Semistable reduction - a progress report

Dan Abramovich
Brown University
Joint work with Michael Tëmkin and Jarosław Włodarczyk

Moduli and Hodge Theory
IMSA, Miami

Outline

- Statement of two results [$\aleph T W]$], [ALT],
- The one-dimensional base case [KKMS]
- Old results and conjectures over larger base [$\aleph \mathrm{K}]$
- Relative desingularization in the age of log stacks

This lays groundwork for Tëmkin's lecture tomorrow.

Relatively functorial toroidalization

(风-Tëmkin-Włodarczyk)

Theorem (※TW p2020)
Let $X \rightarrow B$ be a dominant morphism of complex varieties. There is a relatively functorial diagram

with

- $B^{\prime} \rightarrow B$ and $X^{\prime} \rightarrow B^{\prime}$ modifications,
- $X^{\prime} \rightarrow B^{\prime}$ logarithmically smooth.
- In particular,
if the generic fiber of $X \rightarrow B$ is smooth it is not modified, and a group actions along the fibers of $X \rightarrow B$ lifts to X^{\prime}.

Semistable reduction (Adiprasito-Liu-Tëmkin)

Theorem (ALT p2018)

Let $X \rightarrow B$ be a generically smooth complex projective family of varieties. There is a diagram

with

- $B_{1} \rightarrow B$ an alteration,
- $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ a modification of the main part
- ... which is an isomorphism on the generic fiber,
- and such that $X_{1} \rightarrow B_{1}$ is semistable.

Family resolution

- Both theorems answer the question how well can one resolve a family $X \rightarrow B$ of complex varieties,
with different notions of what you allow to do to B and X, and what you hope to get in the resulting $X^{\prime} \rightarrow B^{\prime}$.
- The case $\operatorname{dim} B=0$ is Hironaka's resolution of singularities.
- The case $\operatorname{dim} B=1$ is [KKMS]

Definition

A morphism $X_{1} \rightarrow B_{1}$ of smooth complex varieties with $\operatorname{dim} B_{1}=1$ is semistable if in local coordinates it is given by

$$
t=x_{1} \cdots x_{k} .
$$

The one-dimensional base case, and what Carlos said

Theorem (Knudsen-Mumford-Waterman 1973)
Given any family $X \rightarrow B$ with $\operatorname{dim} B=1$ there is

with

- $B_{1} \rightarrow B$ an alteration and
- $X_{1} \rightarrow X \times_{B} B_{1}$ modification,
- such that $X_{1} \rightarrow B_{1}$ is semistable.

The one-dimensional base case, and what Carlos said

Theorem (Knudsen-Mumford-Waterman 1973)

Given any family $X \rightarrow B$ with $\operatorname{dim} B=1$ there is

with

- $B_{1} \rightarrow B$ an alteration and
- $X_{1} \rightarrow X \times_{B} B_{1}$ modification,
- such that $X_{1} \rightarrow B_{1}$ is semistable.

This gives geometric justification for good Hodge theoretic behavior: given $X \rightarrow B$ arbitrary, after base change $B_{1} \rightarrow B$ and modification X_{1}, the family $X_{1} \rightarrow B_{1}$ has unipotent monodromy at every generic point the discriminant $\Delta(X / B) \subset B$.

What Mumford said

the Borel-Baily "minimal" compactification). We would also like to study semi-stable reduction over a higher dimensional base: viz., given any dominating morphism $f: X \longrightarrow Y$, replacing Y by any Y^{\prime} generically finite and proper over Y and X by a blow-up of the component of $X X_{Y} Y^{\prime}$ dominating Y^{\prime}, simplify all the fibres $f^{\prime}: X^{\prime} \longrightarrow Y^{\prime}$ as much as possible while requiring that X^{\prime}, Y^{\prime} are non-singular and f is flat.

Toroidal morphisms, log smooth morphisms (KKMS, K. Kato, \aleph-Karu)

- A toroidal embedding $U \subset X$ is an open embedding étale locally isomorphic to the embedding of a torus in a toric variety.
- It is the same as a log structure on $X \log$ smooth over Spec k.
- A toroidal morphism between toroidal embeddings $U_{i} \subset X_{i}$ is a morphism $X_{1} \rightarrow X_{2}$ that is étale locally the pullback of a dominant toric morphism.
- It is the same as a log smooth morphism between log smooth schemes.
- It is characterized by the fact that the pullback of a monomial is a monomial, and is smooth otherwise.
- Once you are log smooth, everything is combinatorial.

