preimage of Cs. Lemma A.1.3 implies
that (S,Θ) is log canonical, and therefore that (X̃s, Cs) is semilog canonical. By
‘Inversion of Adjunction’ [Kaw07], the pair (X̃, X̃s +C) is log canonical as well, at
least in a neighborhood of X̃s. Fix a good log resolution

ρ : (Y,D) → (X̃, X̃s + C),

i.e., one where the union of the exceptional locus and the proper transform of the
boundary is simple normal crossings. All discrepancies are computed with respect
to this resolution. Since X̃s is a fiber of X̃ → T , we have

• the log discrepancies of (X̃, C) for exceptional divisors with center in X̃s

are ≥ 0;
• the log discrepancies of (X̃, C) for exceptional divisors dominating T are
≥ −1;

For t 6= s in a neighborhood of s, the fiber X̃t is normal. Furthermore, ρ induces
a good log resolution of (X̃t, Ct). Consider the pairs (X̃, X̃t+C), which are also log
canonical by the discrepancy analysis above. Applying ‘Adjunction’, we conclude
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that (X̃t, Ct) is also log canonical. Lemma A.1.3 implies thatXt is therefore semilog
canonical. ♣
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