Semistable reduction - a progress report

Dan Abramovich Brown University

Joint work with Michael Tëmkin and Jarosław Włodarczyk

Moduli and Hodge Theory IMSA, Miami

ℵbramovich

Outline

- Statement of two results [ℵTW], [ALT],
- The one-dimensional base case [KKMS]
- Old results and conjectures over larger base $[\aleph K]$
- Relative desingularization in the age of log stacks

This lays groundwork for Tëmkin's lecture tomorrow.

Relatively functorial toroidalization (ℵ-Tëmkin-Włodarczyk)

Theorem (ℵTW p2020)

Let $X \rightarrow B$ be a dominant morphism of complex varieties. There is a relatively functorial diagram

$$\begin{array}{c} X' \to X \\ \downarrow & \downarrow \\ B' \to B \end{array}$$

with

- $B' \rightarrow B$ and $X' \rightarrow B'$ modifications,
- $X' \rightarrow B'$ logarithmically smooth.
- In particular,
 - if the generic fiber of $X \rightarrow B$ is smooth it is not modified, and
 - a group actions along the fibers of $X \to B$ lifts to X'.

周 ト イ ヨ ト イ ヨ ト

Semistable reduction (Adiprasito-Liu-Tëmkin)

Theorem (ALT p2018)

Let $X \rightarrow B$ be a generically smooth complex projective family of varieties. There is a diagram

$$\begin{array}{ccc} X_1 \longrightarrow X \\ \downarrow & \downarrow \\ B_1 \longrightarrow B \end{array}$$

with

- $B_1 \rightarrow B$ an alteration,
- $X_1
 ightarrow (X imes_B B_1)_{main}$ a modification of the main part
- ... which is an isomorphism on the generic fiber,
- and such that $X_1 \rightarrow B_1$ is semistable.

Family resolution

• Both theorems answer the question

how well can one resolve a family $X \rightarrow B$ of complex varieties,

with different notions of what you allow to do to B and X, and what you hope to get in the resulting $X' \to B'$.

- The case dim B = 0 is Hironaka's resolution of singularities.
- The case dim B = 1 is [KKMS]

Definition

A morphism $X_1 \rightarrow B_1$ of smooth complex varieties with dim $B_1 = 1$ is semistable if in local coordinates it is given by

$$t = x_1 \cdots x_k$$
.

周 ト イ ヨ ト イ ヨ

The one-dimensional base case, and what Carlos said

Theorem (Knudsen-Mumford-Waterman 1973)

Given any family $X \to B$ with dim B = 1 there is

$$\begin{array}{ccc} X_1 \to X \\ \downarrow & \downarrow \\ B_1 \to B \end{array}$$

with

- $B_1 \rightarrow B$ an alteration and
- $X_1 \rightarrow X \times_B B_1$ modification,
- such that $X_1 \rightarrow B_1$ is semistable.

The one-dimensional base case, and what Carlos said

Theorem (Knudsen-Mumford-Waterman 1973)

Given any family $X \to B$ with dim B = 1 there is

$$\begin{array}{ccc} X_1 \to X \\ \downarrow & \downarrow \\ B_1 \to B \end{array}$$

with

- $B_1 \rightarrow B$ an alteration and
- $X_1 \rightarrow X \times_B B_1$ modification,
- such that $X_1 \rightarrow B_1$ is semistable.

This gives geometric justification for good Hodge theoretic behavior: given $X \to B$ arbitrary, after base change $B_1 \to B$ and modification X_1 , the family $X_1 \to B_1$ has unipotent monodromy at every generic point the discriminant $\Delta(X/B) \subset B$.