Weak toroidalization

The first step is
Theorem (ふ-Karu 2000)
Let $X \rightarrow B$ be a dominant morphism of complex varieties. There is a diagram

with $B^{\prime} \rightarrow B$ and $X^{\prime} \rightarrow B^{\prime}$ modifications, and $X^{\prime} \rightarrow B^{\prime}$ logarithmically smooth / toroidal.

- The proof used de Jong's alterations, so could not be made functorial. The generic fiber was modified.

Updated proof, Step 1 (de Jong)

Theorem (Altered semistable reduction, de Jong 1997)
Let $X \rightarrow B$ be a generically smooth complex projective family of varieties.
There is a finite group G and a G-equivariant diagram

with

- $B_{1} \rightarrow B$ and $Y \rightarrow X$ alterations,
- $Y / G \rightarrow X$ and $B_{1} / G \rightarrow B$ birational,
such that $Y \rightarrow B_{1}$ is semistable.
Consider $\mathcal{X}=[Y / G] \rightarrow X$ and $\mathcal{B}=\left[B_{1} / G\right] \rightarrow B$.

Updated proof, Step 2 (Bergh-Rydh)

Consider $\mathcal{X}=[Y / G] \rightarrow X$ and $\mathcal{B}=\left[B_{1} / G\right] \rightarrow B . \mathcal{X} \rightarrow \mathcal{B}$ is \log smooth.
Theorem (Destackification, Bergh-Rydh p2019)
There is a diagram

where $\tilde{\mathcal{X}} \rightarrow \mathcal{X}$ and $\tilde{\mathcal{B}} \rightarrow \mathcal{B}$ are stack blowup sequences, $\tilde{\mathcal{X}} \rightarrow X^{\prime}$ and $\tilde{\mathcal{B}} \rightarrow B^{\prime}$ coarse moduli spaces, and $X^{\prime} \rightarrow B^{\prime} \log$ smooth.

The resulting diagram

finishes the proof.

Weakly semistable and semistable morphisms（ぶ－Karu，T． Tsuji）
－A toroidal morphism $X \rightarrow B$ is weakly semistable if it is flat with reduced fibers．
－This is the same as an integral and saturated morphism of log structures．
－A toroidal morphism is semistable if moreover X and B are smooth．
－In local coordinates，we obtain

$$
\begin{aligned}
t_{1} & =x_{1} \cdots x_{l_{1}} \\
\vdots & \vdots \\
t_{m} & =x_{l_{m-1}+1} \cdots x_{l_{m}}
\end{aligned}
$$

－Yes，this is the best one can get（Karu t1999）．

Weak Semistable reduction ($\aleph-$ Karu)

Theorem (\aleph-Karu 2000)
Let $X \rightarrow B$ be a generically smooth complex projective family of varieties. There is a diagram

with

- $B_{1} \rightarrow B$ an alteration,
- $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ a modification of the main part
- and such that $X_{1} \rightarrow B_{1}$ is weakly semistable.

By weak toroidalization we may assume $X \rightarrow B$ logarithmically smooth.

Updated functorial proof (Molcho) part 1

Recall [KKMS] functor:
\{toroidal embeddings $\} \xrightarrow{X \mapsto \Sigma_{x}}$ \{R.P. cone complexes $\}$.
It restricts to an equivalence:
\{representable tor. modifications\} \longleftrightarrow \{subdivisions\}.

Theorem (Molcho p2016)

The functor Σ restricts to an equivalence
$\{$ stack toroidal modifications\} $\longleftrightarrow \longrightarrow$ \{lattice altered subdivisions\}.

Updated functorial proof (Molcho) part 2

Proposition (Molcho p2016)

$f: X \rightarrow B$ is semistable if and only if $\Sigma(f): \Sigma_{X} \rightarrow \Sigma_{B}$ satisfies

- for all $\sigma \in \Sigma_{X}$, the image $\Sigma(f)(\sigma)$ is a cone of Σ_{B},
- for all $\sigma \in \Sigma_{X}$, the image $\Sigma(f)\left(N_{\sigma}\right)=N_{\Sigma(f)(\sigma)}$.
- By the theorem, there is a stack theoretic modification $\mathcal{B} \rightarrow B$ such that the toroidal pullback $\mathcal{X} \rightarrow \mathcal{B}$ is a representable semistable morphism.
- Using Kawamata's trick one replaces \mathcal{B} by a scheme alteration.

Beyond weak semistable reduction

- In [$\aleph-$ Karu 2000] we conjectured that weakly semistable can be replaced by semistable,
- and reduced the problem to polyhedral combinatorics,
- as recently proved by Adiprasito, Liu and Tëmkin.
- This is in parallel to the Knudsen-Mumford-Waterman result.
- We also conjectured that toroidalization can be done more functorially.
- To tell the story we need to go one step back.

Varieties and log structures (K. Kato, Fontaine, Illusie)

- A variety is locally embedded in a smooth variety.
- A log variety is something locally embedded in a toroidal variety.
- The toroidal $U \subset X$ is encoded in the multiplicative submonoid $M_{X} \subset \mathcal{O}_{X}$ of functions invertible on U.
- In general a log structure $M \rightarrow \mathcal{O}_{Y}$ is a morphism of sheaves of monoids inducing an isomorphism on \mathcal{O}_{Y}^{\times}.
- A key example is a point on a toric variety.

Resolution and log resolution

- By Hironaka, a variety can be canonically resolved.
- Włodarczyk showed the benefits of functorial resolution: if the procedure is functorial for smooth morphisms, then gluing and descent is automatic.
- A morphism $X \rightarrow B$ has little chance of having a smooth resolution.
- Toroidalization $[\aleph \mathrm{K}]$ is precisely log smooth resolution.
- To make it functorial we turn to Hironaka-Włodarczyk methods.

Functoriality in log resolution

A logarithmically functorial resolution assigns to a \log morphism $X \rightarrow B$ a modification $X^{\prime} \rightarrow X$ such that

- $X^{\prime} \rightarrow B$ is log smooth
- If $Y \rightarrow X$ is log smooth, with log resolution $Y^{\prime} \rightarrow Y$, then $Y^{\prime}=Y \times_{X}^{\log } X^{\prime} \ldots$

Functoriality in log resolution

A logarithmically functorial resolution assigns to a \log morphism $X \rightarrow B$ a modification $X^{\prime} \rightarrow X$ such that

- $X^{\prime} \rightarrow B$ is log smooth
- If $Y \rightarrow X$ is \log smooth, with \log resolution $Y^{\prime} \rightarrow Y$, then $Y^{\prime}=Y \times{ }_{X}^{\log } X^{\prime} \ldots$
Either that, or it says "sorry, my friend, please modify B first".

Functoriality in log resolution

A logarithmically functorial resolution assigns to a \log morphism $X \rightarrow B$ a modification $X^{\prime} \rightarrow X$ such that

- $X^{\prime} \rightarrow B$ is log smooth
- If $Y \rightarrow X$ is log smooth, with log resolution $Y^{\prime} \rightarrow Y$, then $Y^{\prime}=Y \times{ }_{X}^{\log } X^{\prime} \ldots$
Either that, or it says "sorry, my friend, please modify B first". It is a relatively log functorial resolution if moreover
- A good base change $B^{\prime} \rightarrow B$ always exists, and
- $X^{\prime} \rightarrow X$ commutes with base change.

Functoriality in log resolution

A logarithmically functorial resolution assigns to a \log morphism $X \rightarrow B$ a modification $X^{\prime} \rightarrow X$ such that

- $X^{\prime} \rightarrow B$ is log smooth
- If $Y \rightarrow X$ is \log smooth, with \log resolution $Y^{\prime} \rightarrow Y$, then

$$
Y^{\prime}=Y \times_{X}^{\log } X^{\prime} \ldots
$$

Either that, or it says "sorry, my friend, please modify B first".
It is a relatively log functorial resolution if moreover

- A good base change $B^{\prime} \rightarrow B$ always exists, and
- $X^{\prime} \rightarrow X$ commutes with base change.

The theorem of [\aleph TW 2020] says that a relatively log functorial resolution exists, with the caveat of the next slides.
(We have a draft of a result showing $B^{\prime} \rightarrow B$ can be made functorial when $X \rightarrow B$ proper.)