What Mumford said

VII

the Borel-Baily "minimal" compactification). We would also like to study semi-stable reduction over a higher dimensional base: viz., given any dominating morphism $f: X \longrightarrow Y$, replacing Y by any Y' generically finite and proper over Y and X by a blow-up of the component of X x_{Y} Y' dominating Y', simplify <u>all</u> the fibres $f': X' \longrightarrow Y'$ as much as possible while requiring that X,Y' are non-singular and f is flat.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Toroidal morphisms, log smooth morphisms (KKMS, K. Kato, ℵ–Karu)

- A toroidal embedding *U* ⊂ *X* is an open embedding étale locally isomorphic to the embedding of a torus in a toric variety.
- It is the same as a log structure on X log smooth over Spec k.
- A toroidal morphism between toroidal embeddings U_i ⊂ X_i is a morphism X₁ → X₂ that is étale locally the pullback of a dominant toric morphism.
- It is the same as a log smooth morphism between log smooth schemes.
- It is characterized by the fact that the pullback of a monomial is a monomial, and is smooth otherwise.
- Once you are log smooth, everything is combinatorial.

Weak toroidalization

The first step is

Theorem (ℵ-Karu 2000)

Let $X \rightarrow B$ be a dominant morphism of complex varieties. There is a diagram

with $B' \to B$ and $X' \to B'$ modifications, and $X' \to B'$ logarithmically smooth / toroidal.

• The proof used de Jong's alterations, so could not be made functorial. The generic fiber was modified.

過 ト イヨ ト イヨト

Updated proof, Step 1 (de Jong)

Theorem (Altered semistable reduction, de Jong 1997)

Let $X \rightarrow B$ be a generically smooth complex projective family of varieties. There is a finite group G and a G-equivariant diagram

$$U_Y \hookrightarrow Y \longrightarrow X$$
$$\downarrow \qquad \downarrow \qquad \downarrow$$
$$U_B \hookrightarrow B_1 \longrightarrow B$$

with

Consider $\mathcal{X} = [Y/G] \rightarrow X$ and $\mathcal{B} = [B_1/G] \rightarrow B$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Updated proof, Step 2 (Bergh-Rydh)

Consider $\mathcal{X} = [Y/G] \to X$ and $\mathcal{B} = [B_1/G] \to B$. $\mathcal{X} \to \mathcal{B}$ is log smooth.

Theorem (Destackification, Bergh-Rydh p2019)

There is a diagram

$$\begin{array}{ccc} X' \leftarrow \tilde{\mathcal{X}} \rightarrow \mathcal{X} \\ \downarrow & \downarrow & \downarrow \\ B' \leftarrow \tilde{\mathcal{B}} \rightarrow \mathcal{B} \end{array}$$

where $\tilde{\mathcal{X}} \to \mathcal{X}$ and $\tilde{\mathcal{B}} \to \mathcal{B}$ are stack blowup sequences, $\tilde{\mathcal{X}} \to X'$ and $\tilde{\mathcal{B}} \to B'$ coarse moduli spaces, and $X' \to B'$ log smooth.

The resulting diagram

$$U_X \hookrightarrow X' \to X$$
$$\downarrow \qquad \downarrow \qquad \downarrow$$
$$U_B \hookrightarrow B' \to B$$

finishes the proof.

Weakly semistable and semistable morphisms (ℵ–Karu, T. Tsuji)

- A toroidal morphism $X \to B$ is weakly semistable if it is flat with reduced fibers.
- This is the same as an integral and saturated morphism of log structures.
- A toroidal morphism is semistable if moreover X and B are smooth.
- In local coordinates, we obtain

$$t_1 = x_1 \cdots x_{l_1}$$

$$\vdots \quad \vdots$$

$$t_m = x_{l_{m-1}+1} \cdots x_{l_m}$$

• Yes, this is the best one can get (Karu t1999).

Weak Semistable reduction (ℵ–Karu)

Theorem (ℵ–Karu 2000)

Let $X \to B$ be a generically smooth complex projective family of varieties. There is a diagram

$$U_X \hookrightarrow X_1 \to X$$
$$\downarrow \qquad \downarrow \qquad \downarrow$$
$$U_B \hookrightarrow B_1 \to B$$

with

- $B_1 \rightarrow B$ an alteration,
- $X_1 \rightarrow (X \times_B B_1)_{main}$ a modification of the main part
- and such that $X_1 \rightarrow B_1$ is weakly semistable.

By weak toroidalization we may assume $X \rightarrow B$ logarithmically smooth.

Updated functorial proof (Molcho) part 1

Recall [KKMS] functor:

{toroidal embeddings} $\xrightarrow{X \mapsto \Sigma_X}$ {R.P. cone complexes}.

It restricts to an equivalence:

{representable tor. modifications} \longleftrightarrow {subdivisions}.

Theorem (Molcho p2016)

The functor Σ restricts to an equivalence

くぼう くほう くほう

Updated functorial proof (Molcho) part 2

Proposition (Molcho p2016)

- $f:X\to B$ is semistable if and only if $\Sigma(f):\Sigma_X\to \Sigma_B$ satisfies
 - for all $\sigma \in \Sigma_X$, the image $\Sigma(f)(\sigma)$ is a cone of Σ_B ,
 - for all $\sigma \in \Sigma_X$, the image $\Sigma(f)(N_{\sigma}) = N_{\Sigma(f)(\sigma)}$.
 - By the theorem, there is a stack theoretic modification $\mathcal{B} \to B$ such that the toroidal pullback $\mathcal{X} \to \mathcal{B}$ is a representable semistable morphism.
 - Using Kawamata's trick one replaces $\mathcal B$ by a scheme alteration.

Beyond weak semistable reduction

- In [X–Karu 2000] we conjectured that weakly semistable can be replaced by semistable,
- and reduced the problem to polyhedral combinatorics,
- as recently proved by Adiprasito, Liu and Tëmkin.
- This is in parallel to the Knudsen-Mumford-Waterman result.
- We also conjectured that toroidalization can be done more functorially.
- To tell the story we need to go one step back.

Varieties and log structures (K. Kato, Fontaine, Illusie)

- A variety is locally embedded in a smooth variety.
- A log variety is something locally embedded in a toroidal variety.
- The toroidal $U \subset X$ is encoded in the multiplicative submonoid $M_X \subset \mathcal{O}_X$ of functions invertible on U.
- In general a log structure M → O_Y is a morphism of sheaves of monoids inducing an isomorphism on O[×]_Y.
- A key example is a point on a toric variety.

Resolution and log resolution

- By Hironaka, a variety can be canonically resolved.
- Włodarczyk showed the benefits of functorial resolution: if the procedure is functorial for smooth morphisms, then gluing and descent is automatic.
- A morphism $X \rightarrow B$ has little chance of having a smooth resolution.
- Toroidalization $[\aleph K]$ is precisely log smooth resolution.
- To make it functorial we turn to Hironaka–Włodarczyk methods.

A logarithmically functorial resolution assigns to a log morphism $X \to B$ a modification $X' \to X$ such that

- $X' \to B$ is log smooth
- If $Y \to X$ is log smooth, with log resolution $Y' \to Y$, then $Y' = Y \times_X^{\log} X' \dots$

A logarithmically functorial resolution assigns to a log morphism $X \to B$ a modification $X' \to X$ such that

- $X' \to B$ is log smooth
- If $Y \to X$ is log smooth, with log resolution $Y' \to Y$, then $Y' = Y \times_X^{\log} X' \dots$

Either that, or it says "sorry, my friend, please modify B first".

A logarithmically functorial resolution assigns to a log morphism $X \to B$ a modification $X' \to X$ such that

- $X' \to B$ is log smooth
- If $Y \to X$ is log smooth, with log resolution $Y' \to Y$, then $Y' = Y \times_X^{\log} X' \dots$

Either that, or it says "sorry, my friend, please modify B first". It is a relatively log functorial resolution if moreover

- A good base change B'
 ightarrow B always exists, and
- $X' \rightarrow X$ commutes with base change.