Example: log modification of B

- Consider $X=\mathbb{A}_{\log }^{1} \rightarrow B=\mathbb{A}^{1}$.
- It is not log smooth.
- Modify $B^{\prime}=\mathbb{A}_{\log }^{1}$,
- then the \log pullback $X \rightarrow B^{\prime}$ is \log smooth.

Example: log resolution 1

- Consider $B=\mathbb{A}_{\log }^{1}, \quad Y=\mathbb{A}_{\log }^{1} \times \mathbb{A}^{1}$ and $X=V\left((x-y)(x+y)=V\left(x^{2}-y^{2}\right)\right.$.
- To resolve X, we blow up the origin (x, y) on Y, including the exceptional in the log structure.
- the log proper transform $X^{\prime} \rightarrow B^{\prime}$ is log smooth.

Example: log resolution 2

- Consider $B=\mathbb{A}_{\log }^{1}, Y=\mathbb{A}_{\log }^{1} \times \mathbb{A}^{1}$ and $X=V\left(x_{1}-y^{2}\right)$.
- Its pullback via $x_{1}=x^{2}$ is example 1 .
- By log functoriality we must blow up something whose pullback is (x, y).
- In other words, we must blow up $\left(\sqrt{x}_{1}, y\right)$.
- This is a Kummer blow up, whose result is a stack theoretic blowup.
- the log stack proper transform $\mathcal{X}^{\prime} \rightarrow B^{\prime}$ is log smooth.

Example 2 computation

- We blow up $\left(\sqrt{x}_{1}, y\right)$:
- Consider $x_{1}=U^{2} x_{1}^{\prime}, \quad y=U y^{\prime}$,
- with \mathbb{G}_{m} action $\left(x_{1}^{\prime}, y^{\prime}, U\right) \mapsto\left(t^{2} x_{1}^{\prime}, t y^{\prime}, t^{-1} U\right)$.
- The map Spec $k\left[x_{1}^{\prime}, y^{\prime}, U\right] \rightarrow \operatorname{Spec} k\left[x_{1}, y\right]$ is \mathbb{G}_{m}-equivariant,
- leaving $Z:=V\left(x_{1}^{\prime}, y^{\prime}\right)$ invariant.
- Write $\mathcal{X}^{\prime}=\left[\left(\operatorname{Spec} k\left[x_{1}^{\prime}, y^{\prime}, U\right] \backslash Z\right) / \mathbb{G}_{m}\right]$.

Example 2 computation

- We blow up $\left(\sqrt{x}_{1}, y\right)$:
- Consider $x_{1}=U^{2} x_{1}^{\prime}, \quad y=U y^{\prime}$,
- with \mathbb{G}_{m} action $\left(x_{1}^{\prime}, y^{\prime}, U\right) \mapsto\left(t^{2} x_{1}^{\prime}, t y^{\prime}, t^{-1} U\right)$.
- The map Spec $k\left[x_{1}^{\prime}, y^{\prime}, U\right] \rightarrow \operatorname{Spec} k\left[x_{1}, y\right]$ is \mathbb{G}_{m}-equivariant,
- leaving $Z:=V\left(x_{1}^{\prime}, y^{\prime}\right)$ invariant.
- Write $\mathcal{X}^{\prime}=\left[\left(\operatorname{Spec} k\left[x_{1}^{\prime}, y^{\prime}, U\right] \backslash Z\right) / \mathbb{G}_{m}\right]$.
- The equation $x_{1}-y^{2}$ becomes $U^{2}\left(x_{1}^{\prime}-y_{1}^{\prime 2}\right)$,
- and the proper transform $\left(x_{1}^{\prime}-y_{1}^{\prime 2}\right)$ is indeed \log smooth over $\mathbb{A}_{\log }^{1}$.

Lesson learned

- So log smooth functoriality requires log stacks.
- With Bergh's destackification, we get a schematic log resolution as in the theorem,
- which is functorial only for smooth $Y \rightarrow X$.
- more to come tomorrow.

Also, Hodge theorists,

- One can have, with good reason, monodromy unipotent everywhere,
- with very nice local equations everywhere,
- and functoriality properties.

Thank you for your attention!