A logarithmically functorial resolution assigns to a log morphism $X \to B$ a modification $X' \to X$ such that

• $X' \to B$ is log smooth

• If $Y \to X$ is log smooth, with log resolution $Y' \to Y$, then $Y' = Y \times_X^{\log} X' \dots$

Either that, or it says "sorry, my friend, please modify B first". It is a relatively log functorial resolution if moreover

- A good base change B'
 ightarrow B always exists, and
- $X' \rightarrow X$ commutes with base change.

The theorem of [\aleph TW 2020] says that a relatively log functorial resolution exists, with the caveat of the next slides.

(We have a draft of a result showing $B' \to B$ can be made functorial when $X \to B$ proper.)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Example: log modification of B

- Consider $X = \mathbb{A}^1_{\log} \to B = \mathbb{A}^1$.
- It is not log smooth.
- Modify $B' = \mathbb{A}^1_{\log}$,
- then the log pullback $X \to B'$ is log smooth.

47 ▶

Example: log resolution 1

• Consider
$$B = \mathbb{A}^1_{\log}$$
, $Y = \mathbb{A}^1_{\log} \times \mathbb{A}^1$ and $X = V((x - y)(x + y) = V(x^2 - y^2)$.

- To resolve X, we blow up the origin (x, y) on Y, including the exceptional in the log structure.
- the log proper transform $X' \to B'$ is log smooth.

Example: log resolution 2

- Consider $B = \mathbb{A}^1_{\log}$, $Y = \mathbb{A}^1_{\log} \times \mathbb{A}^1$ and $X = V(x_1 y^2)$.
- Its pullback via $x_1 = x^2$ is example 1.
- By log functoriality we must blow up something whose pullback is (x, y).
- In other words, we must blow up $(\sqrt{x_1}, y)$.
- This is a Kummer blow up, whose result is a stack theoretic blowup.
- the log stack proper transform $\mathcal{X}' \to B'$ is log smooth.

Example 2 computation

- We blow up $(\sqrt{x_1}, y)$:
- Consider $x_1 = U^2 x'_1$, y = Uy',
- with \mathbb{G}_m action $(x'_1, y', U) \mapsto (t^2 x'_1, ty', t^{-1}U)$.
- The map Spec $k[x'_1, y', U] \rightarrow \operatorname{Spec} k[x_1, y]$ is \mathbb{G}_m -equivariant,
- leaving $Z := V(x'_1, y')$ invariant.
- Write $\mathcal{X}' = [(\operatorname{Spec} k[x'_1, y', U] \setminus Z)/\mathbb{G}_m].$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example 2 computation

- We blow up $(\sqrt{x_1}, y)$:
- Consider $x_1 = U^2 x'_1$, y = Uy',
- with \mathbb{G}_m action $(x'_1, y', U) \mapsto (t^2 x'_1, ty', t^{-1}U)$.
- The map Spec $k[x'_1, y', U] \rightarrow \operatorname{Spec} k[x_1, y]$ is \mathbb{G}_m -equivariant,
- leaving $Z := V(x'_1, y')$ invariant.
- Write $\mathcal{X}' = [(\operatorname{Spec} k[x'_1, y', U] \setminus Z)/\mathbb{G}_m].$
- The equation $x_1 y^2$ becomes $U^2(x'_1 {y'_1}^2)$,
- and the proper transform $(x'_1 {y'_1}^2)$ is indeed log smooth over \mathbb{A}^1_{\log} .

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lesson learned

- So log smooth functoriality requires log stacks.
- With Bergh's destackification, we get a schematic log resolution as in the theorem,
- which is functorial only for smooth $Y \rightarrow X$.
- more to come tomorrow.

Also, Hodge theorists,

- One can have, with good reason, monodromy unipotent everywhere,
- with very nice local equations everywhere,
- and functoriality properties.

Thank you for your attention!

___ ▶

3